Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T14:01:34.540Z Has data issue: false hasContentIssue false

Part I - Technique

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Liao, H. G. and Zheng, H., Liquid cell transmission electron microscopy, Annu. Rev. Phys. Chem., 67 (2016), 719747.Google Scholar
Butler, E. P. and Hale, K. F., Chapter 6 in Dynamic Experiments in the Electron Microscope (Amsterdam: North-Holland, 1981).Google Scholar
Parsons, D. F., Structure of wet specimens in electron microscopy. Science, 186 (1974), 407414.Google Scholar
Ruska, E., Beitrag zur uebermikroskopischen Abbildungen bei hoeheren Drucken. Kolloid Z., 100 (1942), 212219.Google Scholar
Helveg, S., López-Cartes, C., Sehested, J. et al., Atomic-scale imaging of carbon nanofibre growth. Nature, 427 (2004), 426429.CrossRefGoogle ScholarPubMed
Parsons, D. F., Matricardi, V. R., Moretz, R. C. and Turner, J. N., Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys., 15 (1974), 161270.Google Scholar
Huang, J. Y., Zhong, L., Wang, C. M. et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.CrossRefGoogle ScholarPubMed
Wang, C. M., Xu, W., Liu, J. et al., In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res., 25 (2010), 15411547.Google Scholar
Wang, C.-M., Liao, H.-G. and Ross, F. M., Observation of materials processes in liquids by electron microscopy, MRS Bulletin, 40 (2015), 4652.CrossRefGoogle Scholar
Abrams, I. M. and McBain, J. W., A closed cell for electron microscopy. J. Appl. Phys., 15 (1944), 607609.Google Scholar
Heide, H. G., Elektronenmikroskopie von Objekten unter Atmosphaerendruck oder unter Drucken, welche Austricknen verhindern. Naturwissenschaften, 47 (1960), 313317.Google Scholar
Heide, H. G., Electron microscopic observation of specimens under controlled gas pressure. J. Cell Biol., 13 (1962), 147152.Google Scholar
Double, D. D., Some studies of the hydration of Portland cement using high voltage (1MV) electron microscopy. Mater. Sci. Eng., 12 (1973), 2934.CrossRefGoogle Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.Google Scholar
Chiou, W.-A. et al., In situ TEM study of DNA/gold nanoparticles in liquid environment. Microsc. Microanal., 5 (Suppl. 2) (1999), MSA.CrossRefGoogle Scholar
Fukami, A., Fukushima, K. and Kohyama, N., Observation technique for wet clay minerals using film-sealed environmental cell equipment attached to high-resolution electron microscope. In Bennett, R. et al., eds., Microstructure of Fine-Grained Sediments (New York: Springer, 1991) pp. 321331.Google Scholar
Gai, P. L., Development of wet environment TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc Microanal., 8 (2002), 2128.Google Scholar
Sugi, H. T., Akimoto, K., Sutoh, S. et al., Dynamic electron microscopy of ATP-induced myosin head movement in living muscle filaments. Proc. Natl. Acad. Sci. USA, 94 (1997), 43784392.CrossRefGoogle Scholar
Taylor, K. A. and Glaeser, R. M., Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res., 55 (1976), 448456.CrossRefGoogle ScholarPubMed
Frank, J., Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State (Oxford: Oxford University Press, 2006).Google Scholar
Lucic, V., Foerster, F. and Baumeister, W., Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem., 74 (2005), 833865.Google Scholar
Stahlberg, H. and Walz, T., Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol., 3 (2008), 268281.CrossRefGoogle ScholarPubMed
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.Google Scholar
Franks, R., Morefield, S., Wen, J. et al., A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J. Nanosci. Nanotechnol., 8 (2008), 44044407.CrossRefGoogle ScholarPubMed
Liu, K.-L., Wu, C.-C., Huang, Y.-J. et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip, 8 (2008), 19151921.Google Scholar
Zheng, H. M., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
Grogan, J. M. and Bau, H. H., The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.Google Scholar
Leenheer, A. J., Sullivan, J. P., Shaw, M. J. and Harris, C. T., A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst., 24 (2015), 10611068.Google Scholar
Tanase, M., Winterstein, J., Sharma, R. et al., High-resolution imaging and spectroscopy at high pressure: a novel liquid cell for the TEM. Microsc. Micranal., 21 (2015), 16291638.Google Scholar
Mueller, C., Harb, M., Dwyer, J. R. and Miller, R. J. Dwayne, Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.Google Scholar
den Heijer, M., Shao, I., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2 (2014), 022101.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Ring, E. A. and de Jonge, N., Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.Google Scholar
Jungjohann, K. L., Evans, J. E., Aguiar, J., Arslan, I. and Browning, N. D., Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.Google Scholar
Holtz, M. E., Yu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.Google Scholar
Zaluzec, N. J., Burke, M. G., Haigh, S. J. and Kulzick, M. A., X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal., 20 (2014), 323329.CrossRefGoogle ScholarPubMed
Lewis, E. A., Haigh, S. J., Slater, T. J. A. et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.Google Scholar
Kuwabata, S., Kongkanand, A., Oyamatsu, D. and Torimoto, T., Observation of ionic liquid by scanning electron microscope. Chem. Lett., 35 (2006), 600601.Google Scholar
Arimoto, S., Sugimura, M., Kageyama, H., Torimoto, T. and Kuwabata, S., Development of new techniques for scanning electron microscope observation using ionic liquid. Electrochim. Acta, 53 (2008), 62286234.CrossRefGoogle Scholar
Swift, J. A. and Brown, A. C., An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J. Phys. E, 3 (1970), 924926.Google Scholar
Danilatos, G. D., Review and outline of environmental SEM at present. J. Microsc., 162 (1991), 391402.Google Scholar
Moncrieff, D. A., Barker, P. R. and Robinson, V. N. E., Electron scattering by gas in the scanning electron microscope. J. Phys. D, 12 (1979), 481488.Google Scholar
Stokes, D. J., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (Chichester: John Wiley & Sons, 2008).Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P. H. and Gauthier, C., Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.Google Scholar
Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D. and Gauthier, C., A history of scanning electron microscopy developments: towards “wet-STEM” imaging. Micron, 38 (2007), 390401.Google Scholar
Peckys, D. B., Baudoin, J. P., Eder, M., Werner, U. and de Jonge, N., Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep., 3 (2013), 26212626.Google Scholar
Masenelli-Varlot, K., Malchere, A., Ferreira, J. et al., Wet-STEM tomography: principles, potentialities and limitations. Microsc. Microanal., 20 (2014), 366375.Google Scholar
Novotny, F., Wandrol, P., Proska, J. and Slouf, M., In situ wetSTEM observation of gold nanorod self-assembly dynamics in a drying colloidal droplet. Microsc. Microanal., 20 (2014), 385393.CrossRefGoogle Scholar
Jansson, A., Nafari, A., Sanz-Velasco, A. et al., Novel method for controlled wetting of materials in the environmental scanning electron microscope. Microsc. Microanal., 19 (2013), 3037.CrossRefGoogle ScholarPubMed
Jansson, A., Boissier, C., Marucci, M. et al., Novel method for visualizing water transport through phase-separated polymer films. Microsc. Microanal., 20 (2014), 394406.Google Scholar
Barkay, Z., Wettability study using transmitted electrons in environmental scanning electron microscope. Appl. Phys. Lett., 96 (2010), 183109.Google Scholar
Barkay, Z., In situ imaging of nano-droplet condensation and coalescence on thin water films. Microsc. Microanal., 20 (2014), 317322.Google Scholar
Thiberge, S., Nechushtan, A., Sprinzak, D. et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.Google Scholar
Hell, S. W., Far-field optical nanoscopy. Science, 316 (2007), 11531158.CrossRefGoogle ScholarPubMed
Jensen, E., Kobler, C., Jensen, P. S. and Molhave, K.. In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 129 (2013), 6369.CrossRefGoogle ScholarPubMed
Kraus, J., Reichelt, R., Günther, S. et al., Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale, 6 (2014), 1439414403.CrossRefGoogle ScholarPubMed
