Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T06:33:17.578Z Has data issue: false hasContentIssue false

4 - Impacts of Climate Change on Aeroallergen Dispersion, Transport, and Deposition

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Damialis, A., Gioulekas, D., Lazopoulou, C., Balafoutis, C., Vokou, D. (2005). Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence. International Journal of Biometeorology, 49(3), 139145.CrossRefGoogle ScholarPubMed
Dee, D. P., Uppala, S. M., Simmons, A. J., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553597.CrossRefGoogle Scholar
Di-Giovanni, F., Kevan, P. G. (1991). Factors affecting pollen dynamics and its importance to pollen contamination: a review. Canadian Journal of Forest Research, 21(8), 11551170.CrossRefGoogle Scholar
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., et al. (2013). Observations: atmosphere and surface. In: Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 159254.Google Scholar
Helbig, N., Vogel, B., Vogel, H., Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20(1), 319.CrossRefGoogle Scholar
Hernandez-Ceballos, M. A., Soares, J., García-Mozo, H., et al. (2014). Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models. Aerobiologia, 30(3), 239255.CrossRefGoogle Scholar
Horton, D. E., Skinner, C. B., Singh, D., Diffenbaugh, N. S. (2014). Occurrence and persistence of future atmospheric stagnation events. Nature Climate Change, 4, 698703.CrossRefGoogle ScholarPubMed
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds.). Cambridge, UK: Cambridge University Press.Google Scholar
Isaksen, I. S. A., Granier, C., Myhre, G., et al. (2009). Atmospheric composition change: climate–chemistry interactions. Atmospheric Environment, 43(33), 51385192.Google Scholar
Jacob, D. J., Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 5163.CrossRefGoogle Scholar
Kirtman, B., Power, S. B., Adedoyin, J. A., et al. (2013). Near-term climate change: projections and predictability. In: Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 9531028.Google Scholar
Kouznetsov, R., Sofiev, M. (2012). A methodology for evaluation of vertical dispersion and dry deposition of atmospheric aerosols. Journal of Geophysical Research: Atmospheres, 117(D01), D01202.CrossRefGoogle Scholar
Liao, H., Chen, W.-T., Seinfeld, J. H. (2006). Role of climate change in global predictions of future tropospheric ozone and aerosols. Journal of Geophysical Research: Atmospheres, 111(D12), D12304.Google Scholar
Linskens, H. F., Cresti, M. (2000). Pollen-allergy as an ecological phenomenon: a review. Plant Biosystems, 134(3), 341352.Google Scholar
McVicar, T. R., Roderick, M. L., Donohue, R. J., et al. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. Journal of Hydrology, 416–417, 182205.CrossRefGoogle Scholar
Prank, M., Chapman, D. S., Bullock, J. M., et al. (2013). An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricultural and Forest Meteorology, 182–183, 4353.CrossRefGoogle Scholar
Racherla, P. N., Adams, P. J. (2006). Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. Journal of Geophysical Research: Atmospheres, 111(D24), D24103.CrossRefGoogle Scholar
Šikoparija, B., Smith, M., Skjøth, C. A., et al. (2009). The Pannonian plain as a source of Ambrosia pollen in the Balkans. International Journal of Biometeorology, 53(3), 263272.CrossRefGoogle ScholarPubMed
Siljamo, P., Sofiev, M., Filatova, E., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. International Journal of Biometeorology, 57(1), 125136.CrossRefGoogle ScholarPubMed
Skjøth, C. A., Smith, M., Brandt, J., Emberlin, J. (2009). Are the birch trees in Southern England a source of Betula pollen for North London? International Journal of Biometeorology, 53(1), 7586.CrossRefGoogle Scholar
Skjøth, C. A., Sommer, J., Stach, A., Smith, M., Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37(8), 12041212.CrossRefGoogle ScholarPubMed
Smith, M., Emberlin, J., Kress, A. (2005). Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia, 21(2), 8594.CrossRefGoogle Scholar
Smith, M., Skjøth, C. A., Myszkowska, D., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148(10), 14021411.CrossRefGoogle Scholar
Sofiev, M., Bergmann, K.-C., eds. (2013). Allergenic Pollen. A Review of the Production, Release, Distribution and Health Impacts. Dordrecht: Springer.CrossRefGoogle Scholar
Sofiev, M., Genikhovich, E., Keronen, P., Vesala, T. (2010). Diagnosing the surface layer parameters for dispersion models within the meteorological-to-dispersion modeling interface. Journal of Applied Meteorology and Climatology, 49(2), 221233.CrossRefGoogle Scholar
Sofiev, M., Siljamo, P., Ranta, H., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57(1), 4558.CrossRefGoogle ScholarPubMed
Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. International Journal of Biometeorology, 50(6), 392402.CrossRefGoogle ScholarPubMed
Stach, A., Smith, M., Skjøth, C. A., Brandt, J. (2007). Examining Ambrosia pollen episodes at Poznań (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51(4), 275286.CrossRefGoogle ScholarPubMed
Stevenson, D. S., Dentener, F. J., Schultz, M. G., et al. (2006). Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research: Atmospheres, 111(D8), D08301.CrossRefGoogle Scholar
Stocker, T. F., Qin, D., Plattner, G.-K., et al. (2013). Technical summary. In: Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 33115.Google Scholar
Tsigaridis, K., Kanakidou, M. (2007). Secondary organic aerosol importance in the future atmosphere. Atmospheric Environment, 41(22), 46824692.CrossRefGoogle Scholar
Unger, N., Shindell, D. T., Koch, D. M., Streets, D. G. (2006). Cross influences of ozone and sulfate precursor emissions changes on air quality and climate. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 43774380.CrossRefGoogle ScholarPubMed
Veriankaitė, L., Siljamo, P., Sofiev, M., Šaulienė, I., Kukkonen, J. (2010). Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia, 26(1), 4762.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×