Skip to main content
×
Home
Liquid Cell Electron Microscopy
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Yulaev, Alexander Guo, Hongxuan Strelcov, Evgheni Chen, Lei Vlassiouk, Ivan and Kolmakov, Andrei 2017. Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids. ACS Applied Materials & Interfaces, Vol. 9, p. 26492.


    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Liquid Cell Electron Microscopy
    • Online ISBN: 9781316337455
    • Book DOI: https://doi.org/10.1017/9781316337455
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

The first book on the topic, with each chapter written by pioneers in the field, this essential resource details the fundamental theory, applications, and future developments of liquid cell electron microscopy. This book describes the techniques that have been developed to image liquids in both transmission and scanning electron microscopes, including general strategies for examining liquids, closed and open cell electron microscopy, experimental design, resolution, and electron beam effects. A wealth of practical guidance is provided, and applications are described in areas such as electrochemistry, corrosion and batteries, nanocrystal growth, biomineralization, biomaterials and biological processes, beam-induced processing, and fluid physics. The book also looks ahead to the future development of the technique, discussing technical advances that will enable higher resolution, analytical microscopy, and even holography of liquid samples. This is essential reading for researchers and practitioners alike.

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Page 1 of 2



Page 1 of 2


Heide Schatten , Scanning Electron Microscopy for the Life Sciences

Nigel Browning et al., Dynamic Transmission Electron Microscopy

Richard Leapman , Energy Filtered Electron Microscopy and Electron Spectroscopy

Eric Lifshin , The Scanning Electron Microscope

Chris Jacobsen and Janos Kirz , X-Ray Microscopy

Joel Kubby , Meng Cui and Sylvain Gigan , Wavefront Shaping for Biomedical Imaging

Thomas F. Kelly and Simon Ringer , Atomic-Scale Tomography

N. de Jonge and F. M. Ross , Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.

H. G. Liao and H. Zheng , Liquid cell transmission electron microscopy, Annu. Rev. Phys. Chem., 67 (2016), 719747.

E. P. Butler and K. F. Hale , Chapter 6 in Dynamic Experiments in the Electron Microscope (Amsterdam: North-Holland, 1981).

D. F. Parsons , Structure of wet specimens in electron microscopy. Science, 186 (1974), 407414.

E. Ruska , Beitrag zur uebermikroskopischen Abbildungen bei hoeheren Drucken. Kolloid Z., 100 (1942), 212219.

S. Helveg , C. López-Cartes , J. Sehested et al., Atomic-scale imaging of carbon nanofibre growth. Nature, 427 (2004), 426429.

C. M. Wang , W. Xu , J. Liu et al., In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res., 25 (2010), 15411547.

C.-M. Wang , H.-G. Liao and F. M. Ross , Observation of materials processes in liquids by electron microscopy, MRS Bulletin, 40 (2015), 4652.

I. M. Abrams and J. W. McBain , A closed cell for electron microscopy. J. Appl. Phys., 15 (1944), 607609.

H. G. Heide , Elektronenmikroskopie von Objekten unter Atmosphaerendruck oder unter Drucken, welche Austricknen verhindern. Naturwissenschaften, 47 (1960), 313317.

H. G. Heide , Electron microscopic observation of specimens under controlled gas pressure. J. Cell Biol., 13 (1962), 147152.

D. D. Double , Some studies of the hydration of Portland cement using high voltage (1MV) electron microscopy. Mater. Sci. Eng., 12 (1973), 2934.

T. L. Daulton , B. J. Little , K. Lowe and J. Jones-Meehan , In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.

W.-A. Chiou et al., In situ TEM study of DNA/gold nanoparticles in liquid environment. Microsc. Microanal., 5 (Suppl. 2) (1999), MSA.

A. Fukami , K. Fukushima and N. Kohyama , Observation technique for wet clay minerals using film-sealed environmental cell equipment attached to high-resolution electron microscope. In R. Bennett et al., eds., Microstructure of Fine-Grained Sediments (New York: Springer, 1991) pp. 321331.

P. L. Gai , Development of wet environment TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc Microanal., 8 (2002), 2128.

H. T. Sugi , K. Akimoto , S. Sutoh et al., Dynamic electron microscopy of ATP-induced myosin head movement in living muscle filaments. Proc. Natl. Acad. Sci. USA, 94 (1997), 43784392.

K. A. Taylor and R. M. Glaeser , Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res., 55 (1976), 448456.

J. Frank , Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State (Oxford: Oxford University Press, 2006).

V. Lucic , F. Foerster and W. Baumeister , Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem., 74 (2005), 833865.

H. Stahlberg and T. Walz , Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol., 3 (2008), 268281.

M. J. Williamson , R. M. Tromp , P. M. Vereecken , R. Hull and F. M. Ross , Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.

R. Franks , S. Morefield , J. Wen et al., A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J. Nanosci. Nanotechnol., 8 (2008), 44044407.

K.-L. Liu , C.-C. Wu , Y.-J. Huang et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip, 8 (2008), 19151921.

H. M. Zheng , S. A. Claridge , A. M. Minor , A. P. Alivisatos and U. Dahmen , Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.

J. M. Grogan and H. H. Bau , The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.

A. J. Leenheer , J. P. Sullivan , M. J. Shaw and C. T. Harris , A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst., 24 (2015), 10611068.

M. Tanase , J. Winterstein , R. Sharma et al., High-resolution imaging and spectroscopy at high pressure: a novel liquid cell for the TEM. Microsc. Micranal., 21 (2015), 16291638.

C. Mueller , M. Harb , J. R. Dwyer and R. J. Dwayne Miller , Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.

M. den Heijer , I. Shao , A. Radisic , M. C. Reuter and F. M. Ross , Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2 (2014), 022101.

J. M. Yuk , J. Park , P. Ercius et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.

E. A. Ring and N. de Jonge , Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.

K. L. Jungjohann , J. E. Evans , J. Aguiar , I. Arslan and N. D. Browning , Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.

M. E. Holtz , Y. Yu , D. Gunceler et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.

N. J. Zaluzec , M. G. Burke , S. J. Haigh and M. A. Kulzick , X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal., 20 (2014), 323329.

E. A. Lewis , S. J. Haigh , T. J. A. Slater et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.

S. Kuwabata , A. Kongkanand , D. Oyamatsu and T. Torimoto , Observation of ionic liquid by scanning electron microscope. Chem. Lett., 35 (2006), 600601.

S. Arimoto , M. Sugimura , H. Kageyama , T. Torimoto and S. Kuwabata , Development of new techniques for scanning electron microscope observation using ionic liquid. Electrochim. Acta, 53 (2008), 62286234.

J. A. Swift and A. C. Brown , An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J. Phys. E, 3 (1970), 924926.

G. D. Danilatos , Review and outline of environmental SEM at present. J. Microsc., 162 (1991), 391402.

D. A. Moncrieff , P. R. Barker and V. N. E. Robinson , Electron scattering by gas in the scanning electron microscope. J. Phys. D, 12 (1979), 481488.

D. J. Stokes , Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (Chichester: John Wiley & Sons, 2008).

A. Bogner , G. Thollet , D. Basset , P. H. Jouneau and C. Gauthier , Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.

A. Bogner , P.-H. Jouneau , G. Thollet , D. Basset and C. Gauthier , A history of scanning electron microscopy developments: towards “wet-STEM” imaging. Micron, 38 (2007), 390401.

D. B. Peckys , J. P. Baudoin , M. Eder , U. Werner and N. de Jonge , Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep., 3 (2013), 26212626.

K. Masenelli-Varlot , A. Malchere , J. Ferreira et al., Wet-STEM tomography: principles, potentialities and limitations. Microsc. Microanal., 20 (2014), 366375.

F. Novotny , P. Wandrol , J. Proska and M. Slouf , In situ wetSTEM observation of gold nanorod self-assembly dynamics in a drying colloidal droplet. Microsc. Microanal., 20 (2014), 385393.

A. Jansson , A. Nafari , A. Sanz-Velasco et al., Novel method for controlled wetting of materials in the environmental scanning electron microscope. Microsc. Microanal., 19 (2013), 3037.

A. Jansson , C. Boissier , M. Marucci et al., Novel method for visualizing water transport through phase-separated polymer films. Microsc. Microanal., 20 (2014), 394406.

Z. Barkay , Wettability study using transmitted electrons in environmental scanning electron microscope. Appl. Phys. Lett., 96 (2010), 183109.

Z. Barkay , In situ imaging of nano-droplet condensation and coalescence on thin water films. Microsc. Microanal., 20 (2014), 317322.

S. Thiberge , A. Nechushtan , D. Sprinzak et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.

S. W. Hell , Far-field optical nanoscopy. Science, 316 (2007), 11531158.

E. Jensen , C. Kobler , P. S. Jensen and K. Molhave . In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 129 (2013), 6369.

J. Kraus , R. Reichelt , S. Günther et al., Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale, 6 (2014), 1439414403.

W. Yang , Y. Zhang , M. Hilke and W. Reisner , Dynamic imaging of Au-nanoparticles via scanning electron microscopy in a graphene wet cell. Nanotechnology, 26 (2015), 315703.

L. Yang , X.-Y. Yu , Z. Zhu , T. Thevuthasan and J. P. Cowin , Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques. J. Vac. Sci. Technol. A, 29 (2011), 061101.

M. Wojcik , M. Hauser , W. Li , S. Moon and K. Xu , Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells. Nat. Commun., 6 (2015), 7384.

N. Liv , A. C. Zonnevylle , A. C. Narvaez et al., Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLOS One, 8 (2013), e55707.

N. Liv , I. Lazić , P. Kruit and J. P. Hoogenboom , Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy, 143 (2014), 9399.

H. Nishiyama , M. Suga , T. Ogura et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 169 (2010), 438449.

Y. Nawa , W. Inami , A. Chiba et al., Dynamic and high-resolution live cell imaging by direct electron beam excitation. Opt. Express, 20 (2012), 56295635.

N. Vidavsky , S. Addadi , J. Mahamid et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA, 111 (2014), 3944.

J. F. Creemer , S. Helveg , G. H. Hoveling et al., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy, 108 (2008), 993998.

E. Jensen and K. Molhave , Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal., 20 (2014), 445451.

A. Radisic , P. M. Vereecken , J. B. Hannon , P. C. Searson and F. M. Ross , Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett., 6 (2006), 238242.

A. Verch , M. Pfaff and N. De Jonge , Exceptionally slow movement of gold nanoparticles at a solid:liquid interface investigated by scanning transmission electron microscopy. Langmuir, 31 (2015), 69566964.

M. Krueger , S. Berg , D. A. Stone et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano, 5 (2011), 1004710054.

N. M. Schneider , M. M. Norton , B. J. Mendel et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.

J. M. Grogan , N. M. Schneider , F. M. Ross and H. H. Bau , Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.

H. M. Zheng , R. K. Smith , Y. W. Jun et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.

M. W. van de Put , C. C. Carcouet , P. H. Bomans et al., Writing silica structures in liquid with scanning transmission electron microscopy. Small, 11 (2015), 585590.

E. Sutter , K. Jungjohann , S. Bliznakov et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.

R. R. Unocic , R. L. Sacci , G. M. Brown et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.

B. L. Mehdi , M. Gu , L. R. Parent et al., In situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.

A. Radisic , F. M. Ross and P. C. Searson , In situ study of the growth kinetics of individual islands during electrodeposition of copper. J. Phys. Chem. B, 110 (2006), 78627868.

A. Radisic , P. M. Vereecken , P. C. Searson and F. M. Ross , The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci., 600 (2006), 18171826.

