Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T17:37:56.068Z Has data issue: false hasContentIssue false

Part III - Prospects

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Chen, Q., Smith, J. M., Park, J. et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.CrossRefGoogle ScholarPubMed
Wang, C., Qiao, Q., Shokuhfar, T. and Klie, R. F., High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater., 26 (2014), 34103414.CrossRefGoogle ScholarPubMed
De Clercq, A., Dachraoui, W., Margeat, O. et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.CrossRefGoogle ScholarPubMed
Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D. and Berry, V., Impermeable graphenic encasement of bacteria. Nano Lett., 11 (2011), 12701275.Google Scholar
Ericius, P., Kim, K., Zettl, A. et al., In-situ observations of Pt nanoparticle growth at atomic resolution using graphene liquid cells and Cc correction. Microsc. Microanal., 18 (2012), 10961097.Google Scholar
Nair, R. R., Blake, P., Blake, J. R. et al., Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett., 97 (2010), 153102.CrossRefGoogle Scholar
Lee, Z., Jeon, K., Dato, A. and Erni, R., Direct imaging of soft–hard interfaces enabled by graphene. Nano Lett., 9 (2009), 33653369.CrossRefGoogle ScholarPubMed
Regan, W., Alem, N., Alemán, B. et al., A direct transfer of layer-area graphene. Appl. Phys. Lett., 96 (2010), 113102.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Zheng, H., Claridge, S. A, Minor, A. M., Alivisatos, A. P., and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15L17.Google Scholar
Zheng, H., Mirsaidov, U. M., Wang, L.-W. and Matsudaira, P., Electron beam manipulation of nanoparticles. Nano Lett., 12 (2012), 56445648.Google Scholar
Proetto, M. T., Rush, A. M., Chien, M.-P. et al., Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc., 136 (2014), 11621165.Google Scholar
Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A and Sutter, E. A., In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett., 13 (2013), 29642970.CrossRefGoogle ScholarPubMed
Mirsaidov, U. M., Zheng, H., Bhattacharya, D., Casana, Y. and Matsudaira, P., Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA, 109 (2012), 71877190.Google Scholar
Parent, L. R., Robinson, D. B., Cappillino, P. J. et al., In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater., 26 (2014), 14261433.Google Scholar
Zheng, H., Smith, R. K., Jun, Y.-W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
Liao, H.-G., Cui, L., Whitelam, S. and Zheng, H., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.Google Scholar
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.CrossRefGoogle Scholar
Adiga, V. P., Dunn, G. D., Alivisatos, A. P. and Zettl, A., Liquid flow cells having graphene on nitride for microscopy. US Patent Application No. US 20160042912 A1.Google Scholar
Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. and Muller, D. A., In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.Google Scholar
Polte, J., Erler, R. and Thu, A. F. et al., Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano, 4 (2010), 10761082.CrossRefGoogle ScholarPubMed
Harada, M. and Katagiri, E., Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis. Langmuir, 26 (2010), 1789617905.Google Scholar
Polte, J., Ahner, T. T., Delissen, F. et al., Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc., 132 (2010), 12961301.Google Scholar
Lu, X., Rycenga, M., Skrabalak, S. E., Wiley, B. and Xia, Y., Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem., 60 (2009), 167192.Google Scholar
Schapotschnikow, P., Pool, R. and Vlugt, T. J. H., Molecular simulations of interacting nanocrystals. Nano Lett., 8 (2008), 29302934.Google Scholar

References

Goldstein, J., Joy, D., Maher, D., Silcox, J. and Zaluzec, N. J, Introduction to Analytical Electron Microscopy (New York: Plenum Press, 1979), Chapters 3, 4, 7, 9 and 10.Google Scholar
Malis, T., Cheng, S. C. and Egerton, R. F., EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech., 8 (1988), 193200.Google Scholar
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Plenum Press, 2011).Google Scholar
Zaluzec, N. J., Burke, M. G., Haigh, S. J. and Kulzick, M. A., X-ray Energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal., 20 (2014), 323329.Google Scholar
Jungjohann, K. L., Evans, J. E., Aguiar, J. A., Arslan, I. and Browning, N. D., Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.CrossRefGoogle ScholarPubMed
Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. and Muller, D. A., In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.CrossRefGoogle ScholarPubMed
Holtz, M. E., Yu, Y., Gunceler, D. et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.Google Scholar
