Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T10:34:31.839Z Has data issue: false hasContentIssue false

7 - Tensile properties of micro- and nanofibers

Published online by Cambridge University Press:  05 June 2014

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Behnam Pourdeyhimi
Affiliation:
North Carolina State University
Seeram Ramakrishna
Affiliation:
National University of Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arinstein, A., Burman, M., Gendelman, O., Zussman, E., 2007. Effect of supramolecular structure on polymer nanofibre elasticity. Nature Nanotechnology 2, 59–62.CrossRefGoogle ScholarPubMed
Dzenis, Y., 2004. Spinning continuous fibers for nanotechnology. Science 304, 1917–1919.CrossRefGoogle ScholarPubMed
Dzenis, Y., 2008. Structural nanocomposites. Science 319, 419–420.CrossRefGoogle ScholarPubMed
Green, A. E., 1956. Hypo-elasticity and plasticity. Proc. R. Soc. London A 234, 46–59.CrossRefGoogle Scholar
Griffith, A. A., 1920. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser A, 221, 163–198.CrossRefGoogle Scholar
Gu, S. Y., Wu, Q. L., Ren, J., Vansco, G. J., 2005. Mechanical properties of a single electrospun fiber and its structures. Macromol. Rapid Commun. 26, 716–720.CrossRefGoogle Scholar
Huang, Z. M., Zhang, Y. Z., Ramakrishna, S., Lim, C. T., 2004. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45, 5361–5368.CrossRefGoogle Scholar
Inai, R., Kotaki, M., Ramakrishna, S., 2005. Structure and properties of electrospun PLLA single nanofibers. Nanotechnology 16, 208–213.CrossRefGoogle Scholar
Khansari, S., Sinha-Ray, S., Yarin, A. L., Pourdeyhimi, B., 2012. Stress–strain dependence for soy-protein nanofiber mats. J. Appl. Phys. 111, 044906.CrossRefGoogle Scholar
Khil, M. S., Kim, H. Y., Kim, M. S., Park, S. Y., Lee, D. R., 2004. Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer 45, 295–301.CrossRefGoogle Scholar
Kim, G. M., Lach, R., Michler, G. H., Chang, Y. W., 2005. The mechanical deformation process of electrospun polymer nanocomposite fibers. Macromol. Rapid Commun. 26, 728–733.CrossRefGoogle Scholar
Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H. H., Yang, G. L., Li, C., Willis, P., 2003. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15, 1161–1165.CrossRefGoogle Scholar
Landau, L. D., Lifshitz, E. M., 1970. Theory of Elasticity. Pergamon Press, Oxford.Google Scholar
Lee, K. H., Kim, H. Y., Ryu, Y. J., Kim, K. W., Choi, S. W., 2003. Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. J. Polym. Sci., Polym. Phys.Ed. B 41, 1256–1262.CrossRefGoogle Scholar
Pai, C. L., Boyce, M. C., Rutledge, G. C., 2011a. Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter. Polymer 52, 2295–2301.CrossRefGoogle Scholar
Pai, C. L., Boyce, M. C., Rutledge, G. C., 2011b. On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer 52, 6126–6133.CrossRefGoogle Scholar
Papkov, D., Zou, Y., Andalib, M. N., Goponenko, A., Cheng, S. Z. D., Dzenis, Y. A., 2013. Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano, 7, 3324–3331.CrossRefGoogle ScholarPubMed
Pedicini, A., Farris, R. J., 2003. Mechanical behavior of electrospun polyurethane. Polymer 44, 6857–6862.CrossRefGoogle Scholar
Prager, W., 1939. On isotropic materials with continuous transition from elastic to plastic state. Proceedings of the 5th International Congress for Applied Mechanics, Cambridge Mass. Sept 12–26 1938. John Wiley & Sons, New York, 234–237.Google Scholar
Prager, W., 1942. Fundamental theorems of a new mathematical theory of plasticity. Duke Math. J. 9, 228–233.CrossRefGoogle Scholar
Rubin, M. B., Yarin, A. L., 1993. On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids. J. Non-Newton. Fluid Mech. 50, 79–88.CrossRefGoogle Scholar
Rubin, M. B., Yarin, A. L., 1995. Corrigendum:J. Non-Newton. Fluid Mech. 57, 321.Google Scholar
Sinha-Ray, S., Lee, M. W., Sinha-Ray, S., An, S., Pourdeyhimi, B., Yoon, S. S., Yarin, A. L., 2013. Supersonic nanoblowing: A new ulta-stiff phase of nylon 6 in 20–50 nm confinement. J. Mater. Chem. C 1, 3491–3498.CrossRefGoogle Scholar
Sinha-Ray, S., Pelot, D. D., Zhou, Z. P., Rahman, A., Wu, X. -F., Yarin, A. L., 2012. Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning and solution blowing and intercalation. J. Mater. Chem. 22, 9138–9146.CrossRefGoogle Scholar
Tan, E. P. S., Lim, C. T., 2004. Physical properties of a single polymeric nanofiber. Appl. Phys. Lett. 84, 1603–1605.CrossRefGoogle Scholar
Tan, E. P. S., Ng, S. Y., Lim, C. T., 2005. Tensile testing of a single ultrafine polymer fiber. Biomaterials 26, 1453–1456.CrossRefGoogle Scholar
Timoshenko, S. P., 1961. Theory of Elastic Stability, McGraw-Hill, New York.Google Scholar
Truesdell, C., 1952. The mechanical foundations of elasticity and fluid dynamics. J. Rat. Mech. Anal. 1, 125–300.Google Scholar
Truesdell, C., 1953. Corrections and additions to “The mechanical foundations of elasticity and fluid dynamics”. J. Rat. Mech. Anal. 2, 593–616.Google Scholar
Wendorff, J. H., Agarwal, S., Greiner, A., 2012. Electrospinning. Wiley-VCH, Weinheim.CrossRefGoogle Scholar
Yarin, A. L., 2008. Stimuli-responsive polymers in nanotechnology: Deposition and possible effect on drug release. Mathematical Modelling of Natural Phenomena 3, No. 5, 1–15.CrossRefGoogle Scholar
Yarin, A. L., Sinha-Ray, S., Pourdeyhimi, B., 2011. Meltblowing: Multiple jets and fiber-size distribution and lay-down patterns. Polymer 52, 2929–2938.CrossRefGoogle Scholar
Zussman, E., Burman, M., Yarin, A. L., Khalfin, R., Cohen, Y., 2006. Tensile deformation of electrospun Nylon 6,6 nanofibers. J. Polym. Sci., Part B- Polymer Physics 44, 1482–1489.CrossRefGoogle Scholar
Zussman, E., Rittel, D., Yarin, A. L., 2003. Failure modes of electrospun nanofibers. Appl. Phys. Lett. 82, 3958–3960.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×