N. M. Schneider , J. H. Park and J. M. Grogan , Visualization of active and passive control of morphology during electrodeposition. Microsc. Microanal., 20 (2014), 15301531.

E. R. White , S. B. Singer , V. Augustyn et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.

M. Sun , H.-G. Liao , K. Niu and H. Zheng , Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep., 3 (2013), 2227.

Z. Zeng , W.-I. Liang , H.-G. Liao et al., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in-situ TEM. Nano Lett., 14 (2014), 17451750.

B. L. Mehdi , J. Qian , E. Nasybulin et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.

R. L. Sacci , J. M. Black , N. Balke et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.

A. J. Leenheer , K. L. Jungjohann , K. R. Zavadil , J. P. Sullivan and C. T. Harris , Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy, ACS Nano, 9 (2015), 43794389.

M. Gu , L. R. Parent , L. Mehdi et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.

R. L. Sacci , N. J. Dudney , K. L. More et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chemical Commun., 50 (2013), 21042107.

F. Wu and N. Yao , Advances in sealed liquid cells for in-situ TEM electrochemical investigation of lithium-ion battery. Nano Energy, 11 (2015), 196210.

P. Abellan Baeza , B. L. Mehdi , L. R. Parent et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.

S. W. Chee . D. Duquette , F. M. Ross and R. Hull , Metastable structures in Al thin films prior to the onset of corrosion pitting as observed using liquid cell transmission electron microscopy. Microsc. Microanal., 20 (2014), 462468.

S. W. Chee , S. H. Pratt , K. Hattar et al., Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun., 51 (2015), 168171.

X. Zhong , M. G. Burke , S. Schilling , S. J. Haigh and N. J. Zaluzec , Novel hybrid sample preparation method for in situ liquid cell TEM analysis. Microsc. Microanal., 20 (S3) (2014), 15141515.

T. J. Woehl , J. E. Evans , I. Arslan , W. D. Ristenpart and N. D. Browning , Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.

H. G. Liao , L. K. Cui , S. Whitelam and H. M. Zheng , Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.

K. L. Jungjohann , S. Bliznakov , P. W. Sutter , E. A. Stach and E. A. Sutter , In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett., 13 (2013), 29642970.

A. De Clercq , W. Dachraoui , O. Margeat et al., Growth of Pt−Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.

L. R. Parent , D. R. Robinson , T. J. Woehl et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.

G. Zhu , Y. Jiang , F. Lin et al., In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem Commun., 50 (2014), 94479450.

T. Kraus and N. de Jonge , Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir, 29 (2013), 84278432.

Y. Jiang , G. Zhu , F. Lin et al., In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett., 14 (2014), 37613765.

J. Wu , W. Gao , H. Yang and J.-M. Zuo , Imaging shape-dependent corrosion behavior of Pt nanoparticles over extended time using a liquid flow cell and TEM. Microsc. Microanal., 20 (S3 ) (2014), 15081509.

J. H. Park , N. M. Schneider , J. M. Grogan et al., Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett., 15 (2015), 53145320.

K. W. Noh , Y. Liu , L. Sun and S. J. Dillon , Challenges associated with in-situ TEM in environmental systems: the case of silver in aqueous solutions. Ultramicroscopy, 116 (2012), 3438.

H.-G. Liao and H. Zheng , Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc., 135 (2013), 50385043.

H. G. Liao , D. Zherebetskyy , H. Xin et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.

Y. Liu , K. Tai and S. J. Dillon , Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.

Y. Kimura , H. Niinomi , K. Tsukamoto and J. M. García-Ruiz , In situ live observation of nucleation and dissolution of sodium chlorate nanoparticles by transmission electron microscopy. J. Am. Chem. Soc., 136 (2014), 17621765.

H. L. Xin and H. Zheng , In Situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.

K.-Y. Niu , J. Park , H. Zheng and A.P. Alivisatos , Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.

J. E. Evans , K. L. Jungjohann , N. D. Browning and I. Arslan , Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.

E. U. Donev and J. T. Hastings , Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett., 9 (2009), 27152718.

H. M. Zheng , U. M. Mirsaidov , L. W. Wang and P. Matsudaira , Electron beam manipulation of nanoparticles. Nano Lett., 12 (2012), 56445648.

D. S. Li , M. H. Nielsen , J. R. I. Lee et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.

T. J. Woehl , C. Park , J. E. Evans et al., Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett., 14 (2013), 373378.

J. M. Grogan , L. Rotkina and H. H. Bau , In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.

Y. Liu , X.-M. Lin , Y. Sun and T. Rajh , In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc., 135 (2013), 37643767.

E. R. White , M. Mecklenburg , S. B. Singer , S. Aloni and B. C. Regan , Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express, 4 (2011), 055201.

K. Tai , Y. Liu and S. J. Dillon , In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal., 20 (2014), 330337.

D. Bhattacharya , M. Bosman , V. R. S. S. Mokkapati , F. Y. Leong and U. Mirsaidov , Nucleation dynamics of water nanodroplets. Microsc. Microanal., 20 (2014), 407415.

C.-Y. Ruan , V. A. Lobastov , F. Vigliotti , S. Chen and A. H. Zewail , Ultrafast electron crystallography of interfacial water. Science, 304 (2004), 8084.

U. Mirsaidov , C.-D. Ohl and P. Matsudaira , A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter, 8 (2012), 71087111.

U. M. Mirsaidov , H. Zheng , D. Bhattacharya , Y. Casana and P. Matsudaira , Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA, 109 (2012), 71877190.

M. Norton , J. H. Park , S. Kodambaka , F. M. Ross and H. Bau , Dynamics of sub-micron bubbles growing in a wedge in the low capillary number regime. Bull. Ameri. Phys. Soc., 59 (2014); and H. Bau , J. M. Grogan , M. Norton and F. M. Ross , On the surface tension of nanobubbles. APS Division of Fluid Dynamics Meeting (2013).

D. Mattia and Y. Gogotsi , Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluidics and Nanofluidics, 5 (2008), 289305.

U. Mirsaidov , V. R. S. S. Mokkapati , D. Bhattacharya et al., Scrolling graphene into nanofluidic channels. Lab Chip, 13 (2013), 28742878.

E. A. Ring and N. de Jonge , Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron, 43 (2012), 10781084.

E. R. White , M. Mecklenburg , B. Shevitski , S. B. Singer and B. C. Regan , Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.

J. Y. Lu , Z. Aabdin , N. D. Loh , D. Bhattacharya and U. Mirsaidov , Nanoparticle dynamics in a nanodroplet. Nano Lett., 14 (2014), 21112115.

Q. Chen , J. M. Smith , J. Park et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.

P.-A. Cazade , R. Hartkamp and B. Coasne , Structure and dynamics of an electrolyte confined in charged nanopores. J. Phys. Chem. C, 118 (2014), 50615072.

H. I. Kim , J. G. Kushmerick , J. E. Houston and B. C. Bunker , Viscous “interphase” water adjacent to oligo(ethylene glycol)-terminated monolayers. Langmuir, 19 (2003), 92719275.

S. Kashyap , T. J. Woehl , X. Liu , S. K. Mallapragada and T. Prozorov , Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ, ACS Nano, 8 (2014), 90979106.

M. H. Nielsen , J. R. I. Lee , Q. N. Hu , T. Y. J. Han , and J. J. De Yoreo , Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss., 159 (2012), 105121.

M. H. Nielsen , S. Aloni and J. J. De Yoreo , In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.

P. J. M. Smeets , K. R. Cho , R. G. E. Kempen , N. A. J. M. Sommerdijk and J. J. De Yoreo , In situ TEM shows ion binding is key to directing CaCO3 nucleation in a biomimetic matrix. Nat. Mater., 14 (2015), 394399.

T. J. Woehl , S. Kashyap , E. Firlar et al., Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci. Rep., 4 (2014), 6854.

N. de Jonge , D. B. Peckys , G. J. Kremers and D. W. Piston , Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.

D. B. Peckys , U. Korf and N. de Jonge , Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci. Adv., 1 (2015), e1500165.

D. B. Peckys and N. de Jonge , Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Lett., 11 (2011), 17331738.

M. J. Dukes , D. Peckys and N. de Jonge , Correlative fluorescence- and scanning transmission electron microscopy of quantum dot labeled proteins on whole cells in liquid. ACS Nano, 4 (2010), 41104116.

E. S. Pohlmann , K. Patel , S. Guo et al., Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett., 15 (2015), 23292335.

D. B. Peckys , J.-P. Baudoin , M. Eder , U. Werner and N. de Jonge , Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep., 3 (2013), 2626.

D. B. Peckys , P. Mazur , K. L. Gould and N. de Jonge , Fully hydrated yeast cells imaged with electron microscopy. Biophys. J., 100 (2011), 25222529.

D. B. Peckys and N. de Jonge , Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal., 20 (2014), 189198.

R. Glaeser , Comment on electron microscopy of biological specimens in liquid water. Biophys. J., 103 (2012), 163164.

S. E. Kirk , J. N. Skepper and A. M. Donald , Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc., 233 (2009), 205224.

H. Sugi , H. Minoda , Y. Inayoshi et al., Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber. Proc. Natl. Acad. Sci. USA, 105 (2008), 1739617401.

H. Sugi , S. Chaen , T. Akimoto et al., Electron microscopic recording of myosin head power stroke in hydrated myosin filaments. Sci. Rep., 5 (2015), 15700.

N. Mohanty , M. Fahrenholtz , A. Nagaraja , D. Boyle and V. Berry , Impermeable graphenic encasement of bacteria. Nano Lett., 11 (2011), 12701275.

J. Park , H. Park , P. Ercius et al., Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett., 15 (2015), 47374744.

M. J. Dukes , R. Thomas , J. Damiano et al., Improved microchip design and application for in situ transmission electron microscopy of macromolecules. Microsc. Microanal., 20 (2014), 338345.

K. Degen , M. Dukes , J. R. Tanner and D. F. Kelly , The development of affinity capture devices: a nanoscale purification platform for biological in situ transmission electron microscopy. RSC Adv., 2 (2012), 24082412.

B. L. Gilmore , S. P. Showalter , M. J. Dukes et al., Visualizing viral assemblies in a nanoscale biosphere. Lab Chip, 13 (2013), 216219.

C. Wang , Q. Qiao , T. Shokuhfar and R. F. Klie , High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater., 26 (2014), 34103414.

S. M. Hoppe , D. Y. Sasaki , A. N. Kinghorn and K. Hattar , In-situ transmission electron microscopy of liposomes in an aqueous environment. Langmuir, 29 (2013), 99589961.

F. A. Plamper , A. P. Gelissen , J. Timper et al., Spontaneous assembly of miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol. Rapid Commun., 34 (2013), 855860.

U. M. Mirsaidov , H. Zheng , Y. Casana and P. Matsudaira , Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15–17.

A. C. Varano , A. Rahimi , M. J. Dukes et al., Visualizing virus particle mobility in liquid at the nanoscale, Chem. Commun., 51 (2015), 1617616179.

V. A. Maraloiu , M. Hamoudeh , H. Fessi and M. G. Blanchin , Study of magnetic nanovectors by Wet-STEM, a new ESEM mode in transmission. J. Coll. Interf. Sci., 352 (2010), 386392.

K. Adachi , E. J. Freney , P. R. Buseck , Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering. Geophys. Res. Lett., 38 (2011), L13804.

J. Liu , B. Wei , J. D. Sloppy et al., Direct imaging of electrochemical deposition of poly(3,4-ethylene dioxythiophene) (PEDOT) by transmission electron microscopy. Macro Lett., 4 (2015), 897900.

S. Sadki , P. Schottland , N. Brodie and G. Sabouraud , The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev., 29 (2000), 283293.