Lewis, E. A, Haigh, S. J., Slater, T. J. A. et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.Google Scholar
Yuk, J. M., Seo, H. K., Choi, J. W. and Lee, J. Y., Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano, 8 (2014), 74787485.Google Scholar
Scheinfein, M., Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol., 4 (1986), 326.Google Scholar
Batson, P. E., Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature, 366 (1993), 727728.Google Scholar
Muller, D. A., Tzou, Y., Raj, R. and Silcox, J., Mapping sp(2) and sp(3) states of carbon at subnanometer spatial-resolution. Nature, 366 (1993), 725727.Google Scholar
Muller, D. A., Kourkoutis, L. Fitting, Murfitt, M. et al., Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science, 319 (2008), 10731076.Google Scholar
Klein, K. L., de Jonge, N. and Anderson, I. M., Energy-loss characteristics for EFTEM imaging with a liquid flow cell. Microsc. Microanal., 17 (2011), 780781.Google Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., In situ environmental cell-transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.Google Scholar
Yuk, J. M. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Zaluzec, N. J. et al., X-ray and electron energy loss spectroscopy in liquids in the analytical S/TEM. Microsc. Microanal., 20 (2014), 15181519.Google Scholar
Schilling, S., Janssen, A., Zhong, X. L., Zaluzec, N. J. and Burke, M. G., Liquid in situ analytical electron microscopy: examining SCC precursor events for Type 304 stainless steel in H2O. Microsc. Microanal., 21 (2015), 12911292.Google Scholar
Zaluzec, N. J., Analytical formulae for calculation of X-ray detector solid angles in the scanning and scanning/transmission analytical electron microscope. Microsc. Microanal., 20 (2014), 13181326.CrossRefGoogle ScholarPubMed
Zaluzec, N. J., The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy, 151 (2015), 240249.CrossRefGoogle ScholarPubMed
Wong, K., Chen, C., Wei, K., Roy, V. A. L. and Chathoth, S. M., Diffusion of gold nanoparticles in toluene and water as seen by dynamic light scattering. J. Nanoparticle Res., 17 (2015), 153-1153-8.Google Scholar
Zaluzec, N. J., When is Si3N4 not Si3N4? When it is a low stress SiNx membrane window. Microsc. Microanal., 21 (2015), 959960.Google Scholar
Zhong, X. et al., Novel hybrid sample preparation method for in situ liquid cell TEM analysis. Microsc. Microanal., 20 (2014), 15141515.Google Scholar
Schilling, S., Janssen, A., Burke, M. G. et al., In situ analytical election microscopy: imaging and analysis of steel in liquid water. Proc. Intl. Microsc. Conf. 2014, Prague (2014), Ed. Hozak, P., IT-7-O-2947.Google Scholar

References

Scherzer, O., Über einige Fehler von Elektronenlinsen. Z. Phys., 101 (1936), 593603.Google Scholar
Scherzer, O., The theoretical resolution limit of the electron microscope. J. Appl. Phys., 20 (1949), 2029.CrossRefGoogle Scholar
Coene, W. and Jansen, A. J., Image delocalisation and high resolution tranmission electron microscopic imaging with a field emission gun. Scanning Microsc. Suppl., 6 (1992), 379403.Google Scholar
Cervera Gontard, L., Dunin-Borkowski, R. E., Hÿtch, M. J. and Ozkaya, D., Delocalisation in images of Pt nanoparticles. J. Phys. Conf. Ser., 26 (2006), 292295.Google Scholar
Coene, W. M. J., Thust, A., Op de Beeck, M. and van Dyck, D., Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy, 64 (1996), 109135.Google Scholar
Thust, A., Coene, W. M. J., Op de Beeck, M. and van Dyck, D., Focal-series reconstruction in HRTEM: simulation studies on nonperiodic objects. Ultramicroscopy, 64 (1996), 211230.Google Scholar
Kisielowski, C., Hetherington, C. J. D., Wang, Y. C. et al., Imaging columns of the light elements carbon, nitrogen and oxygen with sub angstrom resolution. Ultramicroscopy, 89 (2001), 243263.Google Scholar
Cervera Gontard, L., Chang, L.-Y., Hetherington, C. J. D. et al., Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem., 46 (2007), 36833685.Google Scholar
Haider, M., Rose, H., Uhlemann, S. et al., A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy, 75 (1998), 5360.Google Scholar
Lentzen, M., Jahnen, B., Jia, C. L. et al., High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy, 92 (2002), 233242.Google Scholar
Jia, C. L., Lentzen, M. and Urban, K., Atomic-resolution imaging of oxygen in perovskite ceramics. Science, 299 (2003), 870873.Google Scholar
Jia, C. L., Mi, S. B., Urban, K. et al., Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater., 7 (2008), 5761.Google Scholar
Jia, C. L., Houben, L., Thust, A. and Barthel, J., On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy, 110 (2010), 500505.Google Scholar
Jia, C. L., Barthel, J., Gunkel, F. et al., Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3. Microsc. Microanal., 19 (2013), 310318.Google Scholar
