Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T17:57:24.361Z Has data issue: false hasContentIssue false

Part II - Applications

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Faraday, M., The Bakerian lecture: experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond., 147 (1857), 145181.Google Scholar
Daniel, M. C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104 (2004), 293346.CrossRefGoogle Scholar
Murphy, C. J. Sau, T. P., Gole, A. M., et al., Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B, 109 (2005), 1385713870.Google Scholar
Xia, Y., Xiong, Y., Lim, B. and Skrabalak, S. E., Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed., 48 (2009), 60103.Google Scholar
Liao, H.-G., Niu, K. and Zheng, H., Observation of growth of metal nanoparticles. Chem. Commun., 49 (2013), 1172011727.CrossRefGoogle ScholarPubMed
Niu, K.-Y., Park, J., Zheng, H. and Alivisatos, A. P., Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.Google Scholar
Xin, H. L. and Zheng, H., In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.CrossRefGoogle ScholarPubMed
Zheng, H., Smith, R. K., Jun, Y.-W., et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.CrossRefGoogle ScholarPubMed
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2013), 359364.CrossRefGoogle ScholarPubMed
den Heijer, M., Shao, I., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2 (2014), 022101.Google Scholar
Liu, Y., Lin, X.-M., Sun, Y. and Rajh, T., In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc., 135 (2013), 37643767.CrossRefGoogle ScholarPubMed
Woehl, T. J., Park, C., Evans, J. E., et al., Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett., 14 (2013), 373378.CrossRefGoogle ScholarPubMed
Liao, H.-G., Cui, L., Whitelam, S. and Zheng, H., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.Google Scholar
Zhu, G., Jiang, Y., Lin, F., et al., In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun., 50 (2014), 94479450.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.CrossRefGoogle ScholarPubMed
Niu, K.-Y., Liao, H.-G. and Zheng, H., Visualization of the coalescence of bismuth nanoparticles. Microsc. Microanal., 20 (2014), 416424.Google Scholar
Li, D., Nelson, M. H., Lee, J. R., et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Yuk, J. M., Park, J., Ercius, P., et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Wulff, G., On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral., 34 (1901), 449530.Google Scholar
Gibbs, J. W., Bumstead, H. A., Van Name, R. G. and Longley, W. R., The Collected Works of J. Willard Gibbs (London: Longmans, Green and Co., 1902).Google Scholar
Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. and Wang, Z. L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 316 (2007), 732735.Google Scholar
Ringe, E., Van Duyne, R. P. and Marks, L. D., Wulff construction for alloy nanoparticles. Nano Lett., 11 (2011), 33993403.Google Scholar
Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. and Hennig, R. G., Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano, 6 (2012), 21182127.Google Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H., et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.Google Scholar
Liao, H.-G. and Zheng, H., Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc., 135 (2013), 50385043.Google Scholar
Kimura, Y., Niinomi, H., Tsukamoto, K. and García-Ruiz, J. M., In situ live observation of nucleation and dissolution of sodium chlorate nanoparticles by transmission electron microscopy. J. Am. Chem. Soc., 136 (2014), 17621765.Google Scholar
Sutter, E., Jungjohann, K., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.Google Scholar
Jungjohann, K., Bliznakov, S., Sutter, P., Stach, E. A. and Sutter, E., In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett., 13 (2013), 29642970.Google Scholar
Lewis, E. A., Haigh, S. J., Slater, T. J. A., et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.Google Scholar
Wu, J., Gao, W., Wen, J. et al., Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett., 15 (2015), 27112715.Google Scholar
De Clercq, A., Dachraoui, W., Margeat, O., et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.CrossRefGoogle ScholarPubMed
Kraus, T. and de Jonge, N., Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir, 29 (2013), 84278432.CrossRefGoogle ScholarPubMed