F. M. Ross , Controlling nanowire structures through real time growth studies. Rep. Prog. Phys., 73 (2010), 114501114522.

L. Zhang , B. K. Miller and P. A. Crozier , Atomic level observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett., 13 (2013), 679684.

N. D. Browning , M. A. Bonds , G. H. Campbell et al., Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.

M. W. Mourik , W. J. van Engelen , E. J. D. Vredenbregt and O. J. Luiten , Ultrafast electron diffraction using an ultracold source. Struct. Dynam., 1 (2014), 034302.

N. de Jonge , System and methods for live cell transmission electron microscopy. US Patent Application 13,299,241 (2011).

R. Danev and K. Nagayama , Transmission electron microscopy with Zernike phase plate. Ultramicroscopy, 88 (2001), 243252.

P. Simon , H. Lichte , P. Formanek et al., Electron holography of biological samples. Micron, 39 (2008), 229256.

F. M. Ross , Opportunities and Challenges in Liquid Cell Electron Microscopy, Science, 350 (2015), aaa9886, doi:10.1126/science.aaa9886

E. Jensen , C. Købler , P. S. Jensen and K. Mølhave , In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 129 (2013), 6369.

I. M. Abrams and J. W. McBain , A closed cell for electron microscopy. J. Appl. Phys., 100 (1944), 607609.

D. D. Double , Some studies of the hydration of Portland cement using high voltage (1 MV) electron microscopy. Mater. Sci. Eng., 12 (1973), 2934.

D. J. Smith , Characterisation of nanomaterials using transmission electron microscopy. In J. Hutchison and A. Kirkland , eds., Nanocharacterisation (London: Royal Society of Chemistry, 2007) pp. 127.

G. D. Danilatos , Foundations of environmental scanning electron microscopy. Adv. Electron. Electron Phys., 71 (1988), 109250.

P. L. Gai , R. Sharma and F. M. Ross , Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull., 33 (2008), 107114.

C. M. Wang , H. G. Liao and F. M. Ross , Observation of materials processes in liquids by electron microscopy. MRS Bull., 40 (2015), 4652.

M. J. Williamson , R. M. Tromp , P. M. Vereecken , R. Hull and F. M. Ross , Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.

A. Radisic , P. M. Vereecken , J. B. Hannon , P. C. Searson and F. M. Ross , Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett., 6 (2006), 238242.

R. Franks , S. Morefield , J. Wen et al., A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J. Nanosci. Nanotechnol., 8 (2008), 44044407.

K.-L. Liu , C.-C. Wu , Y.-J. Huang et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip, 8 (2008), 19151921.

N. De Jonge , N. Poirier-Demers , H. Demers , D. B. Peckys and D. Drouin , Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.

D. B. Peckys , G. M. Veith , D. C. Joy and N. de Jonge , Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One, 4 (2009), e8214.

K. L. Jungjohann , J. E. Evans , J. A. Aguiar , I. Arslan and N. D. Browning , Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.

H.-G. Liao , D. Zherebetskyy , H. Xin et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.

D. Li , M. H. Nielsen , J. R. I. Lee et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.

R. R. Unocic , R. L. Sacci , G. M. Brown et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.

F. M. Ross and N. de Jonge , Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.

C. Wang , Q. Qiao , R. F. Klie and T. Shokuhfar , High resolution in-situ study of reactions in graphene liquid cells. Microsc. Microanal., 20 (2014), 15201521.

A. De Clercq , W. Dachraoui , O. Margeat et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.

H. Zheng , R. K. Smith , Y.-W. Jun et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.

S. Thiberge , A. Nechushtan , D. Sprinzak et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.

S. Thiberge , O. Zik and E. Moses , An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum., 75 (2004), 22802289.

A. Radisic , Electrochemical nucleation and growth of copper, Ph.D. Thesis, The Johns Hopkins University (2005).

M. den Heijer , In-situ transmission electron microscopy of electrodeposition: technical development, beam effects and lithography, M.Sc. Thesis, Leiden University (2008).

J. F. Creemer , S. Helveg , G. H. Hoveling et al., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy, 108 (2008), 993998.

J. F. Creemer , S. Helveg , P. J. Kooyman et al., A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Microelectromech. Syst., 19 (2010), 254264.

T.-W. Huang , S.-Y. Liu , Y.-J. Chuang et al., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip, 12 (2012), 340347.

E. Jensen , A. Burrows and K. Mølhave , Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal., 20 (2014), 445451.

T. L. Daulton , B. J. Little , K. Lowe and J. Jones-Meehan , In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.

M. Krueger , S. Berg , D. Stone et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano, 5 (2011), 1004710054.

Y. Gao and Y. Bando , Nanotechnology: carbon nanothermometer containing gallium. Nature, 415 (2002), 599.

A. L. Yarin , A. G. Yazicioglu , C. M. Megaridis , M. P. Rossi and Y. Gogotsi , Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. J. Appl. Phys., 97 (2005), 124309.

J. Yang and O. Paul , Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sens. Actuators A Phys., 97–98 (2002), 520526.

P. Abellan , T. J. Woehl , R. G. Tonkyn et al., Implementing in situ experiments in liquids in the (scanning) transmission electron microscope ((S)TEM) and dynamic TEM (DTEM). Microsc. Microanal., 20 (2014), 16481649.

K. L. Klein and I. M. Anderson , Current challenges of TEM imaging with a liquid flow cell. Microsc. Microanal., 18 (2012), 11541155.

M. E. Holtz , Y. Yu , J. Gao , H. D. Abruña and D. A. Muller , In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.

B. C. Regan , M. Mecklenburg , E. R. White , S. B. Singer and S. Aloni , Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express, 4 (2011), 055201.

J. Yang , J. Gaspar and O. Paul , Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms. J. Microelectromech. Syst., 17 (2008), 11201134.

C. Mueller , M. Harb , J. R. Dwyer and R. J. D. Miller , Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.

M. Tanase , J. Winterstein , R. Sharma et al., High-resolution imaging and spectroscopy at high pressure: a novel liquid cell for the TEM. Microsc. Micranal., 21 (2015), 16291638.

M. H. Nielsen , S. Aloni and J. J. De Yoreo , In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.

H. L. Xin and H. Zheng , In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 1470.

H. L. Xin , K. Niu , D. H. Alsem and H. Zheng , In-situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment, Microsc. Microanal., 19 (2013), 15581568.

A. E. Goode , A. E. Porter , M. P. Ryan and D. W. McComb , Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. Nanoscale, 7 (2015), 15341548.

R. F. Egerton , Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys., 72 (2009), 016502.

E. A. Lewis , S. J. Haigh , T. J. A. Slater et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.

N. De Jonge , in P. W. Hawkes , ed., Advances in Imaging and Electron Physics Volume 190 (Elsevier, 2015) pp. 1102.

M. J. Dukes , D. B. Peckys and N. de Jonge , Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 4 (2010), 41104116.

F. Cavalca , T. W. Hansen , J. B. Wagner et al., In situ light spectroscopy in the environmental transmission electron microscope (ETEM). Microsc. Microanal., 18 (2012), 11841185.

L. Zhang , B. K. Miller and P. A. Crozier , Atomic level observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett., 13 (2013), 679684.

J. E. Evans , K. L. Jungjohann , N. D. Browning and I. Arslan , Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.

E. Jensen , Engineering electrochemical setups for electron microscopy of liquid processes. Ph.D. Thesis, Denmark Technical University (2012).

D. J. Stokes , Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (Chichester: John Wiley & Sons, 2008).

C. Janiak , Ionic liquids for the synthesis and stabilization of metal nanoparticles. Z. Naturforsch., 68B (2013), 10591089.

C. M. Wang , W. Xu , J. Liu , et al., In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res., 25 (2010), 15411547.

S. Kuwabata , A. Kongkanand , D. Oyamatsu and T. Torimoto , Observation of ionic liquid by scanning electron microscope. Chem. Lett., 35 (2006), 600603.

Y. Xia , Y. J. Xiong , B. Lim and S. E. Skrabalak , Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed., 48 (2009), 60103.

M. Law , J. Goldberger and P. D. Yang , Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res., 34 (2004), 83122.

V. I. Klimov , A. A. Mikhailovsky , S. Xu et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290 (2000), 314317.

T. S. Ahmadi , Z. L. Wang , T. C. Green , A. Henglein and M. A. ElSayed , Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 272 (1996), 19241926.

L. J. Lauhon , M. S. Gudiksen , C. L. Wang and C. M. Lieber , Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 420 (2002), 5761.

Y. Yin and A. P. Alivisatos , Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 437 (2005), 664670.

N. Tian , Z. Y. Zhou , S. G. Sun , Y. Ding and Z. L. Wang , Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 316 (2007), 732735.

H. G. Liao , Y. X. Jiang , Z. Y. Zhou , S. P. Chen and S. G. Sun , Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem. Int. Ed., 47 (2008), 91009103.

A. Bogner , G. Thollet , D. Basset , P. H. Jouneau and C. Gauthier , Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.

A. Bogner , P. H. Jouneau , G. Thollet , D. Basset and C. Gauthier . A history of scanning electron microscopy developments: towards “Wet-STEM” imaging. Micron, 38 (2007), 390401.

K. Yoshida , A.N. Bright , M.R. Ward et al., Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere. Nanotechnology, 25 (2014), 425702.

M. Sakaue , M. Shiono , M. Konomi et al., New preparation method using ionic liquid for fast and reliable SEM observation of biological specimens. Microsc. Microanal., 20 (Suppl. 3 ) (2014), 10121013.

N. Brodusch , H. Demers and R. Gauvin , Ionic liquid used for charge compensation for high resolution imaging and analysis in the FE-SEM. Microsc. Microanal., 20 (Suppl 3 ) (2014), 3839.

J. M. Tarascon and M. Armand , Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.

K. Yamamoto , Y. Iriyama , T. Asaka et al., Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed., 49 (2010), 44144417.

A. Brazier , L. Dupont , L. Dantras-Laffont et al., First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem.Mater., 20 (2008), 23522359.

C. M. Wang , W. Xu , J. Liu et al., In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett., 11 (2011), 18741880.

S. F. Lux , M. Schmuck , B. Rupp et al., Mixtures of ionic liquids in combination with graphite electrodes: the role of Li-salt. ECS Trans., 16 (2009), 4549.

A. Lewandowski and A. Świderska-Mocek , Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte. J. Power Sources, 171 (2007), 938943.

J. Y. Huang , L. Zhong , C. M. Wang et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.

L. Q. Zhang , X. H. Liu , Y. Liu et al., Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. ACS Nano, 5 (2011), 48004809.

C. M. Wang , In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res., 30 (2015), 326339.

X. H. Liu , H. Zheng , L. Zhong et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett., 11 (2011), 33123318.

F. Wang , H.-C. Yu , M.-H. Chen et al., Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun., 3 (2012), 1201.

M. M. Islam , and T. Bredow , Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C, 113 (2009), 672676.

M. Gu , A. Kushima , Y. Shao et al., Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett., 13 (2013), 52035211.

X. H. Liu , L. Q. Zhang , L. Zhong et al., Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett., 11 (2011), 22512258.

C.-M. Wang , X. Li , Z. Wang et al., In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett., 12 (2012), 16241632.

X. H. Liu , S. Huang , S. T. Picraux et al., Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 11 (2011), 39913997.

Y. Liu , N. S. Hudak , D. L. Huber et al., In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles. Nano Lett., 11 (2011), 41884194.