Jia, C. L., Mi, S.-B., Barthel, J. et al., Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat. Mater., 13 (2014), 10441049.Google Scholar
Barthel, J. and Thust, A., Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. Ultramicroscopy, 111 (2010), 2746.Google Scholar
Barthel, J. and Thust, A., On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy, 134 (2013), 617.Google Scholar
Hansen, T. W., Wagner, J. B. and Dunin-Borkowski, R. E., Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Mater. Sci. Technol., 26 (2010), 13381344.Google Scholar
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Springer, 2011).Google Scholar
Boothroyd, C. B., Moreno, M. S., Duchamp, M. et al., Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy, 145 (2014), 6673.Google Scholar
Zach, J., Chromatic correction: a revolution in electron microscopy? Phil. Trans. R. Soc. A, 367 (2009), 36993707.Google Scholar
Rose, H., Future trends in aberration corrected electron microscopy. Phil. Trans. R. Soc. A, 367 (2009), 38093823.Google Scholar
Kabius, B., Hartel, P., Haider, M. et al., First application of CC-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc., 58 (2009), 147155.Google Scholar
Leary, R. and Brydson, R., Chromatic aberration correction: the next step in electron microscopy. Adv. Imagi. Electron Phys., 165 (2011), 73130.Google Scholar
Haider, M., Hartel, P., Müller, H., Uhlemann, S. and Zach, J., Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. Microanal., 16 (2010), 393408.Google Scholar
Rose, H., Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl. Instrum. Methods Phys. Res. A, 519 (2004), 1227.Google Scholar
Rose, H., Prospects for aberration-free electron microscopy. Ultramicroscopy, 103 (2005), 16.Google Scholar
Haider, M., Müller, H., Uhlemann, S. et al., Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy, 108 (2008), 167178.Google Scholar
Uhlemann, S., Müller, H., Hartel, P., Zach, J. and Haider, M., Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett., 111 (2013), 046101.Google Scholar
Urban, K. W., Mayer, J., Jinschek, J. R. et al., Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett., 110 (2013), 185507.Google Scholar
Forbes, B. D., Houben, L., Mayer, J., Dunin-Borkowski, R. E. and Allen, L. J., Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. Ultramicroscopy, 147 (2014), 98105.Google Scholar
Baudoin, J. P., Jinschek, J. R., Boothroyd, C. B., Dunin-Borkowski, R. E. and de Jonge, N., Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell. Microsc. Microanal., 19 (2013), 814821.Google Scholar
Reimer, L. and Ross-Messemer, M., Top–bottom effect in energy-selecting TEM. Ultramicroscopy, 21 (1987), 385388.Google Scholar
Reimer, L. and Gentsch, P., Superposition of chromatic error and beam broadening in TEM of thick carbon and organic specimens. Ultramicroscopy, 1 (1975), 15.CrossRefGoogle Scholar
Gentsch, P., Gilde, H. and Reimer, L., Measurement of the top–bottom effect in scanning transmission electron microscopy of thick amorphous specimens. J. Microsc., 100 (1974), 8192.Google Scholar
Sousa, A. A., Hohmann-Marriott, M. F., Zhang, G. and Leapman, R. D., Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy, 109 (2009), 213221.Google Scholar
Demers, H., Ramachandra, R., Drouin, D. and de Jonge, N., The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc. Microanal., 18 (2012), 582590.Google Scholar
Hyun, J. K., Ercius, P. and Muller, D. A., Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy, 109 (2008), 17.Google Scholar

References

Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface, Nat. Mater., 2 (2003), 532536.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Woehl, T. J., Park, C., Evans, J. E. et al., Direct observation of abnormal Ostwald ripening in nanoparticle ensembles caused by aggregative growth. Nano Lett., 14 (2014), 373378.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Gu, M., Parent, L. R., Mehdi, L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.Google Scholar
Abellán, P., Park, C., Mehdi, B. L. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ TEM. Nano Lett., 14 (2014), 12931299.Google Scholar
Sutter, E., Jungjohann, K. L., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.Google Scholar
Kim, J. S., LaGrange, T. B., Reed, B. W. et al., Imaging of transient structures using nanosecond in situ TEM. Science, 321 (2008), 14721475.Google Scholar
Candes, E. J., Romberg, J. and Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52 (2006), 489509.Google Scholar
Welch, D. A., Faller, R., Evans, J. E. and Browning, N. D., Simulating realistic imaging conditions for in-situ liquid microscopy. Ultramicroscopy, 135 (2013), 3642.Google Scholar
Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D., Minimum cost multi-way data association for optimizing large-scale multitarget tracking of interacting objects. IEEE Trans. Patt. Anal. Mach. Intell., 37 (2015), 611624.Google Scholar
Goldman, N. and Browning, N. D., Gold cluster diffusion kinetics on stoichiometric and reduced rutile TiO2 (110). J. Phys. Chem. C, 115 (2011), 1161111617.Google Scholar
Evans, J. E., Jungjohann, K. L., Wong, P. C. K. et al., Visualizing macromolecular complexes with in-situ liquid transmission electron microscopy. Micron, 43 (2012), 10851090.Google Scholar
Kobayashi, T. and Laidler, K., Kinetic analysis for solid-supported enzymes. Biochim. Biophys. Acta, 302 (1973), 112.Google Scholar
Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R. and Fernandez-Lafuente, R., Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 42 (2013), 62906307.Google Scholar
Lin, B., Yu, J. and Rice, S. A., Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Phys. Rev. E, 62 (2000), 39093919.Google Scholar
Kheifets, S., Simha, A., Melin, K., Li, T. and Raizen, M. G., Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science, 343 (2014), 14931496.Google Scholar
Burada, P. S., Hanggi, P., Marchesoni, F., Schmid, G. and Talkner, P., Diffusion in confined geometries. ChemPhysChem, 10 (2009), 4554.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.Google Scholar
Jesson, D. E., Pennycook, S. J. and Baribeau, J. M, Direct imaging of interfacial ordering in ultrathin (SimGen)P superlattices. Phys. Rev. Lett., 66 (1991), 750753.Google Scholar
Muller, D. A., Kourkoutis, L. F., Murfitt, M. et al., Atomic scale chemical imaging of composition and bonding by aberration corrected microscopy. Science, 319 (2008), 10731076.Google Scholar
Reed, B. W., Armstrong, M. R., Browning, N. D. et al., The evolution of ultrafast electron microscope instrumentation. Microsc. Microanal., 15 (2009), 272281.Google Scholar
Bostanjoglo, O., High-speed electron microscopy. Adv. Imag. Electron Phys., 121 (2002), 12111251.Google Scholar
Bostanjoglo, O. and Horinek, W. R., Pulsed TEM: a new method to detect transient structures in fast phase-transitions. Optik, 65 (1983), 361367.Google Scholar
LaGrange, T. B., Armstrong, M., Boyden, K. et al., Single shot dynamic transmission electron microscopy for materials science. Appl. Phys. Lett., 89 (2006), 044105.Google Scholar
Armstrong, M., Boyden, K., Browning, N. D. et al., In-situ synthesis of nanowires in the dynamic TEM. Ultramicroscopy, 107 (2007), 356367.Google Scholar
Armstrong, M. R., Browning, N. D., Reed, B. W. and Torralva, B. R., Prospects for electron imaging with ultrafast time resolution. Appl. Phys. Lett., 90 (2007), 114101.Google Scholar
Taheri, M. L., Reed, B. W., Lagrange, T. B. and Browning, N. D., In-situ synthesis of nanowires in the dynamic TEM. Small, 4 (2008), 21872190.Google Scholar
Reed, B. W., LaGrange, T., Shuttlesworth, R. M. et al., Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum., 81 (2010), 053706.Google Scholar
Masiel, D. J., LaGrange, T., Reed, B. W., Guo, T. and Browning, N. D., Time resolved annular dark field imaging of catalyst nanoparticles. ChemPhysChem, 11 (2010), 20882090.Google Scholar
Browning, N. D., Bonds, M. A., Campbell, G. H. et al., Recent developments in DTEM. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.Google Scholar
Evans, J. E. and Browning, N. D., Enabling direct nanoscale dynamic observations of biological systems with DTEM. Microscopy, 62 (2013), 147156.Google Scholar
Rickman, B. L., Berger, J. A., Nicholls, A. W. and Schroeder, W. A., Intrinsic electron beam emittance from metal photocathodes: the effect of the electron effective mass. Phys. Rev. Lett., 111 (2013), 237401.Google Scholar
Lobastov, V. A., Srinivasan, R. and Zewail, A. H., Four-dimensional ultrafast electron microscopy. Proc. Natl. Acad. Sci. USA, 102 (2005), 70697073.Google Scholar
Zewail, A. H., 4D ultrafast electron diffraction, crystallography and microscopy. Annu. Rev. Phys. Chem., 57 (2006), 65103.Google Scholar
Carbone, F., Kwon, O. H. and Zewail, A. H., Dynamics of chemical bonding mapped by energy resolved 4D electron microscopy. Science, 325 (2009), 181184.Google Scholar
Yurtserver, A. and Zewail, A. H., 4D nanoscale diffraction observed by convergent beam ultrafast electron microscopy. Science, 326 (2009), 708712.Google Scholar
Zewail, A. H., 4D electron microscopy. Science, 328 (2010), 187193.Google Scholar
Kwon, O. H. and Zewail, A. H., 4D electron microscopy. Science, 328 (2010), 16681673.Google Scholar
Hofer, F., Grogger, W., Kothleitner, G. and Warbichler, P., Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy, 67 (1997), 83103.Google Scholar