Liao, H.-G., Shao, Y., Wang, C. M., et al., TEM study of fivefold twinned gold nanocrystal formation mechanism. Mater. Lett., 116 (2014), 299303.Google Scholar
Alloyeau, D., Dachraoui, W., Javed, Y., et al., Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett., 15 (2015), 25742581.CrossRefGoogle ScholarPubMed
Parent, L. R., Robinson, D. B., Woehl, T. J., et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.CrossRefGoogle Scholar
Parent, L. R., Robinson, D. B., Cappillino, P. J., et al., In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater., 26 (2014), 14261433.Google Scholar
Chen, X. and Wen, J., In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Res. Lett., 7 (2012), 16.CrossRefGoogle Scholar
Ring, E. A. and de Jonge, N., Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.CrossRefGoogle Scholar
Chen, Q., Smith, J. M., Park, J., et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.CrossRefGoogle ScholarPubMed
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. and Drouin, D., Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.CrossRefGoogle ScholarPubMed
Mueller, C., Harb, M., Dwyer, J. R. and Miller, R. D., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.Google Scholar
Li, F., Josephson, D. P. and Stein, A., Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed., 50 (2011), 360388.Google Scholar
Baker, J. L., Widmer-Cooper, A., Toney, M. F., Geissler, P. L. and Alivisatos, A. P., Device-scale perpendicular alignment of colloidal nanorods. Nano Lett., 10 (2009), 195201.Google Scholar
Park, J., Zheng, H., Lee, W. C., et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.Google Scholar
Grogan, J. M., Rotkina, L. and Bau, H. H., In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.CrossRefGoogle ScholarPubMed
Oleshko, V. P. and Howe, J. M., Are electron tweezers possible? Ultramicroscopy, 111 (2011), 15991606.Google Scholar
Batson, P. E., Reyes-Coronado, A., Barrera, R. G., et al., Nanoparticle movement: plasmonic forces and physical constraints. Ultramicroscopy, 123 (2012), 5058.Google Scholar
Batson, P. E., Reyes-Coronado, A., Barrera, R. G., et al., Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. Nano Lett., 11 (2011), 33883393.Google Scholar
Zheng, H., Mirsaidov, U. M., Wang, L.-W. and Matsudaira, P., Electron beam manipulation of nanoparticles. Nano Lett., 12 (2012), 56445648.Google Scholar
Zheng, H., Using molecular tweezers to move and image nanoparticles. Nanoscale, 5 (2013), 40704078.Google Scholar
Chen, Y.-T., Wang, C.-Y., Hong, Y.-J., et al., Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv., 4 (2014), 3165231656.Google Scholar
Jiang, Y., Zhu, G., Lin, F., et al., In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett., 14 (2014), 37613765.Google Scholar

References

Hölzle, M. H., Zwing, V. and Kolb, D. M., The influence of steps on the deposition of Cu onto Au(111). Electrochim. Acta, 40 (1995), 12371247.Google Scholar
Hölzle, M. H., Apsel, C. W., Will, T. and Kolb, D. M., Copper deposition onto Au(111) in the presence of thiourea. J. Electrochem. Soc., 142 (1995), 37413749.Google Scholar
Magnussen, O. M., Zitzler, L., Gleich, B., Vogt, M. R. and Behm, R. J., In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochim. Acta, 46 (2001), 37253733.Google Scholar
Magnussen, O. M., Polewska, W., Zitzler, L. and Behm, R. J., In situ video-STM studies of dynamic processes at electrochemical interfaces. Faraday Discuss., 121 (2002), 4352.CrossRefGoogle Scholar
Azhagurajan, M., Wen, R., Lahiri, A. et al., Direct evidence of homoepitaxial growth in the electrodeposition of Au observed by ultra-high resolution differential optical microscopy. J. Electrochem. Soc., 160 (2013), D361D365.Google Scholar
Gallaway, J. W., Desai, D., Gaikwad, A. et al., A lateral microfluidic cell for imaging electrodeposited zinc near the shorting condition. J. Electrochem. Soci., 157 (2010), A1279A1286.Google Scholar
Ross, F. M., Growth processes and phase transformations studied by in situ transmission electron microscopy. IBM J. Res., 44 (2000), 489501.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic electron microscopy in liquid environments. Nat. Mater., 2 (2003), 532536.Google Scholar
Ross, F. M. and Searson, P. C., In situ microscopy of the anodic etching of silicon. In Bailey, G. W., Ellisman, M. H., Hennigar, R. A. and Zaluzec, N. J., eds., Proceedings of the 53rd Annual MSA Meeting, Kansas City, August 1995, 232–233 (New York: Jones and Begell Publishing, 1995).Google Scholar
Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Hoboken, NJ: Wiley, 2001).Google Scholar
Holtz, M. E., Tu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.Google Scholar
Sacci, R. L., Black, J. M., Balke, N. et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.CrossRefGoogle ScholarPubMed
Williamson, M. J., Investigations of materials issues in advanced interconnect structures. Ph.D. Thesis, University of Virginia (2002).Google Scholar
Radisic, A., Electrochemical nucleation and growth of copper, Ph.D. Thesis, The Johns Hopkins University (2005).Google Scholar
Grogan, J. M., Ph.D. Thesis, University of Pennsylvania (2012).Google Scholar
Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. and Ross, F. M., Quantifying electrochemical nucleation and growth mechanisms from real-time kinetic data. Nano Lett., 6 (2006), 238242.Google Scholar
Radisic, A., Ross, F. M. and Searson, P. C., In situ study of the growth kinetics of individual islands during electrodeposition of copper. J. Phys. Chem. B, 110 (2006), 78627868.Google Scholar
Radisic, A., Vereecken, P. M., Searson, P. C. and Ross, F. M., The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci., 600 (2006), 18171826.Google Scholar
Ross, F. M., Electrochemical nucleation, growth and dendrite formation in liquid cell TEM. Microsc. Microanal., 16 (2010), 326327.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., The Nanoaquarium: a new paradigm in electron microscopy. J. Indian Inst. Sci., 92 (2012), 295308.Google Scholar
den Heijer, M., Shao, X., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of copper using an electron beam. APL Mater., 2 (2014), 022101.Google Scholar
Mehdi, B. L., Qian, J., Nasybulin, E. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.Google Scholar
Leenheer, A. J., Sullivan, J. P., Shaw, M. J. and Harris, C. T., A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst., 24 (2015), 10611068.Google Scholar
Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. and Harris, C. T., Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano, 9 (2015), 43794389.Google Scholar
Chen, X., Noh, K. W., Wen, J. G. and Dillon, S. J., In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl2. Acta Mater., 60 (2012), 192198.Google Scholar
Sun, M., Liao, H.-G., Niu, K. and Zheng, H., Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep., 3 (2013), 2227.Google Scholar
Liu, Y. and Dillon, S. J., In situ observation of electrolytic H2 evolution adjacent to gold cathodes. Chem. Commun., 50 (2014), 17611763.Google Scholar
Zeng, Z., Liang, W.-I., Liao, H.-G. et al., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in-situ TEM. Nano Lett., 14 (2014), 17451750.Google Scholar
Sacci, R. L., Dudney, N. J., More, K. L. et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.Google Scholar
Gu, M., Parent, L. R., Mehdi, L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.Google Scholar
Mehdi, B. L., Gu, M., Parent, L. R. et al., In situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.Google Scholar
Unocic, R. R., Sun, X. G., Sacci, R. L. et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.Google Scholar
den Heijer, M., In-situ transmission electron microscopy of electrodeposition: technical development, beam effects and lithography. M.Sc. Thesis, University of Leiden (2008).Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. and Deligianni, H., Damascene copper electroplating for chip interconnections. IBM J. Res. Devel., 42 (1998), 567574.Google Scholar
Scharifker, B. and Hills, G., Theoretical and experimental studies of multiple nucleation. Electrochimica Acta., 28 (1983), 879889.Google Scholar
Milchev, A., Electrocrystallization, Fundamentals of Nucleation and Growth (New York: Springer US, 2002).Google Scholar
Vereecken, P. M., Binstead, R. A., Deligianni, H. and Andricacos, P. C., The chemistry of additives in damascene copper plating. IBM J. Res. Devel., 49 (2005), 318.Google Scholar
Yang, L., Radisic, A., Nagara, M. et al., Multi-scale modeling of direct copper plating on resistive non-copper substrates. Electrochimica Acta, 78 (2012), 524531.CrossRefGoogle Scholar