A. Kushima , X. H. Liu , G. Zhu et al., Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett., 11 (2011), 45354541.

X. H. Liu , J. W. Wang , Y. Liu et al., In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon, 50 (2012), 38363844.

Y. Liu , H. Zheng , X. H. Liu et al., Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano, 5 (2011), 72457253.

M. S. Whittingham , Materials challenges facing electrical energy storage. MRS Bull., 33 (2008), 411419.

H. Wu , G. Chan , J. W. Choi et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 7 (2012), 310315.

J. Christensen and J. Newman , Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem., 10 (2006), 293319.

M. T. McDowell , I. Ryu , S. W. Lee et al., Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater., 24 (2012), 60346041.

M. Gu , Z. G. Wang , J. G. Connell et al., Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4. ACS Nano, 7 (2013), 63036309.

M. Gu , L. R. Parent , B. L. Mehdi et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.

C. M. Wang , H. G. Liao , F. M. Ross , Observation of materials processes in liquids by electron microscopy. MRS Bull., 40 (2015), 4652.

H. Zheng , D. D. Xiao , X. Li et al., New insight in understanding oxygen reduction and evolution in solid-state lithium–oxygen batteries using an in situ environmental scanning electron microscope. Nano Lett., 14 (2014), 42454249.

D. J. Miller , C. Proff , J. G. Wen , D. P. Abraham , J. Bareño , Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater., 3 (2013), 10981103.

G. D. Danilatos , Review and outline of environmental SEM at present. J. Microsc. Oxford, 162 (1991), 391402.

A. Bogner , G. Thollet , D. Basset , P.-H. Jouneau and C. Gauthier , Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.

I. Abrams and J. McBain , A closed cell for electron microscopy. J. Appl. Phys., 1 (1944), 607609.

S. Thiberge , O. Zik and E. Moses , An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscope. Rev. Sci. Instrum., 75 (2004), 22802289.

N. Vidavsky , S. Addadi , J. Mahamid et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA, 111 (2014), 3944.

Y. Ominami , S. Kawanishi , T. Ushiki and S. Ito , A novel approach to scanning electron microscopy at ambient atmospheric pressure. Microscopy, 64 (2015), 97104.

E. Jensen , A. Burrows and K. Mølhave , Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal., 20 (2014), 445451.

H. Demers , N. Poirier-Demers , A. Réal et al., Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning, 33 (2011), 135146.

K. Kanaya and S. Okayama , Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys., 5 (1972), 4358.

J. Goldstein , D. E. Newbury , D. C. Joy et al., Scanning Electron Microscopy and X-ray Microanalysis (New York: Springer, 2003).

N. Liv , I. Lazić , P. Kruit and J. P. Hoogenboom , Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy, 143 (2014), 9399.

V. Behar , A. Nechushtan , Y. Kliger et al., Methods for SEM inspection of fluid containing samples. US Patent 7230242 B2 (2007).

D. A. Fischer , D. H. Alsem , B. Simon , T. Prozorov and N. Salmon , Development of an integrated platform for cross-correlative imaging of biological specimens in liquid using light and electron microscopies. Microsc. Microanal., 19 (2013), 476477.

S. Thiberge , A. Nechushtan , D. Sprinzak et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.

G. Venkiteela and Z. H. Sun , In situ observation of cement particle growth during setting. Cement Concrete Comp., 32 (2010), 211218.

K. Tiede , S. P. Tear , H. David and A. B. A. Boxall , Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res., 43 (2009), 33353343.

C. Lorenz , K. Tiede , S. Tear et al., Imaging and characterization of engineered nanoparticles in sunscreens by electron microscopy, under wet and dry conditions. Int. J. Occup. Environ. Health, 16 (2010), 406428.

D. C. Joy and C. S. Joy , Scanning electron microscope imaging in liquids: some data on electron interactions in water. J. Microsc. Oxford, 221 (2006), 8488.

A. K. F. Dyab and V. N. Paunov , Particle stabilised emulsions studied by WETSEM technique. Soft Matter, 6 (2010), 26132615.

O. Cohen , R. Beery , S. Levit et al., Scanning electron microscopy of thyroid cells under fully hydrated conditions – A novel technique for a seasoned procedure: a brief observation. Thyroid, 16 (2006), 9971001.

N. Kolmakova and A. Kolmakov , Scanning electron microscopy for in situ monitoring of semiconductor–liquid interfacial processes: electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J. Phys. Chem. C, 114 (2010), 1723317237.

C. Wei , W. Y. Lin , Z. Zainal et al., Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ. Sci. Technol., 28 (1994), 934938.

J. L. Giocondi and G. S. Rohrer , The influence of the dipolar field effect on the photochemical reactivity of Sr2Nb2O7 and BaTiO3 microcrystals. Top. Catal., 49 (2008), 1823.

J. M. Herrmann , Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 53 (1999), 115129.

J. Geisler-Lee , Q. Wang , Y. Yao et al., Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 7 (2012), 323337.

N. M. Schneider , M. M. Norton , B. J. Mendel et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.

C. Monat , P. Domachuk and B. Eggleton , Integrated optofluidics: a new river of light. Nat. Photonics, 1 (2007), 106114.

D. Erickson , D. Sinton and D. Psaltis , Optofluidics for energy applications. Nat. Photonics, 5 (2011), 583590.

R. A. Potyrailo , T. A. Starkey , P. Vukusicb et al., Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response. Proc. Natl. Acad. Sci. USA, 110 (2013), 1556715572.

R. R. Unocic , X. G. Sun , R. L. Sacci et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.

K. Klein , I Anderson and N. De Jonge , Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.

K. Mølhave , C. Kallesøe , C. Y. Wen et al., Microfabricated systems for electron microscopy of nanoscale processes: in-situ TEM creation of Si nanowire devices and in-situ SEM electrochemistry. Microsc. Microanal., 16 (2010), 322323.

J. E. Cothren , Development of techniques and instrumentation for in situ imaging and spectroscopy of working nanodevices using ultrathin membrane based environmental cells. M.Sc. Thesis, Southern Illinois University at Carbondale (2011).

Y. Liu , Scanning electron microscopy to probe working nanowire gas sensors. M.Sc. Thesis, Southern Illinois University at Carbondale (2013).

S. Ueda , Y. Kobayashi , S. Koizumi and Y. Tsutsumi , In situ observation of water in a fuel cell catalyst using scanning electron microscopy. Microscopy, 64 (2015), 8796.

J. C. Meyer , A. K. Geim , M. Katsnelson et al., The structure of suspended graphene sheets. Nature, 446 (2007), 6063.

N. R. Wilson , P. A. Pandey , R. Beanland et al., Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano, 3 (2009), 25472556.

C. Lee , X. Wei , J. W. Kysar and J. Hone , Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321 (2008), 385388.

J. Kraus , R. Reichelt , S. Günther et al., Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale, 6 (2014), 1439414403.

J. C. Meyer , F. Eder , S. Kurasch et al., Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett., 108 (2012), 196102.

J. C. Meyer , C. O. Girit , M. Crommie and A. Zettl , Imaging and dynamics of light atoms and molecules on graphene. Nature, 454 (2008), 319322.

R. S. Pantelic , J. C. Meyer , U. Kaiser and H. Stahlberg , The application of graphene as a sample support in transmission electron microscopy. Solid State Commun., 152 (2012), 13751382.

L. Frank , E. Mikmeková , I. Müllerová and M. Lejeune , Counting graphene layers with very slow electrons. Appl. Phys. Lett., 106 (2015), 013117.

J. Mutus , L. Livadaru , J. T. Robinson et al., Low-energy electron point projection microscopy of suspended graphene, the ultimate ‘microscope slide’. New J. Phys., 13 (2011), 063011.

J.-N. Longchamp , C. Escher , T. Latychevskaia and H.-W. Fink , Low-energy electron holographic imaging of gold nanorods supported by ultraclean graphene. Ultramicroscopy, 145 (2014), 8084.

A. Jablonski and C. Powell , Practical expressions for the mean escape depth, the information depth, and the effective attenuation length in Auger-electron spectroscopy and x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A, 27 (2009), 253261.

A. Kolmakov , D. A. Dikin , L. J. Cote et al., Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat. Nanotechnol., 6 (2011), 651657.

M. Xu , D. Fujita , J. Gao and N. Hanagata , Auger electron spectroscopy: a rational method for determining thickness of graphene films. ACS Nano, 4 (2010), 29372945.

V. Kochat , A. N. Pal , E. S. Sneha et al., High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy. J. Appl. Phys., 110 (2011), 014315.

M. Krueger , S. Berg , D. Stone et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano, 5 (2011), 1004710054.

S. Park and R. S. Ruoff , Chemical methods for the production of graphenes. Nat. Nanotechnol., 4 (2009), 217224.

D. Li , M. B. Müller , S. Gilje , R. B. Kaner and G. G. Wallace , Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3 (2008), 101105.

L. J. Cote , J. Kim , V. C. Tung et al., Graphene oxide as surfactant sheets. Pure Appl. Chem., 83 (2010), 95110.

D. A. Dikin , S. Stankovich , E. J. Zimney et al., Preparation and characterization of graphene oxide paper. Nature, 448 (2007), 457460.

S. Park , K.-S. Lee , G. Bozoklu et al., Graphene oxide papers modified by divalent ions: enhancing mechanical properties via chemical cross-linking. ACS Nano, 2 (2008), 572578.

R. Nair , H. Wu , P. Jayaram , I. Grigorieva and A. Geim , Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335 (2012), 442444.

J. S. Bunch , S. S. Verbridge , J. S. Alden et al., Impermeable atomic membranes from graphene sheets. Nano Lett., 8 (2008), 24582462.

M. Xu , T. Liang , M. Shi and H. Chen , Graphene-like two-dimensional materials. Chemical Rev., 113 (2013), 37663798.

M. Büttner and P. Oelhafen , XPS study on the evaporation of gold submonolayers on carbon surfaces. Surf. Sci., 600 (2006), 11701177.

Y.-C. Lin , C. C. Lu , C. H. Yeh et al., Graphene annealing: how clean can it be? Nano Lett., 12 (2011), 414419.

J. W. Suk , A. Kitt , C. W. Magnuson et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 5 (2011), 69166924.

A. A. Balandin , S. Ghosh , W. Bao et al., Superior thermal conductivity of single-layer graphene. Nano Lett., 8 (2008), 902907.

L. J. Cote , R. Cruz-Silva and J. Huang , Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc., 131 (2009), 1102711032.

S. Gilje , J. Farrar , S. Dubin et al., Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater., 22 (2010), 419423.

P. Kumar , K. Subrahmanyam and C. Rao , Graphene patterning and lithography employing laser/electron-beam reduced graphene oxide and hydrogenated graphene. Mater. Express, 1 (2011), 252256.

I. Childres , L. A. Jauregui , M. Foxe et al., Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett., 97 (2010), 173109.

L. Tao , C. Qiu , F. Yu et al., Modification on single-layer graphene induced by low-energy electron-beam irradiation. J. Phys. Chem. C, 117 (2013), 1007910085.

X. Feng , S. Maier and M. Salmeron , Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc., 134 (2012), 56625668.

M. Baraket , S. G. Walton , Z. We et al., Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon, 48 (2010), 33823390.

J. D. Stoll and A. Kolmakov , Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases. Nanotechnology, 23 (2012), 505704505711.

I. M. Abrams and J. W. McBrain , A closed cell for electron microscopy. J. Appl. Phys., 15 (1944), 607609.

N. de Jonge and F. M. Ross , Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.

S. Thiberge , O. Zik and E. Mosesa , An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum., 75 (2004), 22802289.

N. de Jonge , D. B. Peckys , G. J. Kremers , D. W. Piston , Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.

S. Thiberge , A. Nechushtan and D. Sprinzak et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.

F. M. Ross , In Situ Transmission Electron Microscopy, in Science of Microscopy, Ed. P. W. Hawkes and J. C. H. Spence , pp. 445534. (New York: Springer, 2007).