Yang, W., Zhang, Y., Hilke, M. and Reisner, W., Dynamic imaging of Au-nanoparticles via scanning electron microscopy in a graphene wet cell. Nanotechnology, 26 (2015), 315703.Google Scholar
Yang, L., Yu, X.-Y., Zhu, Z., Thevuthasan, T. and Cowin, J. P., Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques. J. Vac. Sci. Technol. A, 29 (2011), 061101.Google Scholar
Wojcik, M., Hauser, M., Li, W., Moon, S. and Xu, K., Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells. Nat. Commun., 6 (2015), 7384.Google Scholar
Liv, N., Zonnevylle, A. C., Narvaez, A. C. et al., Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLOS One, 8 (2013), e55707.Google Scholar
Liv, N., Lazić, I., Kruit, P. and Hoogenboom, J. P., Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy, 143 (2014), 9399.Google Scholar
Nishiyama, H., Suga, M., Ogura, T. et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 169 (2010), 438449.Google Scholar
Nawa, Y., Inami, W., Chiba, A. et al., Dynamic and high-resolution live cell imaging by direct electron beam excitation. Opt. Express, 20 (2012), 56295635.Google Scholar
Vidavsky, N., Addadi, S., Mahamid, J. et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA, 111 (2014), 3944.Google Scholar
Creemer, J. F., Helveg, S., Hoveling, G. H. et al., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy, 108 (2008), 993998.Google Scholar
Jensen, E. and Molhave, K., Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal., 20 (2014), 445451.Google Scholar
Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. and Ross, F. M., Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett., 6 (2006), 238242.Google Scholar
Verch, A., Pfaff, M. and De Jonge, N., Exceptionally slow movement of gold nanoparticles at a solid:liquid interface investigated by scanning transmission electron microscopy. Langmuir, 31 (2015), 69566964.Google Scholar
Krueger, M., Berg, S., Stone, D. A. et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano, 5 (2011), 1004710054.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.CrossRefGoogle ScholarPubMed
Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
van de Put, M. W., Carcouet, C. C., Bomans, P. H. et al., Writing silica structures in liquid with scanning transmission electron microscopy. Small, 11 (2015), 585590.Google Scholar
Sutter, E., Jungjohann, K., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Mehdi, B. L., Gu, M., Parent, L. R. et al., In situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.Google Scholar
Radisic, A., Ross, F. M. and Searson, P. C., In situ study of the growth kinetics of individual islands during electrodeposition of copper. J. Phys. Chem. B, 110 (2006), 78627868.Google Scholar
Radisic, A., Vereecken, P. M., Searson, P. C. and Ross, F. M., The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci., 600 (2006), 18171826.Google Scholar
Schneider, N. M., Park, J. H. and Grogan, J. M., Visualization of active and passive control of morphology during electrodeposition. Microsc. Microanal., 20 (2014), 15301531.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Sun, M., Liao, H.-G., Niu, K. and Zheng, H., Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep., 3 (2013), 2227.Google Scholar
Zeng, Z., Liang, W.-I., Liao, H.-G. et al., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in-situ TEM. Nano Lett., 14 (2014), 17451750.Google Scholar
Mehdi, B. L., Qian, J., Nasybulin, E. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.CrossRefGoogle ScholarPubMed
Sacci, R. L., Black, J. M., Balke, N. et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.Google Scholar
Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. and Harris, C. T., Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy, ACS Nano, 9 (2015), 43794389.Google Scholar
Gu, M., Parent, L. R., Mehdi, L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.Google Scholar
Sacci, R. L., Dudney, N. J., More, K. L. et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chemical Commun., 50 (2013), 21042107.Google Scholar
Wu, F. and Yao, N., Advances in sealed liquid cells for in-situ TEM electrochemical investigation of lithium-ion battery. Nano Energy, 11 (2015), 196210.Google Scholar
Abellan Baeza, P., Mehdi, B. L., Parent, L. R. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.Google Scholar
Chee, S. W.. Duquette, D., Ross, F. M. and Hull, R., Metastable structures in Al thin films prior to the onset of corrosion pitting as observed using liquid cell transmission electron microscopy. Microsc. Microanal., 20 (2014), 462468.Google Scholar
Chee, S. W., Pratt, S. H., Hattar, K. et al., Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun., 51 (2015), 168171.Google Scholar
Zhong, X., Burke, M. G., Schilling, S., Haigh, S. J. and Zaluzec, N. J., Novel hybrid sample preparation method for in situ liquid cell TEM analysis. Microsc. Microanal., 20 (S3) (2014), 15141515.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Liao, H. G., Cui, L. K., Whitelam, S. and Zheng, H. M., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.Google Scholar
Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A. and Sutter, E. A., In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett., 13 (2013), 29642970.Google Scholar
De Clercq, A., Dachraoui, W., Margeat, O. et al., Growth of Pt−Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.Google Scholar
Parent, L. R., Robinson, D. R., Woehl, T. J. et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.Google Scholar
Zhu, G., Jiang, Y., Lin, F. et al., In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem Commun., 50 (2014), 94479450.Google Scholar
Kraus, T. and de Jonge, N., Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir, 29 (2013), 84278432.Google Scholar
Jiang, Y., Zhu, G., Lin, F. et al., In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett., 14 (2014), 37613765.Google Scholar
Wu, J., Gao, W., Yang, H. and Zuo, J.-M., Imaging shape-dependent corrosion behavior of Pt nanoparticles over extended time using a liquid flow cell and TEM. Microsc. Microanal., 20 (S3) (2014), 15081509.Google Scholar
Park, J. H., Schneider, N. M., Grogan, J. M. et al., Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett., 15 (2015), 53145320.Google Scholar
Noh, K. W., Liu, Y., Sun, L. and Dillon, S. J., Challenges associated with in-situ TEM in environmental systems: the case of silver in aqueous solutions. Ultramicroscopy, 116 (2012), 3438.Google Scholar
Liao, H.-G. and Zheng, H., Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc., 135 (2013), 50385043.Google Scholar
Liao, H. G., Zherebetskyy, D., Xin, H. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.Google Scholar
Liu, Y., Tai, K. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.Google Scholar
Kimura, Y., Niinomi, H., Tsukamoto, K. and García-Ruiz, J. M., In situ live observation of nucleation and dissolution of sodium chlorate nanoparticles by transmission electron microscopy. J. Am. Chem. Soc., 136 (2014), 17621765.Google Scholar
Xin, H. L. and Zheng, H., In Situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.Google Scholar
Niu, K.-Y., Park, J., Zheng, H. and Alivisatos, A.P., Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Donev, E. U. and Hastings, J. T., Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett., 9 (2009), 27152718.Google Scholar
Zheng, H. M., Mirsaidov, U. M., Wang, L. W. and Matsudaira, P., Electron beam manipulation of nanoparticles. Nano Lett., 12 (2012), 56445648.Google Scholar
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Woehl, T. J., Park, C., Evans, J. E. et al., Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett., 14 (2013), 373378.Google Scholar
Grogan, J. M., Rotkina, L. and Bau, H. H., In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.Google Scholar
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.Google Scholar
Liu, Y., Lin, X.-M., Sun, Y. and Rajh, T., In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc., 135 (2013), 37643767.Google Scholar
White, E. R., Mecklenburg, M., Singer, S. B., Aloni, S. and Regan, B. C., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express, 4 (2011), 055201.Google Scholar
Tai, K., Liu, Y. and Dillon, S. J., In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal., 20 (2014), 330337.Google Scholar
Bhattacharya, D., Bosman, M., Mokkapati, V. R. S. S., Leong, F. Y. and Mirsaidov, U., Nucleation dynamics of water nanodroplets. Microsc. Microanal., 20 (2014), 407415.Google Scholar