Schneider, N. M., Park, J. H., Grogan, J. M. et al., Visualization of active and passive control of morphology during electrodeposition. Microsc. Microanal., 20 (S3) (2014), 15301531.Google Scholar
Ross, F. M., den Heijer, M., Williamson, M. J. and Steingart, D., Correlating light microscopy and electron microscopy for measuring microstructural evolution during electrochemical deposition. Adv. Imag. Electron Phys., 179 (2013), 180182.Google Scholar
Schneider, N. M., Liquid cell electron microscopy with the nanoAquarium: radiation and electrochemistry (January 1, 2015). Dissertations available from ProQuest, Paper AAI3721631.Google Scholar
Abellan Baeza, P., Mehdi, B. L., Parent, L. R. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.Google Scholar
Zeng, Z., Liang, W.-I., Chub, Y.-H. and Zheng, H. M., In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss., 176 (2014), 95107.Google Scholar
Sutter, E., Jungjohann, K., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.Google Scholar
Unocic, R. R., Baggetto, L., Veith, G. M. et al., Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun., 51 (2015), 1637716380.Google Scholar
Nagai, Y., Carbajal, J. D., White, J. H. et al., An electrochemically controlled microcantilever biosensor. Langmuir, 29 (2013), 99519957.Google Scholar
Schneider, N. M., Park, J. H., Grogan, J. M. et al., In situ electrochemical measurements in the Nanoaquarium. Microsc. Microanal., 19 (S2) (2013), 433434.Google Scholar

References

Tarascon, J.-M. and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.Google Scholar
Armand, M. and Tarascon, J.-M., Building better batteries. Nature, 457 (2008), 652657.Google Scholar
Arico, A. S., Bruce, P., Scrotasi, B., Tarascon, J.-M. and Van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat. Materials, 4 (2005), 366377.Google Scholar
Goodenough, J. B. and Kim, Y., Challenges for rechargeable Li batteries. Chem Mater., 22 (2010), 587603.Google Scholar
Debe, M. K., Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (2013), 4351.CrossRefGoogle Scholar
Wang, C. M., In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res., 30 (2014), 326339.Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater., 2 (2003), 532536.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Zeng, Z., Liang, W.-I., Liao, H.-G. et al., Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett., 14 (2014), 17451750.Google Scholar
Sacci, R. L., Black, J. M., Balke, N. et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.Google Scholar
Sacci, R. L., Dudney, N. J., More, K. L. et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.Google Scholar
Holtz, M. E., Yu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.Google Scholar
Gu, M., Parent, L. R., Mehdi, B. L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.Google Scholar
Unocic, R. R., Sun, X.-G., Sacci, R. L. et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Moshkovich, M., Cojocaru, M., Gottlieb, H. E. and Aurbach, D., The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. J. Electroanal. Chem., 497 (2001), 8496.Google Scholar
Zeng, Z., Liang, W.-I., Chu, Y.-H. and Zheng, H., In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss., 176 (2014), 95107.Google Scholar
Zeng, Z., Liang, W.-I., Liao, H.-G. et al., Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett., 14 (2014), 17451750.Google Scholar
Mehdi, B. L., Qian, J., Nasybulin, E. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.Google Scholar
Tang, M., Lu, S. and Newman, J., Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon. J. Electrochemi. Soc., 159 (2012), A1775A1785.Google Scholar
Tang, M. and Newman, J., Transient characterization of solid-electrolyte-interphase using ferrocene. J. Electrochem. Soc., 159 (2012), A281A289.Google Scholar
Unocic, R., Adamczyk, L., Dudney, N. et al., In-situ TEM characterization of electrochemical processes in energy storage systems. Microsc. Microanal., 17 (2011), 15641565.Google Scholar
Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev., 104 (2004), 43034418.Google Scholar
Ring, E. A. and de Jonge, N., Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.Google Scholar
Grogan, J. M. and Bau, H. H., The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.Google Scholar
Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd edn. (New York: John Wiley & Sons, 2001).Google Scholar