H. Nishiyama , M. Suga and T. Ogura et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 172 (2010), 191202.

N. Memtily , T. Okada , T. Ebihara et al., Observation of tissues in open aqueous solution by atmospheric scanning electron microscopy: applicability to intraoperative cancer diagnosis. Int. J. Oncol., 46 (2015), 18721882

C. Sato , S. Manaka , D. Nakane et al., Rapid imaging of mycoplasma in solution using atmospheric scanning electron microscopy (ASEM). Biochem. Biophys. Res. Commun., 417 (2012), 12131218.

T. Kinoshita , Y. Mori , K. Hirano et al., Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy. Microsc. Microanal., 20 (2014), 469483.

K. Hirano , T. Kinoshita , T. Uemura et al., Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy, 143 (2014), 5266.

A. Nyska , C. A. Cummings , A. Vainshtein et al., Electron microscopy of wet tissues: a case study in renal pathology. Toxicol. Pathol., 32 (2004), 357363.

I. Barshack , S. Polak-Charcon , V. Behar et al., Wet SEM: a novel method for rapid diagnosis of brain tumors. Ultrastruct. Pathol., 28 (2004), 255260.


T. Junt , H. Schulze , Z. Chen et al., Dynamic visualization of thrombopoiesis within bone marrow. Science, 317 (2007), 17671770.

M. Suga , H. Nishiyama , Y. Konyuba et al., The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy, 111 (2011), 16501658.

K. Fukushima , A. Ishikawa and A. Fukami , Injection of liquid into environmental cell for in situ observations. J. Electron Microsc., 34 (1985), 4751.

N. Koopman , Application of ESEM to fluxless soldering. Microsc. Res. Tech., 25 (1993), 493502.

A. V. Agronskaia , J. A. Valentijn , L. F. van Driel et al., Integrated fluorescence and transmission electron microscopy. J. Struct. Biol., 164 (2008), 183189.

A. Sartori , R. Gatz , F. Beck et al., Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol., 160 (2007), 135145.

M. J. Dukes , D. B. Peckys and N. de Jonge , Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 4 (2010), 41104116.

R. D. Powell , C. M. Halsey , D. L. Spector et al., A covalent fluorescent-gold immunoprobe: simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem., 45 (1997), 947956.

J. M. Robinson and D. D. Vandre , Efficient immunocytochemical labeling of leukocyte microtubules with FluoroNanogold: an important tool for correlative microscopy. J. Histochem. Cytochem., 45 (1997), 631642.

B. N. Giepmans , T. J. Deerinck , B. L. Smarr , Y. Z. Jones and M. H. Ellisman , Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat. Methods, 2 (2005), 743749.

A. M. Smith and S. Nie , Next-generation quantum dots. Nat. Biotechnol., 27 (2009) 732733.

G. Gaietta , T. J. Deerinck , S. R. Adams et al., Multicolor and electron microscopic imaging of connexin trafficking. Science, 296 (2002), 503507.

D. Nakane and M. Miyata , Cytoskeletal “jellyfish” structure of Mycoplasma mobile. Proc. Natl. Acad. Sci. USA, 104 (2007), 1951819523.

Y. Nawa , W. Inami , A. Miyake et al., Dynamic autofluorescence imaging of intracellular components inside living cells using direct electron beam excitation. Biomed. Opt. Express, 5 (2014), 378386.

D. R. Glenn , H. Zhang , N. Kasthuri et al., Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Sci. Rep., 2 (2012), 865.

W. Inami , K. Nakajima , A. Miyakawa and Y. Kawata , Electron beam excitation assisted optical microscope with ultra-high resolution. Opt. Express, 18 (2010), 1289712902.

J. A. Swift and A. Brown , An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J. Phys. E: Sci. Instrum., 3 (1970), 924926.

J. M. Grogan and H. H. Bau , The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.

N. Liv , A. C. Zonnevylle , A. C. Narvaez et al., Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One, 8 (2013), e55707.

E. D. Green and G. S. Kino , Atmospheric scanning electron-microscopy using silicon-nitride thin-film windows. J. Vac. Sci. Technol. B, 9 (1991), 15571558.

N. Vidavsky , S. Addadi , J. Mahamid et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA, 111 (2014), 3944.

K. Nguyen , M. Holtz and D. Muller , AirSEM: electron microscopy in air, without a specimen chamber. Microsc. Microanal., 19 (Suppl. 2 ) (2013), 428429.

K. Nguyen , J. D. Richmond-Decker , M. Holtz , Y. Milstein and D. A. Muller , Spatial resolution of scanning electron microscopy without a vacuum chamber. Microsc. Microanal., 20 (2014), 2627.

Y. Ominami , S. Kawanishi , T. Ushiki and S. Ito , Observation of wet samples using a novel atmospheric scanning electron microscope. Microsc. Microanal., 20 (2014), 11541155.

Y. Ominami , S. Kawanishi , T. Ushiki and S. Ito , A novel approach to scanning electron microscopy at ambient atmospheric pressure. Microscopy, 64 (2015), 97104.

E. P. Butler , In situ experiments in the transmission electron microscope. Rep. Prog. Phys., 42 (1979), 833896.

E. R. White , M. Mecklenburg , S. B. Singer , S. Aloni and B. C. Regan , Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express., 4 (2011), 055201.

D. G. Cahill , Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum., 61 (1990), 802808.

T. Alan , T. Yokosawa , J. Gaspar et al., Micro-fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett., 100 (2012), 081903.

T. Yokosawa , T. Alan , G. Pandraud , B. Dam and H. Zandbergen , In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400 °C. Ultramicroscopy, 112 (2012), 4752.

Y. Liu , X. Chen , K. W. Noh and S. J. Dillon , Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology, 23 (2012), 385302/1.

H. L. Xin and H. Zheng , In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.

C. A. Knight , A. L. DeVries and L. D. Oolman , Fish antifreeze protein and the freezing and recrystallization of ice. Nature, 308 (1984), 295296.

N. D. Browning , M. A. Bonds , G. H. Campbell et al., Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.

J. E. Evans , K. L. Jungjohann , N. D. Browning and I. Arslan , Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.

C. Mueller , M. Harb , J. R. Dwyer and R. J. D. Miller , Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.

K. L. Klein , I. M. Anderson and J. N. de Jonge , Transmission electron microscopy with a liquid flow cell, J. Microsc., 242 (2011), 117123.

R. R. Unocic , R. L. Sacci , G. M. Brown et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.

J. M. Grogan , N. M. Schneider , F. M. Ross and H. H. Bau , Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.

Y. Liu , K. Tai and S. J. Dillon , Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.

H. Zheng , S. A. Claridge , A. M. Minor , A. P. Alivisatos and U. Dahmen , Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.

E. Shapira , D. Marchak , A. Tsukernik and Y. Selzer , Segmented metal nanowires as nanoscale thermocouples. Nanotechnology, 19 (2008), 125501.

S. L. Lai , G. Ramanath , L. H. Allen and P. Infante , Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity. Appl. Phys. Lett., 70 (1997), 4345.

L. Shi and A. Majumdar , Thermal transport mechanisms at nanoscale point contacts. J. Heat Transfer, 124 (2002), 329337.

T. Yokota , M. Murayama and J. M. Howe , In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation. Phys. Rev. Lett., 91 (2003), 265504/1.

S. L. Lai , J. Y. Guo , V. Petrova , G. Ramanath and L. H. Allen , Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett., 77 (1996), 99102.

K.-Y. Niu , J. Park , H. Zheng and A. P. Alivisatos , Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.

D. J. Stokes and A. M. Donald . In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). J. Mater. Sci., 35 (2000), 599607.

E. H. C. Bromley , M. R. H. Krebs and A. M. Donald , Aggregation across the length-scales in β-lactoglobulin. Faraday Discuss., 128 (2004), 1327.

A. Blennow , M. Hansen , A. Schulz et al., The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. J. Struct. Biol., 143 (2003), 229241.

K.-L. Liu , C.-C. Wu , and Y.-J. Huang , Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions Lab Chip, 8 (2008), 19151921.

K. L. Klein , I. M. Anderson , N. de Jonge et al., Transmission electron microscopy with a liquid flow cell. J. Microsc. Oxford , 242 (2011), 117123.

K. Hattar , D. C. Bufford and D. L. Buller , Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B., 338 (2014), 5665.

Y. Gogotsi , J. A. Libera , A. Güvenç-Yazicioglu and C. M. Megaridis , In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett., 79 (2001), 10211023.

N. Naguib , H. Ye , Y. Gogotsi et al., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett., 4 (2004), 22372243.

J. M. Grogan , N. M. Schneider , F. M. Ross and H. H. Bau , Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.

A. O. Allen , The Radiation Chemistry of Water and Aqueous Solutions (Princeton, NJ: Van Nostrand, 1961).

I. Draganic , The Radiation Chemistry of Water (New York: Elsevier, 2012).

B. Pastina and J. A. LaVerne , Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A, 105 (2001), 93169322.

A. J. Elliot and D. R. McCracken , Computer modeling of the radiolysis in an aqueous lithium salt blanket: suppression of radiolysis by addition of hydrogen. Fusion Eng. Des., 13 (1990), 2127.

J. M. Joseph , B. S. Choi , P. Yakabuskie and J. C. Wren , A combined experimental and model analysis on the effect of pH and O2(aq) on γ-radiolytically produced H2 and H2O2. Radiation Phys. Chem., 77 (2008), 10091020.

N. J. Carron , An Introduction to the Passage of Energetic Particles through Matter (Boca Raton, FL: CRC Press, 2006).

H. A. Bethe and J. Ashkin , Bethe: Passage of radiations through matter. In E. Segre , ed., Experimental Nuclear Physics Vol. 1, (New York: Wiley, 1953).

M. J. Berger , J. S. Coursey , M. A. Zucker and J. Chang , NIST Stopping-Power and Range Tables: Electrons, Protons, Helium Ions. Available at http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html [Accessed: 3 November 2014].

J. A. LaVerne and S. M. Pimblott , Electron energy-loss distributions in solid, dry DNA. Rad. Res., 141 (1995), 208215.

M. E. Rose , Electron path lengths in multiple scattering. Phys. Rev., 58 (1940), 90.

H. A. Schwarz , Applications of the spur diffusion model to the radiation chemistry of aqueous solutions. J. Phys. Chem., 73 (1969), 19281937.

G. V. Buxton , C. L. Greenstock , W. P. Helman and A. B. Ross , Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data, 17 (1988), 513886.

M. A. Hill and F. A. Smith , Calculation of initial and primary yields in the radiolysis of water. Rad. Phys. Chem., 43 (1994), 265280.

S. M. Pimblott and J. A. LaVerne , Molecular product formation in the electron radiolysis of water. Rad. Res., 129 (1992), 265271.

H. Christensen , Remodeling of the oxidant species during radiolysis of high-temperature water in a pressurized water reactor. Nucl. Technol., 109 (1995), 373382.

M. Burton , Radiation chemistry. J. Phys. Chem., 51 (1947), 611625.

J. Speight , Lange’s Handbook of Chemistry (New York: McGraw-Hill Professional, 2004).

N. M. Schneider /Radiolysis, github.com. Available at https://github.com/NMSchneider/Radiolysis [Accessed: 30 June 2014].

E. J. Hart , The hydrated electron: properties and reactions of this most reactive and elementary of aqueous negative ions are discussed. Science, 146 (1964), 1925.