Ruan, C.-Y., Lobastov, V. A., Vigliotti, F., Chen, S. and Zewail, A. H., Ultrafast electron crystallography of interfacial water. Science, 304 (2004), 8084.Google Scholar
Mirsaidov, U., Ohl, C.-D. and Matsudaira, P., A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter, 8 (2012), 71087111.Google Scholar
Mirsaidov, U. M., Zheng, H., Bhattacharya, D., Casana, Y. and Matsudaira, P., Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA, 109 (2012), 71877190.Google Scholar
Norton, M., Park, J. H., Kodambaka, S., Ross, F. M. and Bau, H., Dynamics of sub-micron bubbles growing in a wedge in the low capillary number regime. Bull. Ameri. Phys. Soc., 59 (2014); and Bau, H., Grogan, J. M., Norton, M. and Ross, F. M., On the surface tension of nanobubbles. APS Division of Fluid Dynamics Meeting (2013).Google Scholar
Mattia, D. and Gogotsi, Y., Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluidics and Nanofluidics, 5 (2008), 289305.Google Scholar
Mirsaidov, U., Mokkapati, V. R. S. S., Bhattacharya, D. et al., Scrolling graphene into nanofluidic channels. Lab Chip, 13 (2013), 28742878.Google Scholar
Ring, E. A. and de Jonge, N., Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron, 43 (2012), 10781084.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.Google Scholar
Lu, J. Y., Aabdin, Z., Loh, N. D., Bhattacharya, D. and Mirsaidov, U., Nanoparticle dynamics in a nanodroplet. Nano Lett., 14 (2014), 21112115.Google Scholar
Chen, Q., Smith, J. M., Park, J. et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.Google Scholar
Cazade, P.-A., Hartkamp, R. and Coasne, B., Structure and dynamics of an electrolyte confined in charged nanopores. J. Phys. Chem. C, 118 (2014), 50615072.Google Scholar
Kim, H. I., Kushmerick, J. G., Houston, J. E. and Bunker, B. C., Viscous “interphase” water adjacent to oligo(ethylene glycol)-terminated monolayers. Langmuir, 19 (2003), 92719275.Google Scholar
Kashyap, S., Woehl, T. J., Liu, X., Mallapragada, S. K. and Prozorov, T., Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ, ACS Nano, 8 (2014), 90979106.CrossRefGoogle ScholarPubMed
Nielsen, M. H., Lee, J. R. I., Hu, Q. N., Han, T. Y. J., and De Yoreo, J. J., Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss., 159 (2012), 105121.Google Scholar
Nielsen, M. H., Aloni, S. and De Yoreo, J. J., In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.Google Scholar
Smeets, P. J. M., Cho, K. R., Kempen, R. G. E., Sommerdijk, N. A. J. M. and De Yoreo, J. J., In situ TEM shows ion binding is key to directing CaCO3 nucleation in a biomimetic matrix. Nat. Mater., 14 (2015), 394399.Google Scholar
Woehl, T. J., Kashyap, S., Firlar, E. et al., Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci. Rep., 4 (2014), 6854.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
Peckys, D. B., Korf, U. and de Jonge, N., Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci. Adv., 1 (2015), e1500165.Google Scholar
Peckys, D. B. and de Jonge, N., Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Lett., 11 (2011), 17331738.Google Scholar
Dukes, M. J., Peckys, D. and de Jonge, N., Correlative fluorescence- and scanning transmission electron microscopy of quantum dot labeled proteins on whole cells in liquid. ACS Nano, 4 (2010), 41104116.Google Scholar
Pohlmann, E. S., Patel, K., Guo, S. et al., Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett., 15 (2015), 23292335.Google Scholar
Peckys, D. B., Baudoin, J.-P., Eder, M., Werner, U. and de Jonge, N., Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep., 3 (2013), 2626.Google Scholar
Peckys, D. B., Mazur, P., Gould, K. L. and de Jonge, N., Fully hydrated yeast cells imaged with electron microscopy. Biophys. J., 100 (2011), 25222529.Google Scholar
Peckys, D. B. and de Jonge, N., Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal., 20 (2014), 189198.Google Scholar
Glaeser, R., Comment on electron microscopy of biological specimens in liquid water. Biophys. J., 103 (2012), 163164.Google Scholar
Kirk, S. E., Skepper, J. N. and Donald, A. M., Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc., 233 (2009), 205224.Google Scholar
Sugi, H., Minoda, H., Inayoshi, Y. et al., Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber. Proc. Natl. Acad. Sci. USA, 105 (2008), 1739617401.Google Scholar
Sugi, H., Chaen, S., Akimoto, T. et al., Electron microscopic recording of myosin head power stroke in hydrated myosin filaments. Sci. Rep., 5 (2015), 15700.Google Scholar
Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D. and Berry, V., Impermeable graphenic encasement of bacteria. Nano Lett., 11 (2011), 12701275.Google Scholar
Park, J., Park, H., Ercius, P. et al., Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett., 15 (2015), 47374744.Google Scholar
Dukes, M. J., Thomas, R., Damiano, J. et al., Improved microchip design and application for in situ transmission electron microscopy of macromolecules. Microsc. Microanal., 20 (2014), 338345.Google Scholar
Degen, K., Dukes, M., Tanner, J. R. and Kelly, D. F., The development of affinity capture devices: a nanoscale purification platform for biological in situ transmission electron microscopy. RSC Adv., 2 (2012), 24082412.Google Scholar
Gilmore, B. L., Showalter, S. P., Dukes, M. J. et al., Visualizing viral assemblies in a nanoscale biosphere. Lab Chip, 13 (2013), 216219.Google Scholar
Wang, C., Qiao, Q., Shokuhfar, T. and Klie, R. F., High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater., 26 (2014), 34103414.Google Scholar
Hoppe, S. M., Sasaki, D. Y., Kinghorn, A. N. and Hattar, K., In-situ transmission electron microscopy of liposomes in an aqueous environment. Langmuir, 29 (2013), 99589961.Google Scholar
Proetto, M. T., Rush, A. M., Chien, M.-P. et al., Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc., 136 (2014), 11621165.Google Scholar
Plamper, F. A., Gelissen, A. P., Timper, J. et al., Spontaneous assembly of miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol. Rapid Commun., 34 (2013), 855860.Google Scholar
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15–17.Google Scholar
Varano, A. C., Rahimi, A., Dukes, M. J. et al., Visualizing virus particle mobility in liquid at the nanoscale, Chem. Commun., 51 (2015), 1617616179.Google Scholar
Maraloiu, V. A., Hamoudeh, M., Fessi, H. and Blanchin, M. G., Study of magnetic nanovectors by Wet-STEM, a new ESEM mode in transmission. J. Coll. Interf. Sci., 352 (2010), 386392.Google Scholar
Adachi, K., Freney, E. J., Buseck, P. R., Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering. Geophys. Res. Lett., 38 (2011), L13804.Google Scholar
de Gennes, P. G., Wetting: statics and dynamics. Rev. Mod. Phys., 57 (1985), 827863.Google Scholar
Liu, J., Wei, B., Sloppy, J. D. et al., Direct imaging of electrochemical deposition of poly(3,4-ethylene dioxythiophene) (PEDOT) by transmission electron microscopy. Macro Lett., 4 (2015), 897900.Google Scholar
Sadki, S., Schottland, P., Brodie, N. and Sabouraud, G., The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev., 29 (2000), 283293.Google Scholar
Ross, F. M., Controlling nanowire structures through real time growth studies. Rep. Prog. Phys., 73 (2010), 114501114522.Google Scholar
Zhang, L., Miller, B. K. and Crozier, P. A., Atomic level observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett., 13 (2013), 679684.Google Scholar
Zhu, G.-Z., Prabhudev, S., Yang, J. et al., In situ liquid cell TEM study of morphological evolution and degradation of Pt–Fe nanocatalysts during potential cycling. J. Phys. Chem. C, 118 (2014), 2211122119.Google Scholar
Browning, N. D., Bonds, M. A., Campbell, G. H. et al., Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.Google Scholar
Mourik, M. W., van Engelen, W. J., Vredenbregt, E. J. D. and Luiten, O. J., Ultrafast electron diffraction using an ultracold source. Struct. Dynam., 1 (2014), 034302.Google Scholar
de Jonge, N., System and methods for live cell transmission electron microscopy. US Patent Application 13,299,241 (2011).Google Scholar
Danev, R. and Nagayama, K., Transmission electron microscopy with Zernike phase plate. Ultramicroscopy, 88 (2001), 243252.Google Scholar
Simon, P., Lichte, H., Formanek, P. et al., Electron holography of biological samples. Micron, 39 (2008), 229256.Google Scholar