Verma, P., Maire, P. and Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55 (2010), 63326341.Google Scholar
Winter, M., The solid electrolyte interphase: the most important least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem., 223 (2009), 13951406.Google Scholar
Sacci, R. L., Dudney, N. J., More, K. L. et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.Google Scholar
Moshkovich, M., Gofer, Y. and Aurbach, D., Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc., 148 (2001), E155E167.CrossRefGoogle Scholar
Aurbach, D., Levi, M. D., Levi, E. et al., Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J. Electrochem. Soc., 145 (1998), 30243034.Google Scholar
Unocic, R. R., Sun, X.-G., Sacci, R. L. et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C., 118 (2014), 2237322382.Google Scholar
Abellan, P., Woehl, T. J., Parent, L. R. et al., Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50 (2014), 48734880.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Woehl, T. J., Park, C., Evans, J. E. et al., Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett., 14 (2014), 373378.Google Scholar
Abellan, P., Mehdi, B. L., Parent, L. R. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.CrossRefGoogle ScholarPubMed
Holtz, M. E., Yu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.CrossRefGoogle ScholarPubMed
Noh, K. W. and Dillon, S. J., Morphological changes in and around Sn electrodes during Li ion cycling characterized by in situ environmental TEM. Scripta Materialia, 69 (2013), 658661.Google Scholar
Bhattacharyya, R., Key, B., Chen, H. et al., In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater., 9 (2010), 504510.Google Scholar
Nishikawa, K., Mori, T., Nishida, T., Fukunaka, Y and Rosso, M., Li dendrite growth and Li+ ionic mass transfer phenomenon. J. Electroanal. Chem., 661 (2011), 8489.Google Scholar
Ely, D. R. and Garcia, R. E., Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc., 160 (2013), A662A668.Google Scholar
Nishida, T., Nishikawa, K., Rosso, M. and Fukunaka, Y., Optical observation of Li dendrite growth in ionic liquid. Electrochimica Acta, 100 (2013), 333341.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Sun, M., Liao, H.-G., Niu, K., Zheng, H., Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep., 3 (2013), 3227.Google Scholar
Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. and Harris, C. T., Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano, 9 (2015), 43794389.Google Scholar
Riedl, T., Gemming, T. and Wetzig, K., Extraction of EELS white-line intensities of manganese compounds: methods, accuracy, and valence sensitivity. Ultramicroscopy, 106 (2006), 284291.Google Scholar
Varela, M., Oxley, M., Luo, W. et al., Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B., 79 (2009), 085117.Google Scholar
Unocic, R. R., Baggetto, L., Veith, G. M. et al., Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun., 51 (2015), 1637716380.Google Scholar
Meier, J. C., Galeano, C., Katsounaros, I. et al., Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal., (2012), 832–843.Google Scholar
Zhu, G.-Z., Prabhudev, S., Yang, J. et al., In situ liquid cell TEM study of morphological evolution and degradation of Pt–Fe nanocatalysts during potential cycling. J. Phys. Chem. C., 118 (2014), 2211122119.Google Scholar

References and Notes

Shaw, B. and Kelly, R., What is corrosion? Interface, Electrochem. Soc., Spring (2006), 24–26.Google Scholar
Duquette, D. and Schafrik, R., Research Opportunities in Corrosion Science and Engineering (Washington, D.C.: The National Academies Press, 2011).Google Scholar
Song, G.-L., The grand challenges in electrochemical corrosion research. Front. Mater, 1 (2014), 2.Google Scholar
Frankel, G., Electrochemical techniques in corrosion: status, limitations, and needs. J. ASTM Int., 5 (2008), 127.Google Scholar
De Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Jungjohann, K. L., Evans, J. E., Aguiar, J. A., Arslan, I. and Browning, N. D., Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.Google Scholar
Holtz, M. E., Yu, Y., Gao, J., Abruna, H. D. and Muller, D. A., In situ electron energy loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.Google Scholar
Unocic, R. R., Baggetto, L., Unocic, K. et al., Coupling EELS/EFTEM imaging with environmental fluid cell microscopy. Microsc. Microanal., 18 (2012), 11041105.Google Scholar