J. M. Grogan , L. Rotkina and H. H. Bau , In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.

U. Mirsaidov , C.-D. Ohl and P. Matsudaira , A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter, 8 (2012), 71087111.

T.-W. Huang , S.-Y. Liu , Y.-J. Chuang et al., Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter, 9 (2013), 88568861.

K. L. Klein , I. M. Anderson and N. de Jonge , Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.

S. Jones , Bubble nucleation from gas cavities: a review. Adv. Coll. Interf. Sci., 80 (1999), 2750.

D. Li , M. H. Nielsen , J. R. I. Lee et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.

T. J. Woehl , J. E. Evans , I. Arslan , W. D. Ristenpart and N. D. Browning , Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.

K. W. Noh , Y. Liu , L. Sun and S. J. Dillon , Challenges associated with in-situ TEM in environmental systems: the case of silver in aqueous solutions. Ultramicroscopy, 116 (2012), 3438.

J. Lee , A. Urban , X. Li et al., Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science, 343 (2014), 519522.

J. Park , S. Kodambaka , F. M. Ross , J. M. Grogan and H. H. Bau , In situ liquid cell transmission electron microscopic observation of electron beam induced Au crystal growth in a solution. Microsc. Microanal., 18 (2012), 10981099.

M. den Heijer , I. Shao , A. Radisic , M. C. Reuter and F. M. Ross , Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2 (2014), 022101.

H. Remita , I. Lampre , M. Mostafavi , E. Balanzat and S. Bouffard , Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation. Rad. Phys. Chem., 72 (2005), 575586.

W. Abidi and H. Remita , Gold based nanoparticles generated by radiolytic and photolytic methods. Recent Patents in Eng., 4 (2010), 170188.

W. W. Mullins and R. F. Sekerka , Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys., 35 (1964), 444451.

H. Zheng , R. K. Smith , Y. W. Jun et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.

W. G. Mallard , A. B. Ross and W. P. Helman , NDRL/NIST Solution Kinetics Database on the Web: A complication of kinetics data on solution-phase reactions. Available at http://kinetics.nist.gov/solution/ [Accessed: 6 April 2015].

J. H. Park , N. M. Schneider , J. M. Grogan et al., Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett., 15 (2015), 53145320.

A. Mozumder , Fundamentals of Radiation Chemistry (London: Elsevier Science, 1999).

B. J. Mincher and J. F. Wishart , The radiation chemistry of ionic liquids: a review. Solvent Extraction and Ion Exchange, 32 (2014), 563583.

J. Y. Huang , L. Zhong , C. M. Wang et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.

S. W. Hell , Far-field optical nanoscopy. Science, 316 (2007), 11531158.

L. Reimer and H. Kohl , Transmission Electron Microscopy: Physics of Image Formation (New York: Springer, 2008).

N. de Jonge and F. M. Ross , Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.

D. B. Peckys , G. M. Veith , D. C. Joy and N. de Jonge , Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One, 4 (2009), e8214.

K. L. Klein , I. M. Anderson and N. de Jonge , Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.

T. J. Woehl , K. L. Jungjohann , J. E. Evans et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.

E. A. Ring and N. de Jonge , Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron, 43 (2012), 10781084.

N. J. Zaluzek , The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy, 151 (2015), 240249.

D. F. Parsons , V. R. Matricardi , R. C. Moretz and J. N. Turner , Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys., 15 (1974), 161270.

R. F. Egerton , Control of radiation damage in the TEM, Ultramicroscopy, 127 (2012), 100108.

A. Rose , The sensitivity performance of the human eye on an absolute scale. J. Opt Soc Am., 38 (1948), 196208.

J. Pierson , M. Sani , C. Tomova , S. Godsave and P. J. Peters , Toward visualization of nanomachines in their native cellular environment. Histochem. Cell Biol., 132 (2009), 253262.

A. Hoenger and J. R. McIntosh , Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol., 21 (2009), 8996.

M. R. Howells , T. Beetz , H. N. Chapman et al., An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectrosc. Relat. Phenomena, 170 (2009), 412.

B. E. Bammes , J. Jakana , M. F. Schmid and W. Chiu , Radiation damage effects at four specimen temperatures from 4 to 100 K. J. Struct. Biol., 169 (2010), 331341.

H. Stahlberg and T. Walz , Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol., 3 (2008), 268281.

V. R. Matricardi , R. C. Moretz and D. F. Parsons , Electron diffraction of wet proteins: catalase. Science, 177 (1972), 268270.

N. M. Schneider , M. M. Norton , B. J. Mendel et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.

J. Hermannsdörfer , N. de Jonge and A. Verch , Electron beam induced chemistry of gold nanoparticles in saline solution. Chem. Commun., 51 (2015), 1639316396.

D. B. Peckys and N. de Jonge , Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal., 20 (2014), 346365.

D. B. Peckys , P. Mazur , K. L. Gould and N. de Jonge , Fully hydrated yeast cells imaged with electron microscopy. Biophys. J., 100 (2011), 25222529.

S. W. Chee , D. Loh , U. Mirsaidov and P. Matsudaira , Probing nanoparticle dynamics in 200 nm thick liquid layers at millisecond time resolution. Microsc. Microanal., 21 (Suppl 3) (2015), 267268.

N. de Jonge , D. B. Peckys , G. J. Kremers and D. W. Piston , Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.

N. de Jonge , N. Poirier-Demers , H. Demers , D. B. Peckys and D. Drouin , Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.

T. Schuh and N. de Jonge , Liquid scanning transmission electron microscopy: nanoscale imaging in micrometers-thick liquids. C. R. Phys., 15 (2014), 214223.

H. Demers , N. Poirier-Demers , D. Drouin and N. de Jonge , Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc. Microanal., 16 (2010), 795804.

H. Zheng , S. A. Claridge , A. M. Minor , A. P. Alivisatos and U. Dahmen , Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.

H. Zheng , R. K. Smith , Y. W. Jun et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324, (2009), 13091312.

X. Chen and J. Wen , In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nano. Res. Lett., 7 (2012), 598.

E. R. White , M. Mecklenburg , B. Shevitski , S. B. Singer and B. C. Regan , Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.

Y. Liu , X.-M. Lin , Y. Sun and T. Rajh , In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc., 135 (2013), 37643767.

A. Verch , M. Pfaff and N. De Jonge , Exceptionally slow movement of gold nanoparticles at a solid:liquid interface investigated by scanning transmission electron microscopy. Langmuir, 31 (2015), 69566964.

D. Contarato , P. Denes , D. Doering , J. Joseph and B. Krieger , High speed, radiation hard CMOS pixel sensors for transmission electron microscopy. Phys. Procedia, 37 (2013), 15041510.

D. Drouin , A. R. Couture , R. Gauvin et al., CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29 (2007), 92101.

J. M. LeBeau , A. J. D’Alfonso , S. D. Findlay , S. Stemmer and L. J. Allen , Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy images. Phys. Rev. B, 80 (2009), 174106.

E. J. Kirkland , R. F. Loane and J. Silcox , Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy, 23 (1987), 7796.

K. Ishizuka , A practical approach for STEM image simulation based on the FFT multi-slice method. Ultramicroscopy, 90 (2002), 7183.

D. A. Welch , R. Faller , J. E. Evans and N. D. Browning , Simulating realistic imaging conditions for in-situ liquid microscopy. Ultramicroscopy, 135 (2013), 3642.

N. de Jonge , M. Pfaff and D. B. Peckys , Practical aspects of transmission electron microscopy in liquid. Adv. Imag. Electron Phys., 186 (2014), 137.

P. Abellan , T. J. Woehl , L. R. Parent et al., Factors controlling quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50 (2014), 48734880.

J. M. Grogan , J. H. Park , X. Ye et al., Liquid cell in-situ electron microscopy: interfacial phenomena and electrochemical deposition. Microsc. Microanal., 18 (2012), 11601161.

J. H. Park , N. M. Schneider , J. M. Grogan et al., Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett., 15 (2015), 53145320.

J. P. Patterson , P. Abellan , M. S. Denny Jr. et al., Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy, J. Am. Chem. Soc., 137 (2015), 73227328.

K. L. Jungjohann , J. E. Evans , J. A. Aguiar , I. Arslan and N. D. Browning , Atomic scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.

D. Grand , A. Bernas and E. Amouyal , Photo-ionization of aqueous indole – conduction band edge and energy gap in liquid water. Chem. Phys., 44 (1979), 7379.

R. F. Egerton , Electron Energy Loss Spectroscopy (New York: Plenum, 1996).

T. Malis , S. C. Cheng and R. F. Egerton , EELS log-ratio technique for specimen thickness measurement in the TEM. J. Electron Microsc. Tech., 8 (1988), 193200.

K. Iakoubovskii , K. Mitsubishi , Y. Nakayama and K. Furuya , Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: atomic number dependent oscillatory behavior. Phys. Rev. B, 77 (2008), 104102.

M. Hahn , J. Seredynski and W. Baumeister , Inactivation of catalase monolayers by irradiation with 100kV electrons. Proc. Natl. Acad. Sci. USA, 73 (1976), 823827.

T. J. Woehl , J. E. Evans , I. Arslan , W. D. Ristenpart and N. D. Browning , Direct in-situ determination of the mechanisms controlling nanoparticle nucleation and growth, ACS Nano, 6 (2012), 85998610.

H. Nishiyama , M. Suga , T. Ogura et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 169 (2010), 438449.

J. E. Evans , K. L. Jungjohann , N. D. Browning and I. Arslan , Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.

M. Faraday , The Bakerian lecture: experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond., 147 (1857), 145181.

M. C. Daniel and D. Astruc , Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104 (2004), 293346.

C. J. Murphy T. P. Sau , A. M. Gole , et al., Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B, 109 (2005), 1385713870.

Y. Xia , Y. Xiong , B. Lim and S. E. Skrabalak , Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed., 48 (2009), 60103.

H.-G. Liao , K. Niu and H. Zheng , Observation of growth of metal nanoparticles. Chem. Commun., 49 (2013), 1172011727.

K.-Y. Niu , J. Park , H. Zheng and A. P. Alivisatos , Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.

H. L. Xin and H. Zheng , In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.

H. Zheng , R. K. Smith , Y.-W. Jun , et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.

J. M. Grogan , N. M. Schneider , F. M. Ross and H. H. Bau , Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2013), 359364.

M. den Heijer , I. Shao , A. Radisic , M. C. Reuter and F. M. Ross , Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2 (2014), 022101.

Y. Liu , X.-M. Lin , Y. Sun and T. Rajh , In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc., 135 (2013), 37643767.

G. Zhu , Y. Jiang , F. Lin , et al., In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun., 50 (2014), 94479450.

T. J. Woehl , J. E. Evans , I. Arslan , W. D. Ristenpart and N. D. Browning , Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.

J. E. Evans , K. L. Jungjohann , N. D. Browning and I. Arslan , Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.

K.-Y. Niu , H.-G. Liao and H. Zheng , Visualization of the coalescence of bismuth nanoparticles. Microsc. Microanal., 20 (2014), 416424.

D. Li , M. H. Nelson , J. R. Lee , et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.

J. M. Yuk , J. Park , P. Ercius , et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.

G. Wulff , On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral., 34 (1901), 449530.

J. W. Gibbs , H. A. Bumstead , R. G. Van Name and W. R. Longley , The Collected Works of J. Willard Gibbs (London: Longmans, Green and Co., 1902).

N. Tian , Z.-Y. Zhou , S.-G. Sun , Y. Ding and Z. L. Wang , Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 316 (2007), 732735.