References

Jensen, E., Købler, C., Jensen, P. S. and Mølhave, K., In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 129 (2013), 6369.Google Scholar
Abrams, I. M. and McBain, J. W., A closed cell for electron microscopy. J. Appl. Phys., 100 (1944), 607609.Google Scholar
Double, D. D., Some studies of the hydration of Portland cement using high voltage (1 MV) electron microscopy. Mater. Sci. Eng., 12 (1973), 2934.Google Scholar
Smith, D. J., Characterisation of nanomaterials using transmission electron microscopy. In Hutchison, J. and Kirkland, A., eds., Nanocharacterisation (London: Royal Society of Chemistry, 2007) pp. 127.Google Scholar
Danilatos, G. D., Foundations of environmental scanning electron microscopy. Adv. Electron. Electron Phys., 71 (1988), 109250.Google Scholar
Gai, P. L., Sharma, R. and Ross, F. M., Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull., 33 (2008), 107114.Google Scholar
Wang, C. M., Liao, H. G. and Ross, F. M., Observation of materials processes in liquids by electron microscopy. MRS Bull., 40 (2015), 4652.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.Google Scholar
Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. and Ross, F. M., Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett., 6 (2006), 238242.Google Scholar
Franks, R., Morefield, S., Wen, J. et al., A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J. Nanosci. Nanotechnol., 8 (2008), 44044407.CrossRefGoogle ScholarPubMed
Liu, K.-L., Wu, C.-C., Huang, Y.-J. et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip, 8 (2008), 19151921.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
De Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. and Drouin, D., Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.Google Scholar
Peckys, D. B., Veith, G. M., Joy, D. C. and de Jonge, N., Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One, 4 (2009), e8214.Google Scholar
Jungjohann, K. L., Evans, J. E., Aguiar, J. A., Arslan, I. and Browning, N. D., Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.Google Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.Google Scholar
Li, D., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Ross, F. M. and de Jonge, N., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., The Nanoaquarium: a new paradigm in electron microscopy. J. Indian Inst. Sci., 92 (2012), 295308.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Yuk, J. M., Seo, H. K., Choi, J. W. and Lee, J. Y., Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano, 8 (2014), 74787485.Google Scholar
Wang, C., Qiao, Q., Klie, R. F. and Shokuhfar, T., High resolution in-situ study of reactions in graphene liquid cells. Microsc. Microanal., 20 (2014), 15201521.Google Scholar
De Clercq, A., Dachraoui, W., Margeat, O. et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.Google Scholar
Zheng, H., Smith, R. K., Jun, Y.-W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
Thiberge, S., Nechushtan, A., Sprinzak, D. et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.Google Scholar
Thiberge, S., Zik, O. and Moses, E., An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum., 75 (2004), 22802289.Google Scholar
Williamson, M. J., Investigations of materials issues in advanced interconnect structures, Ph.D. Thesis, University of Virginia (2002).Google Scholar
Radisic, A., Electrochemical nucleation and growth of copper, Ph.D. Thesis, The Johns Hopkins University (2005).Google Scholar
den Heijer, M., In-situ transmission electron microscopy of electrodeposition: technical development, beam effects and lithography, M.Sc. Thesis, Leiden University (2008).Google Scholar
Creemer, J. F., Helveg, S., Hoveling, G. H. et al., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy, 108 (2008), 993998.Google Scholar
Creemer, J. F., Helveg, S., Kooyman, P. J. et al., A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Microelectromech. Syst., 19 (2010), 254264.Google Scholar
Leenheer, A. J., Sullivan, J. P., Shaw, M. J. and Harris, C. T., A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst., 24 (2015), 10611068.Google Scholar
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J. et al., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip, 12 (2012), 340347.Google Scholar
Jensen, E., Burrows, A. and Mølhave, K., Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal., 20 (2014), 445451.Google Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.Google Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. J. Microbiol. Methods, 50 (2002), 3954.Google Scholar
Krueger, M., Berg, S., Stone, D. et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano, 5 (2011), 1004710054.Google Scholar
Gao, Y. and Bando, Y., Nanotechnology: carbon nanothermometer containing gallium. Nature, 415 (2002), 599.Google Scholar
Yarin, A. L., Yazicioglu, A. G., Megaridis, C. M., Rossi, M. P. and Gogotsi, Y., Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. J. Appl. Phys., 97 (2005), 124309.Google Scholar
Yang, J. and Paul, O., Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sens. Actuators A Phys., 97–98 (2002), 520526.Google Scholar
Abellan, P., Woehl, T. J., Tonkyn, R. G. et al., Implementing in situ experiments in liquids in the (scanning) transmission electron microscope ((S)TEM) and dynamic TEM (DTEM). Microsc. Microanal., 20 (2014), 16481649.Google Scholar
Klein, K. L. and Anderson, I. M., Current challenges of TEM imaging with a liquid flow cell. Microsc. Microanal., 18 (2012), 11541155.Google Scholar
Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. and Muller, D. A., In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.Google Scholar
Regan, B. C., Mecklenburg, M., White, E. R., Singer, S. B. and Aloni, S., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express, 4 (2011), 055201.Google Scholar
Yang, J., Gaspar, J. and Paul, O., Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms. J. Microelectromech. Syst., 17 (2008), 11201134.Google Scholar
Mueller, C., Harb, M., Dwyer, J. R. and Miller, R. J. D., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.Google Scholar
Tanase, M., Winterstein, J., Sharma, R. et al., High-resolution imaging and spectroscopy at high pressure: a novel liquid cell for the TEM. Microsc. Micranal., 21 (2015), 16291638.Google Scholar
Nielsen, M. H., Aloni, S. and De Yoreo, J. J., In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.Google Scholar
Xin, H. L. and Zheng, H., In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 1470.Google Scholar
Xin, H. L., Niu, K., Alsem, D. H. and Zheng, H., In-situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment, Microsc. Microanal., 19 (2013), 15581568.Google Scholar
Goode, A. E., Porter, A. E., Ryan, M. P. and McComb, D. W., Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. Nanoscale, 7 (2015), 15341548.Google Scholar
Egerton, R. F., Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys., 72 (2009), 016502.Google Scholar
Lewis, E. A., Haigh, S. J., Slater, T. J. A. et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.Google Scholar
Zaluzec, N. J., Burke, M. G., Haigh, S. J. and Kulzick, M. A., X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal., 20 (2014), 323329.Google Scholar
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. and Furuya, K., Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech., 71 (2008), 626631.Google Scholar
Miyata, T., Fukuyama, M., Hibara, A. et al., Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy. Microscopy, 63 (2014), 377382.Google Scholar
De Jonge, N., in Hawkes, P. W., ed., Advances in Imaging and Electron Physics Volume 190 (Elsevier, 2015) pp. 1102.Google Scholar
Dukes, M. J., Peckys, D. B. and de Jonge, N., Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 4 (2010), 41104116.Google Scholar
Cavalca, F., Hansen, T. W., Wagner, J. B. et al., In situ light spectroscopy in the environmental transmission electron microscope (ETEM). Microsc. Microanal., 18 (2012), 11841185.Google Scholar
Zhang, L., Miller, B. K. and Crozier, P. A., Atomic level observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett., 13 (2013), 679684.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Jensen, E., Engineering electrochemical setups for electron microscopy of liquid processes. Ph.D. Thesis, Denmark Technical University (2012).Google Scholar

References

Stokes, D. J., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (Chichester: John Wiley & Sons, 2008).Google Scholar
Janiak, C., Ionic liquids for the synthesis and stabilization of metal nanoparticles. Z. Naturforsch., 68B (2013), 10591089.Google Scholar
Wang, C. M., Xu, W., Liu, J., et al., In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res., 25 (2010), 15411547.Google Scholar
Kuwabata, S., Kongkanand, A., Oyamatsu, D. and Torimoto, T., Observation of ionic liquid by scanning electron microscope. Chem. Lett., 35 (2006), 600603.Google Scholar
Xia, Y., Xiong, Y. J., Lim, B. and Skrabalak, S. E., Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed., 48 (2009), 60103.Google Scholar
Law, M., Goldberger, J. and Yang, P. D., Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res., 34 (2004), 83122.Google Scholar
Klimov, V. I., Mikhailovsky, A. A., Xu, S. et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290 (2000), 314317.Google Scholar
Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. and ElSayed, M. A., Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 272 (1996), 19241926.Google Scholar
Lauhon, L. J., Gudiksen, M. S., Wang, C. L. and Lieber, C. M., Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 420 (2002), 5761.Google Scholar
Yin, Y. and Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 437 (2005), 664670.Google Scholar
Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y. and Wang, Z. L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 316 (2007), 732735.Google Scholar
Liao, H. G., Jiang, Y. X., Zhou, Z. Y., Chen, S. P. and Sun, S. G., Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem. Int. Ed., 47 (2008), 91009103.Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P. H. and Gauthier, C., Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.Google Scholar
Bogner, A., Jouneau, P. H., Thollet, G., Basset, D. and Gauthier, C.. A history of scanning electron microscopy developments: towards “Wet-STEM” imaging. Micron, 38 (2007), 390401.Google Scholar
Barkay, Z., Wettability study using transmitted electrons in environmental scanning electron microscope. Appl. Phys. Lett., 96 (2010), 183109.Google Scholar
Yoshida, K., Bright, A.N., Ward, M.R. et al., Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere. Nanotechnology, 25 (2014), 425702.Google Scholar
Sakaue, M., Shiono, M., Konomi, M. et al., New preparation method using ionic liquid for fast and reliable SEM observation of biological specimens. Microsc. Microanal., 20 (Suppl. 3) (2014), 10121013.Google Scholar
Brodusch, N., Demers, H. and Gauvin, R., Ionic liquid used for charge compensation for high resolution imaging and analysis in the FE-SEM. Microsc. Microanal., 20 (Suppl 3) (2014), 3839.Google Scholar
Tarascon, J. M. and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.Google Scholar
Yamamoto, K., Iriyama, Y., Asaka, T. et al., Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed., 49 (2010), 44144417.Google Scholar
Brazier, A., Dupont, L., Dantras-Laffont, L. et al., First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem.Mater., 20 (2008), 23522359.Google Scholar
Wang, C. M., Xu, W., Liu, J. et al., In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett., 11 (2011), 18741880.Google Scholar
Lux, S. F., Schmuck, M., Rupp, B. et al., Mixtures of ionic liquids in combination with graphite electrodes: the role of Li-salt. ECS Trans., 16 (2009), 4549.Google Scholar
Lewandowski, A. and Świderska-Mocek, A., Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte. J. Power Sources, 171 (2007), 938943.Google Scholar
Huang, J. Y., Zhong, L., Wang, C. M. et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.Google Scholar
Zhang, L. Q., Liu, X. H., Liu, Y. et al., Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. ACS Nano, 5 (2011), 48004809.Google Scholar
Wang, C. M., In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res., 30 (2015), 326339.Google Scholar
Liu, X. H., Zheng, H., Zhong, L. et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett., 11 (2011), 33123318.Google Scholar
Wang, F., Yu, H.-C., Chen, M.-H. et al., Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun., 3 (2012), 1201.Google Scholar
Islam, M. M., and Bredow, T., Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C, 113 (2009), 672676.Google Scholar
Gu, M., Kushima, A., Shao, Y. et al., Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett., 13 (2013), 52035211.Google Scholar
Liu, X. H., Zhang, L. Q., Zhong, L. et al., Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett., 11 (2011), 22512258.Google Scholar
Wang, C.-M., Li, X., Wang, Z. et al., In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett., 12 (2012), 16241632.Google Scholar
Liu, X. H., Huang, S., Picraux, S. T. et al., Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 11 (2011), 39913997.Google Scholar
Liu, Y., Hudak, N. S., Huber, D. L. et al., In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles. Nano Lett., 11 (2011), 41884194.Google Scholar
Kushima, A., Liu, X. H., Zhu, G. et al., Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett., 11 (2011), 45354541.Google Scholar
Liu, X. H., Wang, J. W., Liu, Y. et al., In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon, 50 (2012), 38363844.Google Scholar
Liu, Y., Zheng, H., Liu, X. H. et al., Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano, 5 (2011), 72457253.Google Scholar
Whittingham, M. S., Materials challenges facing electrical energy storage. MRS Bull., 33 (2008), 411419.Google Scholar
Wu, H., Chan, G., Choi, J. W. et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 7 (2012), 310315.Google Scholar
Christensen, J. and Newman, J., Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem., 10 (2006), 293319.Google Scholar
McDowell, M. T., Ryu, I., Lee, S. W. et al., Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater., 24 (2012), 60346041.Google Scholar
Liu, X. H., Zhong, L., Huang, S. et al., Size dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 6 (2012), 15221531.Google Scholar
Gu, M., Wang, Z. G., Connell, J. G. et al., Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4. ACS Nano, 7 (2013), 63036309.Google Scholar
Gu, M., Parent, L. R., Mehdi, B. L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.Google Scholar
Wang, C. M., Liao, H. G., Ross, F. M., Observation of materials processes in liquids by electron microscopy. MRS Bull., 40 (2015), 4652.Google Scholar
Zheng, H., Xiao, D. D., Li, X. et al., New insight in understanding oxygen reduction and evolution in solid-state lithium–oxygen batteries using an in situ environmental scanning electron microscope. Nano Lett., 14 (2014), 42454249.Google Scholar
Miller, D. J., Proff, C., Wen, J. G., Abraham, D. P., Bareño, J., Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater., 3 (2013), 10981103.Google Scholar