Leary, R., Saghi, Z., Midgley, P. A. and Holland, D. J., Compressed sensing electron tomography. Ultramicroscopy, 131 (2013), 7091.Google Scholar
Stevens, A., Yang, H., Carin, L., Arslan, I. and Browning, N. D., The potential for Bayesian compressive sensing to significantly reduce electron dose in high resolution STEM images. Microscopy, 63 (2014), 4151.Google Scholar
Arce, G. R., Brady, D. J., Carin, L., Arguello, H. and Kittle, D. S., Compressive coded aperture spectral imaging. IEEE Signal Proces. Mag., 31 (2014), 105115.Google Scholar
Stevens, A., Kovarik, L., Yuan, X., Carin, L. and Browning, N. D., Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv. Struct. Chem. Imag., 1 (2015), 10.CrossRefGoogle Scholar
Liu, Y., Tai, K. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.Google Scholar
Proetto, M. T., Rush, A. M., Chien, M. et al., Transmission electron microscopy of a synthetic soft material in liquid water. J. Am. Chem. Soc., 136 (2014), 11621165.Google Scholar
Gai, P. L., Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Topics in Catalysis, 21 (2002), 161173.Google Scholar
McPherson, A. and Eisenberg, D., In Donev, R.. ed., Protein Structures and Diseases, Advances in Protein Chemistry and Structural Biology (New York: Academic Press, 2011).Google Scholar
Tarascon, J. M and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.Google Scholar
Goodenough, J. B and Kim, Y., Challenges for rechargeable Li batteries. Chem. Mater., 22 (2010), 587.Google Scholar
Jie, X. L. and Nazar, L. F., Advances in Li-S batteries. J. Mater. Chem., 20 (2010), 98219826.Google Scholar
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. and Tarascon, J. M., Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 11 (2012), 1929.Google Scholar
Verma, P., Maire, P. and Novak, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochem. Acta, 55 (2010), 63326341.Google Scholar
Wen, J., Yu, Y. and Chen, C., A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater. Express, 2 (2012), 197212.Google Scholar
Huang, J. Y., Zhong, L., Wang, C. M. et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.Google Scholar
Mehdi, B. L., Gu, M., Parent, L. R. et al., In-situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.Google Scholar
Mehdi, B. L., Nasybulin, E., Qian, J. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical S/TEM. Nano Lett., 15 (2015), 21682173.Google Scholar
Glaeser, R. M., Downing, K., DeRosier, D., Chiu, W. and Frank, J., Electron Crystallography of Biological Macromolecules (Oxford: Oxford University Press, 2007).Google Scholar
Berriman, J. and Unwin, N., Analysis of transient structures by cryomicroscopy combined with rapid mixing of spray droplets. Ultramicroscopy, 56 (1994), 241252.Google Scholar
Shaikh, T. R., Barnard, D., Meng, X. and Wagenknecht, T., Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. J. Struct. Biol., 165 (2009), 184189.Google Scholar
Subramanian, S. and Henderson, R., Electron crystallography of bacteriorhodopsin with millisecond time resolution. J. Struct Biol., 144 (1999), 25462562.Google Scholar
Zhang, L., Song, J., Cavigiolio, G. et al., Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J. Lipid Res., 52 (2011), 175184.Google Scholar

References

Stapels, D. A. C., Ramyar, K. X., Bischoff, M. et al., Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc. Natl. Acad. Sci. USA, 111 (2014), 1318713192.Google Scholar
Kendrew, J. C., Bodo, G., Dintzis, H. M. et al., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181 (1958), 662666.Google Scholar
Frank, J., Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct., 31 (2002), 303319.CrossRefGoogle ScholarPubMed
Schmidt, A., Teeter, M., Weckert, E. and Lamzin, V. S., Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallogr. Sect. F, 67 (2011), 424428.Google Scholar
Bai, X. C., Fernandez, I. S., McMullan, G. and Scheres, S. H. W., Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife, 2 (2013), e00461.Google Scholar
Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. and Subramaniam, S., Structure of beta-galactosidase at 3.2-angstrom resolution obtained by cryo-electron microscopy. Proc. Natl. Acad. Sci. USA, 111 (2014), 1170911714.Google Scholar
Glaeser, R. M., Retrospective: Radiation damage and its associated “Information Limitations”. J. Struct. Biol., 163 (2008), 271276.Google Scholar
Egerton, R. F., Control of radiation damage in the TEM. Ultramicroscopy, 127 (2013), 100108.Google Scholar
Gilmore, B. L., Showalter, S. P., Dukes, M. J. et al., Visualizing viral assemblies in a nanoscale biosphere. Lab Chip, 13 (2013), 216219.Google Scholar
Reimer, L. and Kohl, H., Transmission Electron Microscopy: Physics of Image Formation (New York: Springer, 2008).Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.Google Scholar