E. Ringe , R. P. Van Duyne and L. D. Marks , Wulff construction for alloy nanoparticles. Nano Lett., 11 (2011), 33993403.

C. R. Bealing , W. J. Baumgardner , J. J. Choi , T. Hanrath and R. G. Hennig , Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano, 6 (2012), 21182127.

H.-G. Liao , D. Zherebetskyy , H. Xin , et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.

H.-G. Liao and H. Zheng , Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc., 135 (2013), 50385043.

Y. Kimura , H. Niinomi , K. Tsukamoto and J. M. García-Ruiz , In situ live observation of nucleation and dissolution of sodium chlorate nanoparticles by transmission electron microscopy. J. Am. Chem. Soc., 136 (2014), 17621765.

E. Sutter , K. Jungjohann , S. Bliznakov et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.

K. Jungjohann , S. Bliznakov , P. Sutter , E. A. Stach and E. Sutter , In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett., 13 (2013), 29642970.

E. A. Lewis , S. J. Haigh , T. J. A. Slater , et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.

J. Wu , W. Gao , J. Wen et al., Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett., 15 (2015), 27112715.

A. De Clercq , W. Dachraoui , O. Margeat , et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.

T. Kraus and N. de Jonge , Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir, 29 (2013), 84278432.

H.-G. Liao , Y. Shao , C. M. Wang , et al., TEM study of fivefold twinned gold nanocrystal formation mechanism. Mater. Lett., 116 (2014), 299303.

D. Alloyeau , W. Dachraoui , Y. Javed , et al., Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett., 15 (2015), 25742581.

L. R. Parent , D. B. Robinson , T. J. Woehl , et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.

L. R. Parent , D. B. Robinson , P. J. Cappillino , et al., In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater., 26 (2014), 14261433.

X. Chen and J. Wen , In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Res. Lett., 7 (2012), 16.

E. A. Ring and N. de Jonge , Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.

H. Zheng , S. A. Claridge , A. M. Minor , A. P. Alivisatos and U. Dahmen , Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.

Q. Chen , J. M. Smith , J. Park , et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.

N. de Jonge , N. Poirier-Demers , H. Demers , D. B. Peckys and D. Drouin , Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.

E. R. White , M. Mecklenburg , B. Shevitski , S. B. Singer and B. C. Regan , Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.

C. Mueller , M. Harb , J. R. Dwyer and R. D. Miller , Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.

F. Li , D. P. Josephson and A. Stein , Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed., 50 (2011), 360388.

J. L. Baker , A. Widmer-Cooper , M. F. Toney , P. L. Geissler and A. P. Alivisatos , Device-scale perpendicular alignment of colloidal nanorods. Nano Lett., 10 (2009), 195201.

J. Park , H. Zheng , W. C. Lee , et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.

J. M. Grogan , L. Rotkina and H. H. Bau , In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.

V. P. Oleshko and J. M. Howe , Are electron tweezers possible? Ultramicroscopy, 111 (2011), 15991606.

P. E. Batson , A. Reyes-Coronado , R. G. Barrera , et al., Nanoparticle movement: plasmonic forces and physical constraints. Ultramicroscopy, 123 (2012), 5058.

P. E. Batson , A. Reyes-Coronado , R. G. Barrera , et al., Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. Nano Lett., 11 (2011), 33883393.

H. Zheng , U. M. Mirsaidov , L.-W. Wang and P. Matsudaira , Electron beam manipulation of nanoparticles. Nano Lett., 12 (2012), 56445648.

H. Zheng , Using molecular tweezers to move and image nanoparticles. Nanoscale, 5 (2013), 40704078.

Y.-T. Chen , C.-Y. Wang , Y.-J. Hong , et al., Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv., 4 (2014), 3165231656.

Y. Jiang , G. Zhu , F. Lin , et al., In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett., 14 (2014), 37613765.

O. M. Magnussen , L. Zitzler , B. Gleich , M. R. Vogt and R. J. Behm , In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochim. Acta, 46 (2001), 37253733.

O. M. Magnussen , W. Polewska , L. Zitzler and R. J. Behm , In situ video-STM studies of dynamic processes at electrochemical interfaces. Faraday Discuss., 121 (2002), 4352.

M. J. Williamson , R. M. Tromp , P. M. Vereecken , R. Hull and F. M. Ross , Dynamic electron microscopy in liquid environments. Nat. Mater., 2 (2003), 532536.

F. M. Ross and P. C. Searson , In situ microscopy of the anodic etching of silicon. In G. W. Bailey , M. H. Ellisman , R. A. Hennigar and N. J. Zaluzec , eds., Proceedings of the 53rd Annual MSA Meeting, Kansas City, August 1995, 232–233 (New York: Jones and Begell Publishing, 1995).

A. J. Bard and L. R. Faulkner , Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Hoboken, NJ: Wiley, 2001).

M. E. Holtz , Y. Tu , D. Gunceler et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.

R. L. Sacci , J. M. Black , N. Balke et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.

A. Radisic , Electrochemical nucleation and growth of copper, Ph.D. Thesis, The Johns Hopkins University (2005).

J. M. Grogan , Ph.D. Thesis, University of Pennsylvania (2012).

A. Radisic , P. M. Vereecken , J. B. Hannon , P. C. Searson and F. M. Ross , Quantifying electrochemical nucleation and growth mechanisms from real-time kinetic data. Nano Lett., 6 (2006), 238242.

A. Radisic , F. M. Ross and P. C. Searson , In situ study of the growth kinetics of individual islands during electrodeposition of copper. J. Phys. Chem. B, 110 (2006), 78627868.

A. Radisic , P. M. Vereecken , P. C. Searson and F. M. Ross , The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci., 600 (2006), 18171826.

F. M. Ross , Electrochemical nucleation, growth and dendrite formation in liquid cell TEM. Microsc. Microanal., 16 (2010), 326327.

E. R. White , S. B. Singer , V. Augustyn et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.

J. M. Grogan , N. M. Schneider , F. M. Ross and H. H. Bau , The Nanoaquarium: a new paradigm in electron microscopy. J. Indian Inst. Sci., 92 (2012), 295308.

M. den Heijer , X. Shao , A. Radisic , M. C. Reuter and F. M. Ross , Patterned electrochemical deposition of copper using an electron beam. APL Mater., 2 (2014), 022101.

B. L. Mehdi , J. Qian , E. Nasybulin et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.

A. J. Leenheer , J. P. Sullivan , M. J. Shaw and C. T. Harris , A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst., 24 (2015), 10611068.

A. J. Leenheer , K. L. Jungjohann , K. R. Zavadil , J. P. Sullivan and C. T. Harris , Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano, 9 (2015), 43794389.

M. Sun , H.-G. Liao , K. Niu and H. Zheng , Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep., 3 (2013), 2227.

Y. Liu and S. J. Dillon , In situ observation of electrolytic H2 evolution adjacent to gold cathodes. Chem. Commun., 50 (2014), 17611763.

Z. Zeng , W.-I. Liang , H.-G. Liao et al., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in-situ TEM. Nano Lett., 14 (2014), 17451750.

R. L. Sacci , N. J. Dudney , K. L. More et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.

B. L. Mehdi , M. Gu , L. R. Parent et al., In situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.

R. R. Unocic , X. G. Sun , R. L. Sacci et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.

M. den Heijer , In-situ transmission electron microscopy of electrodeposition: technical development, beam effects and lithography. M.Sc. Thesis, University of Leiden (2008).

P. C. Andricacos , C. Uzoh , J. O. Dukovic , J. Horkans and H. Deligianni , Damascene copper electroplating for chip interconnections. IBM J. Res. Devel., 42 (1998), 567574.

B. Scharifker and G. Hills , Theoretical and experimental studies of multiple nucleation. Electrochimica Acta., 28 (1983), 879889.

A. Milchev , Electrocrystallization, Fundamentals of Nucleation and Growth (New York: Springer US, 2002).

P. M. Vereecken , R. A. Binstead , H. Deligianni and P. C. Andricacos , The chemistry of additives in damascene copper plating. IBM J. Res. Devel., 49 (2005), 318.

L. Yang , A. Radisic , M. Nagara et al., Multi-scale modeling of direct copper plating on resistive non-copper substrates. Electrochimica Acta, 78 (2012), 524531.

N. M. Schneider , J. H. Park , J. M. Grogan et al., Visualization of active and passive control of morphology during electrodeposition. Microsc. Microanal., 20 (S3) (2014), 15301531.

F. M. Ross , M. den Heijer , M. J. Williamson and D. Steingart , Correlating light microscopy and electron microscopy for measuring microstructural evolution during electrochemical deposition. Adv. Imag. Electron Phys., 179 (2013), 180182.

P. Abellan Baeza , B. L. Mehdi , L. R. Parent et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.

Z. Zeng , W.-I. Liang , Y.-H. Chub and H. M. Zheng , In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss., 176 (2014), 95107.

E. Sutter , K. Jungjohann , S. Bliznakov et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.

R. R. Unocic , L. Baggetto , G. M. Veith et al., Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun., 51 (2015), 1637716380.

Y. Nagai , J. D. Carbajal , J. H. White et al., An electrochemically controlled microcantilever biosensor. Langmuir, 29 (2013), 99519957.

N. M. Schneider , J. H. Park , J. M. Grogan et al., In situ electrochemical measurements in the Nanoaquarium. Microsc. Microanal., 19 (S2) (2013), 433434.

J.-M. Tarascon and M. Armand , Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.

M. Armand and J.-M. Tarascon , Building better batteries. Nature, 457 (2008), 652657.

A. S. Arico , P. Bruce , B. Scrotasi , J.-M. Tarascon and W. Van Schalkwijk , Nanostructured materials for advanced energy conversion and storage devices. Nat. Materials, 4 (2005), 366377.

J. B. Goodenough and Y. Kim , Challenges for rechargeable Li batteries. Chem Mater., 22 (2010), 587603.

M. K. Debe , Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (2013), 4351.

C. M. Wang , In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res., 30 (2014), 326339.

N. de Jonge and F. M. Ross , Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.

M. J. Williamson , R. M. Tromp , P. M. Vereecken , R. Hull and F. M. Ross , Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater., 2 (2003), 532536.

R. R. Unocic , R. L. Sacci , G. M. Brown et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.

Z. Zeng , W.-I. Liang , H.-G. Liao et al., Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett., 14 (2014), 17451750.

R. L. Sacci , J. M. Black , N. Balke et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.

R. L. Sacci , N. J. Dudney , K. L. More et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.

M. E. Holtz , Y. Yu , D. Gunceler et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.

M. Gu , L. R. Parent , B. L. Mehdi et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.

R. R. Unocic , X.-G. Sun , R. L. Sacci et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.

R. R. Unocic , R. L. Sacci , G. M. Brown et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.

M. Moshkovich , M. Cojocaru , H. E. Gottlieb and D. Aurbach , The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. J. Electroanal. Chem., 497 (2001), 8496.

Z. Zeng , W.-I. Liang , Y.-H. Chu and H. Zheng , In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss., 176 (2014), 95107.

B. L. Mehdi , J. Qian , E. Nasybulin et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.

M. Tang , S. Lu and J. Newman , Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon. J. Electrochemi. Soc., 159 (2012), A1775A1785.

M. Tang and J. Newman , Transient characterization of solid-electrolyte-interphase using ferrocene. J. Electrochem. Soc., 159 (2012), A281A289.

R. Unocic , L. Adamczyk , N. Dudney et al., In-situ TEM characterization of electrochemical processes in energy storage systems. Microsc. Microanal., 17 (2011), 15641565.