References

Danilatos, G. D., Review and outline of environmental SEM at present. J. Microsc. Oxford, 162 (1991), 391402.Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P.-H. and Gauthier, C., Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.Google Scholar
Abrams, I. and McBain, J., A closed cell for electron microscopy. J. Appl. Phys., 1 (1944), 607609.Google Scholar
Thiberge, S., Zik, O. and Moses, E., An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscope. Rev. Sci. Instrum., 75 (2004), 22802289.Google Scholar
Suga, M, Nishiyama, H., Konyuba, Y. et al., The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy, 111 (2011), 16501658.Google Scholar
Vidavsky, N., Addadi, S., Mahamid, J. et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA, 111 (2014), 3944.Google Scholar
Ominami, Y., Kawanishi, S., Ushiki, T. and Ito, S., A novel approach to scanning electron microscopy at ambient atmospheric pressure. Microscopy, 64 (2015), 97104.Google Scholar
Jensen, E., Burrows, A. and Mølhave, K., Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal., 20 (2014), 445451.Google Scholar
Demers, H., Poirier-Demers, N., Réal, A. et al., Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning, 33 (2011), 135146.Google Scholar
Kanaya, K. and Okayama, S., Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys., 5 (1972), 4358.Google Scholar
Goldstein, J., Newbury, D. E., Joy, D. C. et al., Scanning Electron Microscopy and X-ray Microanalysis (New York: Springer, 2003).Google Scholar
Liv, N., Lazić, I., Kruit, P. and Hoogenboom, J. P., Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy, 143 (2014), 9399.Google Scholar
Behar, V., Nechushtan, A., Kliger, Y. et al., Methods for SEM inspection of fluid containing samples. US Patent 7230242 B2 (2007).Google Scholar
Fischer, D. A., Alsem, D. H., Simon, B., Prozorov, T. and Salmon, N., Development of an integrated platform for cross-correlative imaging of biological specimens in liquid using light and electron microscopies. Microsc. Microanal., 19 (2013), 476477.Google Scholar
Thiberge, S., Nechushtan, A., Sprinzak, D. et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.Google Scholar
Venkiteela, G. and Sun, Z. H., In situ observation of cement particle growth during setting. Cement Concrete Comp., 32 (2010), 211218.Google Scholar
Tiede, K., Tear, S. P., David, H. and Boxall, A. B. A., Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res., 43 (2009), 33353343.Google Scholar
Lorenz, C., Tiede, K., Tear, S. et al., Imaging and characterization of engineered nanoparticles in sunscreens by electron microscopy, under wet and dry conditions. Int. J. Occup. Environ. Health, 16 (2010), 406428.Google Scholar
Joy, D. C. and Joy, C. S., Scanning electron microscope imaging in liquids: some data on electron interactions in water. J. Microsc. Oxford, 221 (2006), 8488.Google Scholar
Dyab, A. K. F. and Paunov, V. N., Particle stabilised emulsions studied by WETSEM technique. Soft Matter, 6 (2010), 26132615.Google Scholar
Cohen, O., Beery, R., Levit, S. et al., Scanning electron microscopy of thyroid cells under fully hydrated conditions – A novel technique for a seasoned procedure: a brief observation. Thyroid, 16 (2006), 9971001.Google Scholar
Kolmakova, N. and Kolmakov, A., Scanning electron microscopy for in situ monitoring of semiconductor–liquid interfacial processes: electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J. Phys. Chem. C, 114 (2010), 1723317237.Google Scholar
Wei, C., Lin, W. Y., Zainal, Z. et al., Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ. Sci. Technol., 28 (1994), 934938.Google Scholar
Giocondi, J. L. and Rohrer, G. S., The influence of the dipolar field effect on the photochemical reactivity of Sr2Nb2O7 and BaTiO3 microcrystals. Top. Catal., 49 (2008), 1823.CrossRefGoogle Scholar
Herrmann, J. M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 53 (1999), 115129.Google Scholar
Geisler-Lee, J., Wang, Q., Yao, Y. et al., Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 7 (2012), 323337.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.Google Scholar
Donev, E. U. and Hastings, J. T., Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett., 9 (2009), 27152718.Google Scholar
Al-Asadi, A. S., Zhang, J., Li, J., Potyrailo, R. A. and Kolmakov, A., Design and application of variable temperature setup for scanning electron microscopy in gases and liquids at ambient conditions. Microsc. Microanal., 21 (2015), 765770.Google Scholar
Monat, C., Domachuk, P. and Eggleton, B., Integrated optofluidics: a new river of light. Nat. Photonics, 1 (2007), 106114.Google Scholar
Erickson, D., Sinton, D. and Psaltis, D., Optofluidics for energy applications. Nat. Photonics, 5 (2011), 583590.Google Scholar
Potyrailo, R. A., Starkey, T. A., Vukusicb, P. et al., Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response. Proc. Natl. Acad. Sci. USA, 110 (2013), 1556715572.Google Scholar
Unocic, R. R., Sun, X. G., Sacci, R. L. et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.Google Scholar
Klein, K., Anderson, I and De Jonge, N., Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.Google Scholar
Mølhave, K., Kallesøe, C., Wen, C. Y. et al., Microfabricated systems for electron microscopy of nanoscale processes: in-situ TEM creation of Si nanowire devices and in-situ SEM electrochemistry. Microsc. Microanal., 16 (2010), 322323.Google Scholar
Cothren, J. E., Development of techniques and instrumentation for in situ imaging and spectroscopy of working nanodevices using ultrathin membrane based environmental cells. M.Sc. Thesis, Southern Illinois University at Carbondale (2011).Google Scholar
Liu, Y., Scanning electron microscopy to probe working nanowire gas sensors. M.Sc. Thesis, Southern Illinois University at Carbondale (2013).Google Scholar
Ueda, S., Kobayashi, Y., Koizumi, S. and Tsutsumi, Y., In situ observation of water in a fuel cell catalyst using scanning electron microscopy. Microscopy, 64 (2015), 8796.Google Scholar
Meyer, J. C., Geim, A. K., Katsnelson, M. et al., The structure of suspended graphene sheets. Nature, 446 (2007), 6063.Google Scholar
Wilson, N. R., Pandey, P. A., Beanland, R. et al., Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano, 3 (2009), 25472556.Google Scholar
Lee, C., Wei, X., Kysar, J. W. and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321 (2008), 385388.Google Scholar
Kraus, J., Reichelt, R., Günther, S. et al., Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale, 6 (2014), 1439414403.Google Scholar
Meyer, J. C., Eder, F., Kurasch, S. et al., Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett., 108 (2012), 196102.Google Scholar
Meyer, J. C., Girit, C. O., Crommie, M. and Zettl, A., Imaging and dynamics of light atoms and molecules on graphene. Nature, 454 (2008), 319322.Google Scholar
Pantelic, R. S., Meyer, J. C., Kaiser, U. and Stahlberg, H., The application of graphene as a sample support in transmission electron microscopy. Solid State Commun., 152 (2012), 13751382.Google Scholar
Frank, L., Mikmeková, E., Müllerová, I. and Lejeune, M., Counting graphene layers with very slow electrons. Appl. Phys. Lett., 106 (2015), 013117.Google Scholar
Mutus, J., Livadaru, L., Robinson, J. T. et al., Low-energy electron point projection microscopy of suspended graphene, the ultimate ‘microscope slide’. New J. Phys., 13 (2011), 063011.Google Scholar
Longchamp, J.-N., Escher, C., Latychevskaia, T. and Fink, H.-W., Low-energy electron holographic imaging of gold nanorods supported by ultraclean graphene. Ultramicroscopy, 145 (2014), 8084.Google Scholar
Jablonski, A. and Powell, C., Practical expressions for the mean escape depth, the information depth, and the effective attenuation length in Auger-electron spectroscopy and x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A, 27 (2009), 253261.Google Scholar
Kolmakov, A., Dikin, D. A., Cote, L. J. et al., Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat. Nanotechnol., 6 (2011), 651657.Google Scholar
Xu, M., Fujita, D., Gao, J. and Hanagata, N., Auger electron spectroscopy: a rational method for determining thickness of graphene films. ACS Nano, 4 (2010), 29372945.Google Scholar
Kochat, V., Pal, A. N., Sneha, E. S. et al., High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy. J. Appl. Phys., 110 (2011), 014315.Google Scholar
Krueger, M., Berg, S., Stone, D. et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano, 5 (2011), 1004710054.Google Scholar
Park, S. and Ruoff, R. S., Chemical methods for the production of graphenes. Nat. Nanotechnol., 4 (2009), 217224.Google Scholar
Li, D., Müller, M. B., Gilje, S., Kaner, R. B. and Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3 (2008), 101105.Google Scholar
Cote, L. J., Kim, J., Tung, V. C. et al., Graphene oxide as surfactant sheets. Pure Appl. Chem., 83 (2010), 95110.Google Scholar
Dikin, D. A., Stankovich, S., Zimney, E. J. et al., Preparation and characterization of graphene oxide paper. Nature, 448 (2007), 457460.Google Scholar
Park, S., Lee, K.-S., Bozoklu, G. et al., Graphene oxide papers modified by divalent ions: enhancing mechanical properties via chemical cross-linking. ACS Nano, 2 (2008), 572578.Google Scholar
Nair, R., Wu, H., Jayaram, P., Grigorieva, I. and Geim, A., Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335 (2012), 442444.Google Scholar
Bunch, J. S., Verbridge, S. S., Alden, J. S. et al., Impermeable atomic membranes from graphene sheets. Nano Lett., 8 (2008), 24582462.Google Scholar
Xu, M., Liang, T., Shi, M. and Chen, H., Graphene-like two-dimensional materials. Chemical Rev., 113 (2013), 37663798.Google Scholar
Büttner, M. and Oelhafen, P., XPS study on the evaporation of gold submonolayers on carbon surfaces. Surf. Sci., 600 (2006), 11701177.Google Scholar
Lin, Y.-C., Lu, C. C., Yeh, C. H. et al., Graphene annealing: how clean can it be? Nano Lett., 12 (2011), 414419.Google Scholar
Suk, J. W., Kitt, A., Magnuson, C. W. et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 5 (2011), 69166924.Google Scholar
Balandin, A. A., Ghosh, S., Bao, W. et al., Superior thermal conductivity of single-layer graphene. Nano Lett., 8 (2008), 902907.Google Scholar
Cote, L. J., Cruz-Silva, R. and Huang, J., Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc., 131 (2009), 1102711032.Google Scholar
Gilje, S., Farrar, J., Dubin, S. et al., Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater., 22 (2010), 419423.Google Scholar
Kumar, P., Subrahmanyam, K. and Rao, C., Graphene patterning and lithography employing laser/electron-beam reduced graphene oxide and hydrogenated graphene. Mater. Express, 1 (2011), 252256.Google Scholar
Liu, G., Teweldebrhan, D. and Balandin, A. A., Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotechnol., 10 (2011), 865870.Google Scholar
Childres, I., Jauregui, L. A., Foxe, M. et al., Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett., 97 (2010), 173109.Google Scholar
Tao, L., Qiu, C., Yu, F. et al., Modification on single-layer graphene induced by low-energy electron-beam irradiation. J. Phys. Chem. C, 117 (2013), 1007910085.Google Scholar
Feng, X., Maier, S. and Salmeron, M., Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc., 134 (2012), 56625668.Google Scholar
Baraket, M., Walton, S. G., We, Z. et al., Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon, 48 (2010), 33823390.Google Scholar
Royall, C., Thiel, B. and Donald, A., Radiation damage of water in environmental scanning electron microscopy. J. Microsc., 204 (2001), 185195.Google Scholar
Stoll, J. D. and Kolmakov, A., Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases. Nanotechnology, 23 (2012), 505704505711.Google Scholar