Zaluzec, N. J., Burke, M. G., Haigh, S. J. and Kulzick, M. A., X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal., 20 (2014), 323329.Google Scholar
Schilling, S., Janssen, A., Zhong, Z. L., Zaluzec, N. J. and Burke, M. J., Liquid in situ analytical electron microscopy: examining SCC precursor events for Type 304 stainless steel in H2O. Microsc. Microanal., 21 (2015), 12911292.Google Scholar
McCafferty, E., Introduction to Corrosion Science (New York: Springer, 2010).Google Scholar
Frankel, G. and Sridhar, N., Understanding localized corrosion. Mater. Today, 11 (2008), 3844.Google Scholar
Frankel, G., Pitting corrosion of metals. J. Electrochem. Soc., 145 (1998), 21862198.Google Scholar
Soltis, J., Passivity breakdown, pit initiation and propagation of pits in metallic materials: review. Corros. Sci., 90 (2015), 522.Google Scholar
Accelerated dissolution of thin metal films had been observed during continuous imaging under the electron beam.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Frankel, G. and Rohwerder, M., Electrochemical techniques for corrosion. In Encyclopedia of Electrochemistry (Weinheim, Germany: Wiley-VCH, 2007).Google Scholar
Kelly, R. G., Scully, J. R., Shoesmith, D. and Buchheit, R., Electrochemical Techniques in Corrosion Science and Engineering (New York: Marcel Dekker, 2013).Google Scholar
Frankel, G., Techniques for Corrosion Quantification in the Characterization of Materials, 2nd edn. (Hoboken, NJ: John Wiley & Sons, 2012), pp. 850864.Google Scholar
Keddam, M., Application of advanced electrochemical techniques and concepts to corrosion phenomena. Corrosion, 62 (2006), 10561066.CrossRefGoogle Scholar
Frankel, G., The growth of 2-D pits in thin film aluminum. Corros. Sci., 30 (1990), 1203.Google Scholar
Balazs, L. and Gouyet, J., Two-dimensional pitting corrosion of aluminium thin layers. Phys. A Stat. Mech. Appl., 217 (1995), 319338.Google Scholar
Frankel, G., Pit growth in thin metallic films. Mater. Sci. Forum, 247 (1997), 18.Google Scholar
Proost, J., Baklanov, M. and Verbeeck, R., Morphology of corrosion pits in aluminum thin film metallizations. J. Solid State Electrochem., 2 (1998), 150155.Google Scholar
Hernandez, S., Griffin, A. Jr., Brotzen, F. and Dunn, C., The effect of thickness on the corrosion susceptibility of Al thin film metallizations. J. Electrochem. Soc., 142 (1995), 12151220.Google Scholar
Zhao, Y.-P., Cheng, C.-F., Wang, G.-C. and Lu, T.-M., Characterization of pitting corrosion in aluminum films by light scattering. Appl. Phys. Lett., 73 (1998), 24322434.Google Scholar
Chee, S. W., Ross, F. M., Duquette, D. and Hull, R., Studies of corrosion of Al thin films using liquid cell transmission electron microscopy. MRS Proc., 1525 (2013), mrsf12-1525-ss11-03.Google Scholar
Chee, S. W., Duquette, D. J., Ross, F. M. and Hull, R., Metastable structures in Al thin films before the onset of corrosion pitting as observed using liquid cell transmission electron microscopy. Microsc. Microanal., 20 (2014), 462468.Google Scholar
Chee, S. W., Pratt, S. H., Hattar, K. et al., Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun., 51 (2015), 168171.Google Scholar
Chee, S. W., Hull, R. and Ross, F. M., Liquid cell TEM of the corrosion of metal films in aqueous solutions. Microsc. Microanal., 18 (2012), 11101111.Google Scholar
Liao, H.-G., Niu, K. and Zheng, H., Observation of growth of metal nanoparticles. Chem. Commun., 49 (2013), 1172011727.Google Scholar
Jiang, Y., Zhu, G., Lin, F., Zhang, H. and Jin, C., In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett., 14 (2014), 37613765.Google Scholar
Wu, J., Gao, W., Yang, H. and Zuo, J.-M., Imaging shape-dependent corrosion behavior of Pt nanoparticles over extended time using a liquid flow cell and TEM. Microsc. Microanal., 20 (2014), 15081509.CrossRefGoogle Scholar
Sutter, E., Jungjohann, K., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.Google Scholar
Chee, S. W., Park, J.-H., Pinkowitz, A. et al., Liquid cell TEM of Al thin film corrosion under potentiostatic polarization. Microsc. Microanal., 21 (2015), 973974.Google Scholar
Park, J. H., Chee, S. W., Kodambaka, S. and Ross, F. M., In situ LC-TEM studies of corrosion of metal thin films in aqueous solutions. Microsc. Microanal., 21 (2015), 12911292.Google Scholar