Woehl, T. J., Jungjohann, K. L., Evans, J. E. et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.Google Scholar
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15L17.Google Scholar
Evans, J. E. and Browning, N. D., Enabling direct nanoscale observations of biological reactions with dynamic TEM. Microscopy, 62 (2013), 147156.Google Scholar
Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A. and Sutter, E. A., In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett., 13 (2013), 29642970.Google Scholar
Lowenstam, H. A. and Weiner, S., On Biomineralization (New York: Oxford University Press, 1989).Google Scholar
Benzerara, K., Skouri-Panet, F., Li, J. H. et al., Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. USA, 111 (2014), 1093310938.Google Scholar
Bazylinski, D. A., Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol, 2 (1999), 7180.Google Scholar
Sumper, M. and Brunner, E., Learning from diatoms: nature’s tools for the production of nanostructured silica. Adv. Funct. Mater., 16 (2006), 1726.Google Scholar
Woehl, T. J., Kashyap, S., Firlar, E. et al., Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci. Rep., 4 (2014), 6854.Google Scholar
Arakaki, A., Webb, J. and Matsunaga, T., A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem., 278 (2003), 87458750.Google Scholar
Poulsen, N., Sumper, M. and Kroger, N., Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. USA, 100 (2003), 1207512080.Google Scholar
Prozorov, T., Bazylinski, D. A., Mallapragada, S. K. and Prozorov, R., Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater. Sci. Eng. R., 74 (2013), 133172.Google Scholar
Lang, C. and Schueler, D., Biomineralization of magnetosomes in bacteria: nanoparticles with potential applications. In Rehm, B., ed., Microbial Bionanotechnology (Wymondham, UK: Horizon Bioscience, 2006) pp. 107124.Google Scholar
Prozorov, T., Palo, P., Wang, L. et al., Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano, 1 (2007), 228233.Google Scholar
Colfen, H. and Antonietti, M., Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed., 44 (2005), 55765591.Google Scholar
Bazylinski, D. A., Garrattreed, A. J. and Frankel, R. B., Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech., 27 (1994), 389401.Google Scholar
Komeili, A., Li, Z., Newmana, D. K. and Jensen, G. J., Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science, 311 (2006), 242245.Google Scholar
Pouget, E. M., Bomans, P. H. H., Goos, J. et al., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 323 (2009), 14551458.Google Scholar
Bazylinski, D. A. and Frankel, R. B., Magnetosome formation in prokaryotes. Nat. Rev. Micro., 2 (2004), 217230.Google Scholar
Faivre, D. and Schüler, D., Magnetotactic bacteria and magnetosomes. Chem. Rev., 108 (2008), 48754898.Google Scholar
Prozorov, T., Mallapragada, S. K., Narasimhan, B. et al., Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater., 17 (2007), 951957.Google Scholar
Epp, E. R., Weiss, H. and Santomasso, A., The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Rad. Res., 34 (1968), 320325.Google Scholar
Komeili, A., Vali, H., Beveridge, T. J. and Newman, D. K., Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. USA, 101 (2004), 38393844.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Kashyap, S., Woehl, T. J., Liu, X., Mallapragada, S. K. and Prozorov, T., Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. ACS Nano, 8 (2014), 90979106.Google Scholar
ISO/ASTM51540-09, USA, 2009. Standard Practices for Use of Radiochromic Liquid Dosimetry System, ASTM International, West Conshohocken, PA, USA.Google Scholar
Fiester, S. E., Helfinstine, S. L., Redfearn, J. C., Uribe, R. M. and Woolverton, C. J., Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int. J. Microbiol. (2012), 579593.Google Scholar
Ward, G. D., Watson, I. A., Stewart-Tull, D. E. et al., Bactericidal action of high-power Nd:YAG laser light on Escherichia coli in saline suspension. J. Appl. Microbiol., 89 (2000), 517525.Google Scholar
Nandakumar, K., Obika, H., Utsumi, A., Ooie, T. and Yano, T., Molecular level damages of low power pulsed laser radiation in a marine bacterium Pseudoalteromonas carrageenovora. Lett. Appl. Microbiol., 42 (2006), 521526.Google Scholar
Tuszyn’ski, J. A., Portet, S., Dixon, J. M., Luxford, C. and Cantiello, H. F., Ionic wave propagation along actin filaments. Biophys. J., 86 (2004), 18901903.Google Scholar
Cantiello, H. F., Patenaude, C. and Zaner, K., Osmotically induced electrical signals from actin filaments. Biophys. J., 59 (1991), 12841289.Google Scholar
Merla, C., Paffi, A., Apollonio, F. et al., Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell. IEEE Trans. Biomed. Eng., 58 (2011), 12941302.Google Scholar