References

Abrams, I. M. and McBrain, J. W., A closed cell for electron microscopy. J. Appl. Phys., 15 (1944), 607609.Google Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., In situ environmental cell-transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Thiberge, S., Zik, O. and Mosesa, E., An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum., 75 (2004), 22802289.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J., Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
Thiberge, S., Nechushtan, A. and Sprinzak, D. et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.Google Scholar
Ross, F. M., In Situ Transmission Electron Microscopy, in Science of Microscopy, Ed. Hawkes, P. W. and Spence, J. C. H., pp. 445534. (New York: Springer, 2007).Google Scholar
Nishiyama, H., Suga, M. and Ogura, T. et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 172 (2010), 191202.Google Scholar
Nishiyama, H., Koizumi, M., Ogawa, K. et al., Atmospheric scanning electron microscope system with an open sample chamber: configuration and applications. Ultramicroscopy, 147 (2014), 8697.Google Scholar
Memtily, N., Okada, T., Ebihara, T. et al., Observation of tissues in open aqueous solution by atmospheric scanning electron microscopy: applicability to intraoperative cancer diagnosis. Int. J. Oncol., 46 (2015), 18721882Google Scholar
Sato, C., Manaka, S., Nakane, D. et al., Rapid imaging of mycoplasma in solution using atmospheric scanning electron microscopy (ASEM). Biochem. Biophys. Res. Commun., 417 (2012), 12131218.Google Scholar
Maruyama, Y., Ebihara, T., Nishiyama, H., Suga, M. and Sato, C., Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM). J. Struct. Biol., 180 (2012), 259270.Google Scholar
Kinoshita, T., Mori, Y., Hirano, K. et al., Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy. Microsc. Microanal., 20 (2014), 469483.Google Scholar
Hirano, K., Kinoshita, T., Uemura, T. et al., Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy, 143 (2014), 5266.Google Scholar
Nyska, A., Cummings, C. A., Vainshtein, A. et al., Electron microscopy of wet tissues: a case study in renal pathology. Toxicol. Pathol., 32 (2004), 357363.Google Scholar
Barshack, I., Polak-Charcon, S., Behar, V. et al., Wet SEM: a novel method for rapid diagnosis of brain tumors. Ultrastruct. Pathol., 28 (2004), 255260.Google Scholar
Junt, T., Schulze, H., Chen, Z. et al., Dynamic visualization of thrombopoiesis within bone marrow. Science, 317 (2007), 17671770.Google Scholar
Suga, M., Nishiyama, H., Konyuba, Y. et al., The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy, 111 (2011), 16501658.Google Scholar
Fukushima, K., Ishikawa, A. and Fukami, A., Injection of liquid into environmental cell for in situ observations. J. Electron Microsc., 34 (1985), 4751.Google Scholar
Koopman, N., Application of ESEM to fluxless soldering. Microsc. Res. Tech., 25 (1993), 493502.Google Scholar
Agronskaia, A. V., Valentijn, J. A., van Driel, L. F. et al., Integrated fluorescence and transmission electron microscopy. J. Struct. Biol., 164 (2008), 183189.Google Scholar
Sartori, A., Gatz, R., Beck, F. et al., Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol., 160 (2007), 135145.Google Scholar
Dukes, M. J., Peckys, D. B. and de Jonge, N., Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 4 (2010), 41104116.Google Scholar
Powell, R. D., Halsey, C. M., Spector, D. L. et al., A covalent fluorescent-gold immunoprobe: simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem., 45 (1997), 947956.Google Scholar
Robinson, J. M. and Vandre, D. D., Efficient immunocytochemical labeling of leukocyte microtubules with FluoroNanogold: an important tool for correlative microscopy. J. Histochem. Cytochem., 45 (1997), 631642.Google Scholar
Giepmans, B. N., Deerinck, T. J., Smarr, B. L., Jones, Y. Z. and Ellisman, M. H., Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat. Methods, 2 (2005), 743749.Google Scholar
Smith, A. M. and Nie, S., Next-generation quantum dots. Nat. Biotechnol., 27 (2009) 732733.Google Scholar
Gaietta, G., Deerinck, T. J., Adams, S. R. et al., Multicolor and electron microscopic imaging of connexin trafficking. Science, 296 (2002), 503507.Google Scholar
Nakane, D. and Miyata, M., Cytoskeletal “jellyfish” structure of Mycoplasma mobile. Proc. Natl. Acad. Sci. USA, 104 (2007), 1951819523.Google Scholar
Nawa, Y., Inami, W., Miyake, A. et al., Dynamic autofluorescence imaging of intracellular components inside living cells using direct electron beam excitation. Biomed. Opt. Express, 5 (2014), 378386.Google Scholar
Glenn, D. R., Zhang, H., Kasthuri, N. et al., Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Sci. Rep., 2 (2012), 865.Google Scholar
Inami, W., Nakajima, K., Miyakawa, A. and Kawata, Y., Electron beam excitation assisted optical microscope with ultra-high resolution. Opt. Express, 18 (2010), 1289712902.Google Scholar
Swift, J. A. and Brown, A., An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J. Phys. E: Sci. Instrum., 3 (1970), 924926.Google Scholar
Grogan, J. M. and Bau, H. H., The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.Google Scholar
Liv, N., Zonnevylle, A. C., Narvaez, A. C. et al., Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One, 8 (2013), e55707.Google Scholar
Green, E. D. and Kino, G. S., Atmospheric scanning electron-microscopy using silicon-nitride thin-film windows. J. Vac. Sci. Technol. B, 9 (1991), 15571558.Google Scholar
Vidavsky, N., Addadi, S., Mahamid, J. et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA, 111 (2014), 3944.Google Scholar
Nguyen, K., Holtz, M. and Muller, D., AirSEM: electron microscopy in air, without a specimen chamber. Microsc. Microanal., 19 (Suppl. 2) (2013), 428429.Google Scholar
Nguyen, K., Richmond-Decker, J. D., Holtz, M., Milstein, Y. and Muller, D. A., Spatial resolution of scanning electron microscopy without a vacuum chamber. Microsc. Microanal., 20 (2014), 2627.Google Scholar
Ominami, Y., Kawanishi, S., Ushiki, T. and Ito, S., Observation of wet samples using a novel atmospheric scanning electron microscope. Microsc. Microanal., 20 (2014), 11541155.Google Scholar
Ominami, Y., Kawanishi, S., Ushiki, T. and Ito, S., A novel approach to scanning electron microscopy at ambient atmospheric pressure. Microscopy, 64 (2015), 97104.Google Scholar