Noh, K. W, Tai, K., Mao, S. and Dillon, S. J., Grain boundary parting limit during dealloying. Adv. Eng. Mater., 17 (2015), 157161.Google Scholar
Mayer, J., Giannuzzi, L. A., Kamino, T. and Michael, J., TEM sample preparation and FIB-induced damage. MRS Bull., 32 (2007), 400407.Google Scholar
Unocic, R., Adamczyk, L., Dudney, N. et al., In-situ TEM characterization of electrochemical processes in energy storage systems. Microsc. Microanal., 17 (2011), 15641565.Google Scholar
Zhong, X., Burke, M. G., Schilling, S., Haigh, S. J. and Zaluzec, N. J., Novel hybrid sample preparation method for in situ liquid cell TEM analysis. Microsc. Microanal., 20 (2014), 15141515.Google Scholar
Woehl, T. J., Jungjohann, K. L., Evans, J. E. et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.Google Scholar
Ring, E. A. and de Jonge, N., Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.Google Scholar
Hoppe, S. M., Sasaki, D. Y., Kinghorn, A. N. and Hattar, K., In-situ transmission electron microscopy of liposomes in an aqueous environment. Langmuir, 29 (2013), 99589961.Google Scholar
Abellan, P., Woehl, T. J., Parent, L. R. et al., Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50 (2014), 48734880.Google Scholar
Klein, K. L., Anderson, I. M. and de Jonge, N., Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.Google Scholar
The liquid layer thicknesses quoted in atmospheric corrosion studies are normally in the tens of micrometers.Google Scholar
Sacci, R. L., Dudney, N. J., More, K. L. and Unocic, R. R., In operando transmission electron microscopy imaging of SEI formation and structure in Li-ion and Li-metal batteries. Microsc. Microanal., 20 (2014), 15981599.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C., 118 (2014), 2237322382.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2013), 359364.Google Scholar
Kelm, M., Bohnert, E. and Pashalidis, I., Products formed from alpha radiolysis of chloride brines. Res. Chem. Intermed., 27 (2001), 503507.Google Scholar
Holtz, M. E., Yu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.Google Scholar
Schilling, S., Janssen, A., Burke, M. G. et al., In situ analytical electron microscopy: imaging and analysis of steel in liquid water. 18th International Microscopy Congress (2014), www.microscopy.cz/proceedings/all.html#abstract-2947.Google Scholar
Bi-metallic exposure in the electrolyte frequently leads to galvanic corrosion but the effects of coupled metals are not so straightforward. Depending on the metals that are connected, it is possible that the more active metal becomes more resistant to corrosion. The reader is referred to general texts on corrosion for clarification.Google Scholar
Park, J.-H., Reuter, M. C., Kodambaka, S. and Ross, F. M., Electric field induced Au nanocrystal formation in aqueous solutions. Microsc. Microanal., 20 (2014), 15981599.Google Scholar
Hoppe, S. M., Hernandez-Sanchez, B. A., Hattar, K. and Sasaki, D. Y., Progress towards in situ TEM of biofouling. Microsc. Microanal., 20 (2012), 11321133.Google Scholar

References

Lauga, E., Brenner, M. and Stone, H., Microfluidics: the no-slip boundary condition. In Tropea, C., Yarin, A., Foss, J., eds., Springer Handbook of Experimental Fluid Mechanics (Berlin, Heidelberg: Springer, 2007) pp. 12191240.Google Scholar
Israelachvili, J., Electrostatic forces between surfaces in liquids. In Intermolecular and Surface Forces (New York: Academic Press, 2011) pp. 291337.Google Scholar
Parsons, R., The electrical double layer: recent experimental and theoretical developments. Chem. Rev., 90 (1990), 813826.Google Scholar
Chan, C. U. and Ohl, C.-D., Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys. Rev. Lett., 109 (2012), 174501.Google Scholar
Xu, K., Cao, P. and Heath, J. R., Graphene visualizes the first water adlayers on mica at ambient conditions. Science, 329 (2010), 11881191.Google Scholar
Major, R. C., Houston, J. E., McGrath, M. J., Siepmann, J. I. and Zhu, X. Y., Viscous water meniscus under nanoconfinement. Phys. Rev. Lett., 96 (2006), 177803.Google Scholar
Oh, S. H., Kauffmann, Y., Scheu, C., Kaplan, W. D. and Rühle, M., Ordered liquid aluminum at the interface with sapphire. Science, 310 (2005), 661663.Google Scholar
Eswaramoorthy, S. K., Howe, J. M. and Muralidharan, G., In situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science, 318 (2007), 14371440.Google Scholar