K. Xu , Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev., 104 (2004), 43034418.

E. A. Ring and N. de Jonge , Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.

J. M. Grogan and H. H. Bau , The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.

A. J. Bard and L. R. Faulkner , Electrochemical Methods: Fundamentals and Applications, 2nd edn. (New York: John Wiley & Sons, 2001).

P. Verma , P. Maire and P. Novák , A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55 (2010), 63326341.

M. Winter , The solid electrolyte interphase: the most important least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem., 223 (2009), 13951406.

R. L. Sacci , N. J. Dudney , K. L. More et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.

M. Moshkovich , Y. Gofer and D. Aurbach , Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc., 148 (2001), E155E167.

D. Aurbach , M. D. Levi , E. Levi et al., Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J. Electrochem. Soc., 145 (1998), 30243034.

R. R. Unocic , X.-G. Sun , R. L. Sacci et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.

N. M. Schneider , M. M. Norton , B. J. Mendel et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C., 118 (2014), 2237322382.

P. Abellan , T. J. Woehl , L. R. Parent et al., Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50 (2014), 48734880.

T. J. Woehl , J. E. Evans , I. Arslan , W. D. Ristenpart and N. D. Browning , Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.

T. J. Woehl , C. Park , J. E. Evans et al., Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett., 14 (2014), 373378.

P. Abellan , B. L. Mehdi , L. R. Parent et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.

M. E. Holtz , Y. Yu , D. Gunceler et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.

K. W. Noh and S. J. Dillon , Morphological changes in and around Sn electrodes during Li ion cycling characterized by in situ environmental TEM. Scripta Materialia, 69 (2013), 658661.

R. Bhattacharyya , B. Key , H. Chen et al., In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater., 9 (2010), 504510.

K. Nishikawa , T. Mori , T. Nishida , Y Fukunaka and M. Rosso , Li dendrite growth and Li+ ionic mass transfer phenomenon. J. Electroanal. Chem., 661 (2011), 8489.

T. Nishida , K. Nishikawa , M. Rosso and Y. Fukunaka , Optical observation of Li dendrite growth in ionic liquid. Electrochimica Acta, 100 (2013), 333341.

A. J. Leenheer , K. L. Jungjohann , K. R. Zavadil , J. P. Sullivan and C. T. Harris , Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano, 9 (2015), 43794389.

T. Riedl , T. Gemming and K. Wetzig , Extraction of EELS white-line intensities of manganese compounds: methods, accuracy, and valence sensitivity. Ultramicroscopy, 106 (2006), 284291.

M. Varela , M. Oxley , W. Luo et al., Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B., 79 (2009), 085117.

R. R. Unocic , L. Baggetto , G. M. Veith et al., Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun., 51 (2015), 1637716380.

J. C. Meier , C. Galeano , I. Katsounaros et al., Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal., (2012), 832–843.

G.-Z. Zhu , S. Prabhudev , J. Yang et al., In situ liquid cell TEM study of morphological evolution and degradation of Pt–Fe nanocatalysts during potential cycling. J. Phys. Chem. C., 118 (2014), 2211122119.

B. Shaw and R. Kelly , What is corrosion? Interface, Electrochem. Soc., Spring (2006), 24–26.

D. Duquette and R. Schafrik , Research Opportunities in Corrosion Science and Engineering (Washington, D.C.: The National Academies Press, 2011).

G.-L. Song , The grand challenges in electrochemical corrosion research. Front. Mater, 1 (2014), 2.

G. Frankel , Electrochemical techniques in corrosion: status, limitations, and needs. J. ASTM Int., 5 (2008), 127.

N. De Jonge and F. M. Ross , Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.

K. L. Jungjohann , J. E. Evans , J. A. Aguiar , I. Arslan and N. D. Browning , Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.

R. R. Unocic , L. Baggetto , K. Unocic et al., Coupling EELS/EFTEM imaging with environmental fluid cell microscopy. Microsc. Microanal., 18 (2012), 11041105.

S. Schilling , A. Janssen , Z. L. Zhong , N. J. Zaluzec and M. J. Burke , Liquid in situ analytical electron microscopy: examining SCC precursor events for Type 304 stainless steel in H2O. Microsc. Microanal., 21 (2015), 12911292.

G. Frankel and N. Sridhar , Understanding localized corrosion. Mater. Today, 11 (2008), 3844.

G. Frankel , Pitting corrosion of metals. J. Electrochem. Soc., 145 (1998), 21862198.

J. Soltis , Passivity breakdown, pit initiation and propagation of pits in metallic materials: review. Corros. Sci., 90 (2015), 522.

Accelerated dissolution of thin metal films had been observed during continuous imaging under the electron beam.

R. R. Unocic , R. L. Sacci , G. M. Brown et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.

G. Frankel and M. Rohwerder , Electrochemical techniques for corrosion. In Encyclopedia of Electrochemistry (Weinheim, Germany: Wiley-VCH, 2007).

R. G. Kelly , J. R. Scully , D. Shoesmith and R. Buchheit , Electrochemical Techniques in Corrosion Science and Engineering (New York: Marcel Dekker, 2013).

G. Frankel , Techniques for Corrosion Quantification in the Characterization of Materials, 2nd edn. (Hoboken, NJ: John Wiley & Sons, 2012), pp. 850864.

M. Keddam , Application of advanced electrochemical techniques and concepts to corrosion phenomena. Corrosion, 62 (2006), 10561066.

G. Frankel , The growth of 2-D pits in thin film aluminum. Corros. Sci., 30 (1990), 1203.

L. Balazs and J. Gouyet , Two-dimensional pitting corrosion of aluminium thin layers. Phys. A Stat. Mech. Appl., 217 (1995), 319338.

G. Frankel , Pit growth in thin metallic films. Mater. Sci. Forum, 247 (1997), 18.

J. Proost , M. Baklanov and R. Verbeeck , Morphology of corrosion pits in aluminum thin film metallizations. J. Solid State Electrochem., 2 (1998), 150155.

S. Hernandez , A. Griffin Jr., F. Brotzen and C. Dunn , The effect of thickness on the corrosion susceptibility of Al thin film metallizations. J. Electrochem. Soc., 142 (1995), 12151220.

Y.-P. Zhao , C.-F. Cheng , G.-C. Wang and T.-M. Lu , Characterization of pitting corrosion in aluminum films by light scattering. Appl. Phys. Lett., 73 (1998), 24322434.

S. W. Chee , F. M. Ross , D. Duquette and R. Hull , Studies of corrosion of Al thin films using liquid cell transmission electron microscopy. MRS Proc., 1525 (2013), mrsf12-1525-ss11-03.

S. W. Chee , S. H. Pratt , K. Hattar et al., Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun., 51 (2015), 168171.

S. W. Chee , R. Hull and F. M. Ross , Liquid cell TEM of the corrosion of metal films in aqueous solutions. Microsc. Microanal., 18 (2012), 11101111.

H.-G. Liao , K. Niu and H. Zheng , Observation of growth of metal nanoparticles. Chem. Commun., 49 (2013), 1172011727.

Y. Jiang , G. Zhu , F. Lin , H. Zhang and C. Jin , In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett., 14 (2014), 37613765.

J. Wu , W. Gao , H. Yang and J.-M. Zuo , Imaging shape-dependent corrosion behavior of Pt nanoparticles over extended time using a liquid flow cell and TEM. Microsc. Microanal., 20 (2014), 15081509.

E. Sutter , K. Jungjohann , S. Bliznakov et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.

S. W. Chee , J.-H. Park , A. Pinkowitz et al., Liquid cell TEM of Al thin film corrosion under potentiostatic polarization. Microsc. Microanal., 21 (2015), 973974.

J. H. Park , S. W. Chee , S. Kodambaka and F. M. Ross , In situ LC-TEM studies of corrosion of metal thin films in aqueous solutions. Microsc. Microanal., 21 (2015), 12911292.

K. W Noh , K. Tai , S. Mao and S. J. Dillon , Grain boundary parting limit during dealloying. Adv. Eng. Mater., 17 (2015), 157161.

R. Unocic , L. Adamczyk , N. Dudney et al., In-situ TEM characterization of electrochemical processes in energy storage systems. Microsc. Microanal., 17 (2011), 15641565.

X. Zhong , M. G. Burke , S. Schilling , S. J. Haigh and N. J. Zaluzec , Novel hybrid sample preparation method for in situ liquid cell TEM analysis. Microsc. Microanal., 20 (2014), 15141515.

T. J. Woehl , K. L. Jungjohann , J. E. Evans et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.

E. A. Ring and N. de Jonge , Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.

S. M. Hoppe , D. Y. Sasaki , A. N. Kinghorn and K. Hattar , In-situ transmission electron microscopy of liposomes in an aqueous environment. Langmuir, 29 (2013), 99589961.

The liquid layer thicknesses quoted in atmospheric corrosion studies are normally in the tens of micrometers.

N. M. Schneider , M. M. Norton , B. J. Mendel et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C., 118 (2014), 2237322382.

J. M. Grogan , N. M. Schneider , F. M. Ross and H. H. Bau , Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2013), 359364.

M. Kelm , E. Bohnert and I. Pashalidis , Products formed from alpha radiolysis of chloride brines. Res. Chem. Intermed., 27 (2001), 503507.

M. E. Holtz , Y. Yu , D. Gunceler et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.

S. Schilling , A. Janssen , M. G. Burke et al., In situ analytical electron microscopy: imaging and analysis of steel in liquid water. 18th International Microscopy Congress (2014), www.microscopy.cz/proceedings/all.html#abstract-2947.

Bi-metallic exposure in the electrolyte frequently leads to galvanic corrosion but the effects of coupled metals are not so straightforward. Depending on the metals that are connected, it is possible that the more active metal becomes more resistant to corrosion. The reader is referred to general texts on corrosion for clarification.

J.-H. Park , M. C. Reuter , S. Kodambaka and F. M. Ross , Electric field induced Au nanocrystal formation in aqueous solutions. Microsc. Microanal., 20 (2014), 15981599.

S. M. Hoppe , B. A. Hernandez-Sanchez , K. Hattar and D. Y. Sasaki , Progress towards in situ TEM of biofouling. Microsc. Microanal., 20 (2012), 11321133.

J. Israelachvili , Electrostatic forces between surfaces in liquids. In Intermolecular and Surface Forces (New York: Academic Press, 2011) pp. 291337.

R. Parsons , The electrical double layer: recent experimental and theoretical developments. Chem. Rev., 90 (1990), 813826.

C. U. Chan and C.-D. Ohl , Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys. Rev. Lett., 109 (2012), 174501.

K. Xu , P. Cao and J. R. Heath , Graphene visualizes the first water adlayers on mica at ambient conditions. Science, 329 (2010), 11881191.

R. C. Major , J. E. Houston , M. J. McGrath , J. I. Siepmann and X. Y. Zhu , Viscous water meniscus under nanoconfinement. Phys. Rev. Lett., 96 (2006), 177803.

S. H. Oh , Y. Kauffmann , C. Scheu , W. D. Kaplan and M. Rühle , Ordered liquid aluminum at the interface with sapphire. Science, 310 (2005), 661663.

S. K. Eswaramoorthy , J. M. Howe and G. Muralidharan , In situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science, 318 (2007), 14371440.

J. M. Howe , Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces (New York: Wiley-Interscience, 1997).

W. D. Kaplan and Y. Kauffmann , Structural order in liquids induced by interfaces with crystals. Annu. Rev. Mater. Res., 36 (2006), 148.

S. E. Donnelly , R. C. Birtcher , C. W. Allen et al., Ordering in a fluid inert gas confined by flat surfaces. Science, 296 (2002), 507510.

B. J. Kim , J. Tersoff , S. Kodambaka et al., Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science, 322 (2008), 10701073.

T. A.