References

Butler, E. P., In situ experiments in the transmission electron microscope. Rep. Prog. Phys., 42 (1979), 833896.Google Scholar
White, E. R., Mecklenburg, M., Singer, S. B., Aloni, S. and Regan, B. C., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express., 4 (2011), 055201.Google Scholar
Cahill, D. G., Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum., 61 (1990), 802808.Google Scholar
Alan, T., Yokosawa, T., Gaspar, J. et al., Micro-fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett., 100 (2012), 081903.Google Scholar
Yokosawa, T., Alan, T., Pandraud, G., Dam, B. and Zandbergen, H., In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400 °C. Ultramicroscopy, 112 (2012), 4752.Google Scholar
Liu, Y., Chen, X., Noh, K. W. and Dillon, S. J., Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology, 23 (2012), 385302/1.Google Scholar
Xin, H. L. and Zheng, H., In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.Google Scholar
Knight, C. A., DeVries, A. L. and Oolman, L. D., Fish antifreeze protein and the freezing and recrystallization of ice. Nature, 308 (1984), 295296.Google Scholar
Browning, N. D., Bonds, M. A., Campbell, G. H. et al., Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Mueller, C., Harb, M., Dwyer, J. R. and Miller, R. J. D., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.Google Scholar
Klein, K. L., Anderson, I. M. and de Jonge, J. N., Transmission electron microscopy with a liquid flow cell, J. Microsc., 242 (2011), 117123.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.Google Scholar
Liu, Y., Tai, K. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
Christofferson, J., Maize, K., Ezzahri, Y. et al., Microscale and nanoscale thermal characterization techniques. J. Electron. Packaging, 130 (2008), 041101.Google Scholar
Shapira, E., Marchak, D., Tsukernik, A. and Selzer, Y., Segmented metal nanowires as nanoscale thermocouples. Nanotechnology, 19 (2008), 125501.Google Scholar
Lai, S. L., Ramanath, G., Allen, L. H. and Infante, P., Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity. Appl. Phys. Lett., 70 (1997), 4345.Google Scholar
Shi, L. and Majumdar, A., Thermal transport mechanisms at nanoscale point contacts. J. Heat Transfer, 124 (2002), 329337.Google Scholar
Yokota, T., Murayama, M. and Howe, J. M., In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation. Phys. Rev. Lett., 91 (2003), 265504/1.Google Scholar
Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G. and Allen, L. H., Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett., 77 (1996), 99102.Google Scholar
Sun, L., Noh, K. W., Wen, J.-G. and Dillon, S. J., In situ transmission electron microscopy observation of silver oxidation in ionized/atomic gas. Langmuir, 27 (2011), 1420114206.Google Scholar
Niu, K.-Y., Park, J., Zheng, H. and Alivisatos, A. P., Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.Google Scholar
Stokes, D. J. and Donald, A. M.. In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). J. Mater. Sci., 35 (2000), 599607.Google Scholar
Bromley, E. H. C., Krebs, M. R. H. and Donald, A. M., Aggregation across the length-scales in β-lactoglobulin. Faraday Discuss., 128 (2004), 1327.Google Scholar
Blennow, A., Hansen, M., Schulz, A. et al., The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. J. Struct. Biol., 143 (2003), 229241.Google Scholar
Liu, K.-L., Wu, C.-C., and Huang, Y.-J., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions Lab Chip, 8 (2008), 19151921.Google Scholar
Klein, K. L., Anderson, I. M., de Jonge, N. et al., Transmission electron microscopy with a liquid flow cell. J. Microsc. Oxford, 242 (2011), 117123.Google Scholar
Tanaka, S., Tanaka, H., Kawasaki, T. et al., EBIC imaging using scanning transmission electron microscopy: experiment and analysis. J. Mater. Sci.: Mater. Electron., 19 (2008), S324–327.Google Scholar
Cabanel, C., Maurice, J. L. and Laval, J. Y., Scanning transmission electron beam induced current in polycrystalline silicon. Mater. Sci. Forum., 1012 (1986), 545550.Google Scholar
Tai, K., Liu, Y. and Dillon, S. J., In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal., 20 (2014), 330337.Google Scholar
Hattar, K., Bufford, D. C. and Buller, D. L., Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B., 338 (2014), 5665.Google Scholar
Gogotsi, Y., Libera, J. A., Güvenç-Yazicioglu, A. and Megaridis, C. M., In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett., 79 (2001), 10211023.Google Scholar
Naguib, N., Ye, H., Gogotsi, Y. et al., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett., 4 (2004), 22372243.Google Scholar

References

Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.Google Scholar
Spinks, J. W. T. and Woods, R. J., An Introduction to Radiation Chemistry (New York: Wiley-Interscience, 1990).Google Scholar
Allen, A. O., The Radiation Chemistry of Water and Aqueous Solutions (Princeton, NJ: Van Nostrand, 1961).Google Scholar
Draganic, I., The Radiation Chemistry of Water (New York: Elsevier, 2012).Google Scholar
Pastina, B. and LaVerne, J. A., Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A, 105 (2001), 93169322.Google Scholar
Elliot, A. J. and McCracken, D. R., Computer modeling of the radiolysis in an aqueous lithium salt blanket: suppression of radiolysis by addition of hydrogen. Fusion Eng. Des., 13 (1990), 2127.Google Scholar
Joseph, J. M., Choi, B. S., Yakabuskie, P. and Wren, J. C., A combined experimental and model analysis on the effect of pH and O2(aq) on γ-radiolytically produced H2 and H2O2. Radiation Phys. Chem., 77 (2008), 10091020.Google Scholar
Carron, N. J., An Introduction to the Passage of Energetic Particles through Matter (Boca Raton, FL: CRC Press, 2006).Google Scholar
Bethe, H. A. and Ashkin, J., Bethe: Passage of radiations through matter. In Segre, E., ed., Experimental Nuclear Physics Vol. 1, (New York: Wiley, 1953).Google Scholar
Berger, M. J., Coursey, J. S., Zucker, M. A. and Chang, J., NIST Stopping-Power and Range Tables: Electrons, Protons, Helium Ions. Available at http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html [Accessed: 3 November 2014].Google Scholar
LaVerne, J. A. and Pimblott, S. M., Electron energy-loss distributions in solid, dry DNA. Rad. Res., 141 (1995), 208215.Google Scholar
Tabata, T., A simple calculation for mean projected range of fast electrons. J. Appl. Phys., 39 (1968), 53425343.Google Scholar
Rose, M. E., Electron path lengths in multiple scattering. Phys. Rev., 58 (1940), 90.Google Scholar
Drouin, D., Couture, A. R., Joly, D. et al., CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29 (2007), 92101.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
Schwarz, H. A., Applications of the spur diffusion model to the radiation chemistry of aqueous solutions. J. Phys. Chem., 73 (1969), 19281937.Google Scholar
Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B., Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data, 17 (1988), 513886.Google Scholar
Hill, M. A. and Smith, F. A., Calculation of initial and primary yields in the radiolysis of water. Rad. Phys. Chem., 43 (1994), 265280.Google Scholar
Pimblott, S. M. and LaVerne, J. A., Molecular product formation in the electron radiolysis of water. Rad. Res., 129 (1992), 265271.Google Scholar
Christensen, H., Remodeling of the oxidant species during radiolysis of high-temperature water in a pressurized water reactor. Nucl. Technol., 109 (1995), 373382.Google Scholar
Burton, M., Radiation chemistry. J. Phys. Chem., 51 (1947), 611625.Google Scholar
Speight, J., Lange’s Handbook of Chemistry (New York: McGraw-Hill Professional, 2004).Google Scholar
Schneider, N. M./Radiolysis, github.com. Available at https://github.com/NMSchneider/Radiolysis [Accessed: 30 June 2014].Google Scholar
Hart, E. J., The hydrated electron: properties and reactions of this most reactive and elementary of aqueous negative ions are discussed. Science, 146 (1964), 1925.Google Scholar
Grogan, J. M., Rotkina, L. and Bau, H. H., In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.Google Scholar
Mirsaidov, U., Ohl, C.-D. and Matsudaira, P., A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter, 8 (2012), 71087111.Google Scholar
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J. et al., Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter, 9 (2013), 88568861.Google Scholar
Klein, K. L., Anderson, I. M. and de Jonge, N., Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.Google Scholar
Jones, S., Bubble nucleation from gas cavities: a review. Adv. Coll. Interf. Sci., 80 (1999), 2750.Google Scholar
Li, D., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Noh, K. W., Liu, Y., Sun, L. and Dillon, S. J., Challenges associated with in-situ TEM in environmental systems: the case of silver in aqueous solutions. Ultramicroscopy, 116 (2012), 3438.Google Scholar
Lee, J., Urban, A., Li, X. et al., Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science, 343 (2014), 519522.Google Scholar
Bresin, M., Nadimpally, B. R., Nehru, N., Singh, V. P. and Hastings, J. T., Site-specific growth of CdS nanostructures. Nanotechnology, 24 (2013), 505305.Google Scholar
Park, J., Kodambaka, S., Ross, F. M., Grogan, J. M. and Bau, H. H., In situ liquid cell transmission electron microscopic observation of electron beam induced Au crystal growth in a solution. Microsc. Microanal., 18 (2012), 10981099.Google Scholar
den Heijer, M., Shao, I., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2 (2014), 022101.Google Scholar
Remita, H., Lampre, I., Mostafavi, M., Balanzat, E. and Bouffard, S., Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation. Rad. Phys. Chem., 72 (2005), 575586.Google Scholar
Abidi, W. and Remita, H., Gold based nanoparticles generated by radiolytic and photolytic methods. Recent Patents in Eng., 4 (2010), 170188.Google Scholar
Mullins, W. W. and Sekerka, R. F., Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys., 35 (1964), 444451.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Zheng, H., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
Mallard, W. G., Ross, A. B. and Helman, W. P., NDRL/NIST Solution Kinetics Database on the Web: A complication of kinetics data on solution-phase reactions. Available at http://kinetics.nist.gov/solution/ [Accessed: 6 April 2015].Google Scholar
Park, J. H., Schneider, N. M., Grogan, J. M. et al., Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett., 15 (2015), 53145320.Google Scholar
Mozumder, A., Fundamentals of Radiation Chemistry (London: Elsevier Science, 1999).Google Scholar
Mincher, B. J. and Wishart, J. F., The radiation chemistry of ionic liquids: a review. Solvent Extraction and Ion Exchange, 32 (2014), 563583.Google Scholar
Huang, J. Y., Zhong, L., Wang, C. M. et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.Google Scholar