Cowley, J. M., Twenty forms of electron holography. Ultramicroscopy, 41 (1992), 335348.Google Scholar
Formanek, P., Lenk, A., Lichte, H. et al., Electron holography: applications to materials questions. Annu. Rev. Mater. Res., 37 (2007), 539588.Google Scholar
Dunin-Borkowski, R. E., McCartney, M. R., Kardynal, B. et al., Off-axis electron holography of exchange-biased CoFe/FeMn patterned nanostructures. J Appl. Phys., 90 (2001), 28992902.Google Scholar
Simon, P., Lichte, H., Formanek, P. et al., Electron holography of biological samples. Micron, 39 (2008), 229256.Google Scholar
Dunin-Borkowski, R. E., McCartney, M. R., Posfai, M. et al., Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral., 13 (2001), 671684.Google Scholar
Kasama, T., Posfai, M., Chong, R. K. K. et al., Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral., 91 (2006), 12161229.Google Scholar
Simpson, E. T., Kasama, T., Posfai, M. et al., Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography. J. Phys. Conf. Ser., 17 (2005), 108121.Google Scholar
Longchamp, J. N., Latychevskaia, T., Escher, C. and Fink, H. W., Non-destructive imaging of an individual protein. Appl. Phys. Lett., 101 (2012), 093701.Google Scholar
Kawasaki, T., Endo, J., Matsuda, T., Osakabe, N. and Tonomura, A., Applications of holographic interference electron microscopy to the observation of biological specimens. J. Electron Microsc., 35 (1986), 211214.Google Scholar
Pan, Y.-H., Sader, K., Powell, J. J. et al., 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J. Struct. Biol., 166 (2009), 2231.Google Scholar
Lichte, H., Banzhof, H. and Huhle, R., Limitations in electron holography of magnetic microstructures. Proc. Int. Congr. Electr. Microsc., ICEM 14, Cancun, Mexico (1998), pp. 559–560.Google Scholar
Krack, M., Hohenberg, H., Kornowski, A. et al., Nanoparticle-loaded magnetophoretic vesicles. J. Am. Chem. Soc., 130 (2008), 73157320.Google Scholar
Hopster, H. and Oepen, H. P. (eds.), Magnetic Microscopy of Nanostructures (Berlin: Springer, 2005).Google Scholar
Eggeman, A. S., Petford-Long, A. K., Dobson, P. J. et al., Synthesis and characterization of silica encapsulated cobalt nanoparticles and nanoparticle chains. J. Magn. Magn. Mater., 301 (2006), 336342.Google Scholar
Tanase, M. and Petford-Long, A. K., In situ TEM observation of magnetic materials. Microsc. Res. Tech., 72 (2009), 187196.Google Scholar
Campbell, G. H., LaGrange, T. B., King, W. E. et al., The HCP to BCC phase transformation in Ti characterized by nanosecond electron microscopy. Solid-Solid Phase Transform. Inorg. Mater. 2005, Proc. Int. Conf., 2 (2005) 443–448.Google Scholar
Pankhurst, Q. A., Connolly, J., Jones, S. K. and Dobson, J., Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys., 36 (2003), R167R181.Google Scholar
Reiss, G. and Huetten, A., Magnetic nanoparticles: applications beyond data storage. Nat. Mater., 4 (2005), 725726.Google Scholar
Förster, S., Amphiphilic block copolymers for templating applications. Top. Curr. Chem., 226 (2003), 128.Google Scholar
Prozorov, T., Unpublished, 2013.Google Scholar
Zhang, L., Song, S. I., Zheng, S. et al., Nontoxic poly(ethylene oxide phosphonamidate) hydrogels as templates for biomimetic mineralization of calcium carbonate and hydroxyapatite architectures. J. Mater. Sci., 48 (2013), 288298.Google Scholar
Dobrunz, D., Toma, A. C., Tanner, P., Pfohl, T. and Palivan, C. G., Polymer nanoreactors with dual functionality: simultaneous detoxification of peroxynitrite and oxygen transport. Langmuir, 28 (2012), 1588915899.Google Scholar
Tanner, P., Baumann, P., Enea, R. et al., Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res., 44 (2011), 10391049.Google Scholar
Goswami, N., Saha, R. and Pal, S. K., Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. J. Nanopart. Res., 13 (2011), 54855495.Google Scholar
Vriezema, D. M., Aragones, M. C., Elemans, J. A. A. W. et al., Self-assembled nanoreactors, Chem. Rev., 105 (2005), 14451489.Google Scholar
Kashyap, S., Woehl, T., Valverde-Tercedor, C. et al., Visualization of iron-binding micelles in acidic recombinant biomineralization protein, MamC. J. Nanomater. (2014), 320124.Google Scholar
Karlin, D. and Belshaw, R., Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One, 7 (2012), e31719.Google Scholar
Heyman, A., Medalsy, I., Bet Or, O. et al., Protein scaffold engineering towards tunable surface attachment. Angew. Chem. Int. Ed., 48 (2009), 92909294.Google Scholar
Ghosh, P. S. and Hamilton, A. D., Noncovalent template-assisted mimicry of multiloop protein surfaces: assembling discontinuous and functional domains. J. Am. Chem. Soc., 134 (2012), 1320813211.Google Scholar
Diao, J., Crystal structure of a super leucine zipper, an extended two-stranded super long coiled coil. Protein Sci., 19 (2010), 319326.Google Scholar