References

Hell, S. W., Far-field optical nanoscopy. Science, 316 (2007), 11531158.Google Scholar
Reimer, L. and Kohl, H., Transmission Electron Microscopy: Physics of Image Formation (New York: Springer, 2008).Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Peckys, D. B., Veith, G. M., Joy, D. C. and de Jonge, N., Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One, 4 (2009), e8214.Google Scholar
Klein, K. L., Anderson, I. M. and de Jonge, N., Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.Google Scholar
Woehl, T. J., Jungjohann, K. L., Evans, J. E. et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.Google Scholar
Ring, E. A. and de Jonge, N., Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron, 43 (2012), 10781084.Google Scholar
Zaluzek, N. J., The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy, 151 (2015), 240249.Google Scholar
Parsons, D. F., Matricardi, V. R., Moretz, R. C. and Turner, J. N., Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys., 15 (1974), 161270.Google Scholar
Egerton, R. F., Control of radiation damage in the TEM, Ultramicroscopy, 127 (2012), 100108.Google Scholar
Rose, A., The sensitivity performance of the human eye on an absolute scale. J. Opt Soc Am., 38 (1948), 196208.Google Scholar
Pierson, J., Sani, M., Tomova, C., Godsave, S. and Peters, P. J., Toward visualization of nanomachines in their native cellular environment. Histochem. Cell Biol., 132 (2009), 253262.Google Scholar
Hoenger, A. and McIntosh, J. R., Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol., 21 (2009), 8996.Google Scholar
Howells, M. R., Beetz, T., Chapman, H. N. et al., An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectrosc. Relat. Phenomena, 170 (2009), 412.Google Scholar
Bammes, B. E., Jakana, J., Schmid, M. F. and Chiu, W., Radiation damage effects at four specimen temperatures from 4 to 100 K. J. Struct. Biol., 169 (2010), 331341.Google Scholar
Stahlberg, H. and Walz, T., Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol., 3 (2008), 268281.Google Scholar
Matricardi, V. R., Moretz, R. C. and Parsons, D. F., Electron diffraction of wet proteins: catalase. Science, 177 (1972), 268270.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.Google Scholar
Hermannsdörfer, J., de Jonge, N. and Verch, A., Electron beam induced chemistry of gold nanoparticles in saline solution. Chem. Commun., 51 (2015), 1639316396.Google Scholar
Peckys, D. B. and de Jonge, N., Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal., 20 (2014), 346365.Google Scholar
Peckys, D. B., Mazur, P., Gould, K. L. and de Jonge, N., Fully hydrated yeast cells imaged with electron microscopy. Biophys. J., 100 (2011), 25222529.Google Scholar
Chee, S. W., Loh, D., Mirsaidov, U. and Matsudaira, P., Probing nanoparticle dynamics in 200 nm thick liquid layers at millisecond time resolution. Microsc. Microanal., 21 (Suppl 3) (2015), 267268.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. and Drouin, D., Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.Google Scholar
Schuh, T. and de Jonge, N., Liquid scanning transmission electron microscopy: nanoscale imaging in micrometers-thick liquids. C. R. Phys., 15 (2014), 214223.Google Scholar
Demers, H., Poirier-Demers, N., Drouin, D. and de Jonge, N., Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc. Microanal., 16 (2010), 795804.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
Zheng, H., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324, (2009), 13091312.Google Scholar
Chen, X. and Wen, J., In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nano. Res. Lett., 7 (2012), 598.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.Google Scholar
Liu, Y., Lin, X.-M., Sun, Y. and Rajh, T., In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc., 135 (2013), 37643767.Google Scholar
Verch, A., Pfaff, M. and De Jonge, N., Exceptionally slow movement of gold nanoparticles at a solid:liquid interface investigated by scanning transmission electron microscopy. Langmuir, 31 (2015), 69566964.Google Scholar
Contarato, D., Denes, P., Doering, D., Joseph, J. and Krieger, B., High speed, radiation hard CMOS pixel sensors for transmission electron microscopy. Phys. Procedia, 37 (2013), 15041510.Google Scholar
Drouin, D., Couture, A. R., Gauvin, R. et al., CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29 (2007), 92101.Google Scholar
LeBeau, J. M., D’Alfonso, A. J., Findlay, S. D., Stemmer, S. and Allen, L. J., Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy images. Phys. Rev. B, 80 (2009), 174106.Google Scholar
Kirkland, E. J., Loane, R. F. and Silcox, J., Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy, 23 (1987), 7796.Google Scholar
Ishizuka, K., A practical approach for STEM image simulation based on the FFT multi-slice method. Ultramicroscopy, 90 (2002), 7183.Google Scholar
Welch, D. A., Faller, R., Evans, J. E. and Browning, N. D., Simulating realistic imaging conditions for in-situ liquid microscopy. Ultramicroscopy, 135 (2013), 3642.Google Scholar
de Jonge, N., Pfaff, M. and Peckys, D. B., Practical aspects of transmission electron microscopy in liquid. Adv. Imag. Electron Phys., 186 (2014), 137.Google Scholar
Abellan, P., Woehl, T. J., Parent, L. R. et al., Factors controlling quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50 (2014), 48734880.Google Scholar
Grogan, J. M., Park, J. H., Ye, X. et al., Liquid cell in-situ electron microscopy: interfacial phenomena and electrochemical deposition. Microsc. Microanal., 18 (2012), 11601161.Google Scholar
Park, J. H., Schneider, N. M., Grogan, J. M. et al., Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett., 15 (2015), 53145320.Google Scholar
Patterson, J. P., Abellan, P., Denny, M. S. Jr. et al., Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy, J. Am. Chem. Soc., 137 (2015), 73227328.Google Scholar
Jungjohann, K. L., Evans, J. E., Aguiar, J. A., Arslan, I. and Browning, N. D., Atomic scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.Google Scholar
Grand, D., Bernas, A. and Amouyal, E., Photo-ionization of aqueous indole – conduction band edge and energy gap in liquid water. Chem. Phys., 44 (1979), 7379.Google Scholar
Egerton, R. F., Electron Energy Loss Spectroscopy (New York: Plenum, 1996).Google Scholar
Malis, T., Cheng, S. C. and Egerton, R. F., EELS log-ratio technique for specimen thickness measurement in the TEM. J. Electron Microsc. Tech., 8 (1988), 193200.Google Scholar
Iakoubovskii, K., Mitsubishi, K., Nakayama, Y. and Furuya, K., Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: atomic number dependent oscillatory behavior. Phys. Rev. B, 77 (2008), 104102.Google Scholar
Hahn, M., Seredynski, J. and Baumeister, W., Inactivation of catalase monolayers by irradiation with 100kV electrons. Proc. Natl. Acad. Sci. USA, 73 (1976), 823827.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in-situ determination of the mechanisms controlling nanoparticle nucleation and growth, ACS Nano, 6 (2012), 85998610.Google Scholar
Nishiyama, H., Suga, M., Ogura, T. et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 169 (2010), 438449.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Technique
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Technique
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Technique
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×