Dedeo, M. T., Duderstadt, K. E., Berger, J. M. and Francis, M. B., Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett., 10 (2010), 181186.Google Scholar
Aniagyei, S. E., DuFort, C., Kao, C. C. and Dragnea, B., Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem., 18 (2008), 37633774.Google Scholar
Sun, J., DuFort, C., Daniel, M.-C. et al., Core-controlled polymorphism in virus-like particles. Proc. Natl. Acad. Sci. USA, 104 (2007), 13541359.Google Scholar
Vatta, L. L., Sanderson, R. D. and Koch, K. R., Magnetic nanoparticles: properties and potential applications. Pure Appl. Chem., 78 (2006), 17931801.Google Scholar
Ai, H., Flask, C., Weinberg, B. et al., Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater., 17 (2005), 19491952.Google Scholar
Berry, C. C. and Curtis, A. S. G., Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 36 (2003), R198R206.Google Scholar
Chiancone, E., Ceci, P., Ilari, A., Ribacchi, F. and Stefanini, S., Iron and proteins for iron storage and detoxification. BioMetals, 17 (2004), 197202.Google Scholar
Busch, A. P., Rhinow, D., Yang, F. et al., Site-selective biomineralization of native biological membranes. J. Mater. Chem. B, 2 (2014), 69246930.Google Scholar
Baumgartner, J., Morin, G., Menguy, N. et al., Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. Proc. Natl. Acad. Sci. USA, 110 (2013), 1488314888.Google Scholar
Baumgartner, J. and Faivre, D., Magnetite biomineralization in bacteria. Prog. Mol. Subcell. Biol., 52 (2011), 327.Google Scholar
Penn, R. L. and Banfield, J. F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 281 (1998), 969971.Google Scholar
Gao, B., Arya, G. and Tao, A. R., Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotechnol., 7 (2012), 433437.Google Scholar
Nakagawa, Y., Kageyama, H., Oaki, Y. and Imai, H., Direction control of oriented self-assembly for 1D, 2D, and 3D microarrays of anisotropic rectangular nanoblocks. J. Am. Chem. Soc., 136 (2014), 37163719.Google Scholar
Song, R. Q. and Colfen, H., Mesocrystals-ordered nanoparticle superstructures. Adv. Mater., 22 (2010), 13011330.Google Scholar
Sun, B. L., Wen, M., Wu, Q. S. and Peng, J., Oriented growth and assembly of Ag@C@Co pentagonalprism nanocables and their highly active selected catalysis along the edges for dehydrogenation. Adv. Funct. Mater., 22 (2012), 28602866.Google Scholar
Ihli, J., Bots, P., Kulak, A., Benning, L. G. and Meldrum, F. C., Elucidating mechanisms of diffusion-based calcium carbonate synthesis leads to controlled mesocrystal formation. Adv. Funct. Mater., 23 (2013), 19651973.Google Scholar
Niederberger, M. and Colfen, H., Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys., 8 (2006), 32713287.Google Scholar
Frandsen, C., Legg, B. A., Comolli, L. R. et al., Aggregation-induced growth and transformation of beta-FeOOH nanorods to micron-sized alpha-Fe2O3 spindles. CrystEngComm, 16 (2014), 14511458.Google Scholar
Wang, Y., DePrince, A. E., Gray, S. K., Lin, X. M. and Pelton, M., Solvent-mediated end-to-end assembly of gold nanorods. J. Phys. Chem. Lett., 1 (2010), 26922698.Google Scholar
Colfen, H. and Antonietti, M., Mesocrystals and Nonclassical Crystallization (Chichester, UK: Wiley, 2008).Google Scholar
Woehl, T. J. and Prozorov, T., The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C, 119 (2015), 2126121269.Google Scholar
Burrows, N. D., Hale, C. R. H. and Penn, R. L., Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des., 12 (2012), 47874797.Google Scholar
Penn, R. L. and Soltis, J. A., Characterizing crystal growth by oriented aggregation. CrystEngComm, 16 (2014), 14091418.Google Scholar
Ahmed, W., Laarman, R. P. B., Hellenthal, C. et al., Dipole directed ring assembly of Ni-coated Au-nanorods. Chem. Commun., 46 (2010), 67116713.Google Scholar
Chai, J., Liao, X., Giam, L. R. and Mirkin, C. A., Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc., 134 (2012), 158161.Google Scholar
Yang, M. X., Chen, G., Zhao, Y. F. et al., Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys. Chem. Chem. Phys., 12 (2010), 1185011860.Google Scholar
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.Google Scholar
Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D., Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects, pattern analysis and machine intelligence. IEEE Trans. Pattern Anal. Mach. Intell., 37 (2014), 611624.Google Scholar
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Liao, H. G., Zherebetskyy, D., Xin, H. L. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Prospects
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Prospects
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Prospects
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×