Howe, J. M., Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces (New York: Wiley-Interscience, 1997).Google Scholar
Kaplan, W. D. and Kauffmann, Y., Structural order in liquids induced by interfaces with crystals. Annu. Rev. Mater. Res., 36 (2006), 148.Google Scholar
Donnelly, S. E., Birtcher, R. C., Allen, C. W. et al., Ordering in a fluid inert gas confined by flat surfaces. Science, 296 (2002), 507510.Google Scholar
Kim, B. J., Tersoff, J., Kodambaka, S. et al., Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science, 322 (2008), 10701073.Google Scholar
Ho, T. A., Papavassiliou, D. V., Lee, L. L. and Striolo, A., Liquid water can slip on a hydrophilic surface. Proc. Natl. Acad. Sci. USA, 108 (2011), 1617016175.Google Scholar
Zhu, Y. and Granick, S., Viscosity of interfacial water. Phys. Rev. Lett., 87 (2001), 096104.Google Scholar
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J. et al., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip, 12 (2012), 340347.Google Scholar
Mirsaidov, U., Ohl, C.-D. and Matsudaira, P., A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter, 8 (2012), 71087111.Google Scholar
Mirsaidov, U. M., Zheng, H., Bhattacharya, D., Casana, Y. and Matsudaira, P., Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA, 109 (2012), 71877190.Google Scholar
Thompson, P. A. and Robbins, M. O., Origin of stick-slip motion in boundary lubrication. Science, 250 (1990), 792794.Google Scholar
Urbakh, M., Klafter, J., Gourdon, D. and Israelachvili, J., The nonlinear nature of friction. Nature, 430 (2004), 525528.Google Scholar
Zambrano, H. A., Walther, J. H., Koumoutsakos, P. and Sbalzarini, I. F., Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett., 9 (2008), 6671.Google Scholar
Halverson, J. D., Maldarelli, C., Couzis, A. and Koplik, J., A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient. J. Chem. Phys., 129 (2008), 164708164712.Google Scholar
Moosavi, A., Rauscher, M. and Dietrich, S., Motion of nanodroplets near edges and wedges. Phys. Rev. Lett., 97 (2006), 236101.Google Scholar
Rio, E., Daerr, A., Lequeux, F. and Limat, L., Moving contact lines of a colloidal suspension in the presence of drying. Langmuir, 22 (2006), 31863191.Google Scholar
Brunet, P., Eggers, J. and Deegan, R. D., Vibration-induced climbing of drops. Phys. Rev. Lett., 99 (2007), 144501.Google Scholar
Cottin-Bizonne, C., Cross, B., Steinberger, A. and Charlaix, E., Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett., 94 (2005), 056102.Google Scholar
Sendner, C., Horinek, D., Bocquet, L. and Netz, R. R., Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir, 25 (2009), 1076810781.Google Scholar
de Gennes, P. G., Wetting: statics and dynamics. Rev. Mod. Phys., 57 (1985), 827863.Google Scholar
Berg, H., Random Walks in Biology (Princeton, NJ: Princeton University Press, 1993).Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.Google Scholar
Lu, J., Aabdin, Z., Loh, N. D., Bhattacharya, D. and Mirsaidov, U., Nanoparticle dynamics in a nanodroplet. Nano Lett., 14 (2014), 21112115.Google Scholar
Grogan, J. M., Rotkina, L. and Bau, H. H., In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.Google Scholar
Verch, A., Pfaff, M. and de Jonge, N., Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir, 31 (2015), 69566964.Google Scholar
Li, T.-D., Gao, J., Szoszkiewicz, R., Landman, U. and Riedo, E., Structured and viscous water in subnanometer gaps. Phys. Rev. B, 75 (2007), 115415.Google Scholar
Jinesh, K. B. and Frenken, J. W. M., Capillary condensation in atomic scale friction: how water acts like a glue. Phys. Rev. Lett., 96 (2006), 166103.Google Scholar
Chen, Q., Smith, J. M., Park, J. et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.Google Scholar
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.Google Scholar
Barkay, Z., Wettability study using transmitted electrons in environmental scanning electron microscope. Appl. Phys. Lett., 96 (2010), 183109–183103.Google Scholar
Barkay, Z., Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films. Langmuir, 26 (2010), 1858118584.Google Scholar
Rykaczewski, K. and Scott, J. H. J., Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano, 5 (2011), 59625968.Google Scholar
Rykaczewski, K., Scott, J. H. J., Rajauria, S. et al., Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces. Soft Matter, 7 (2011), 87498752.Google Scholar
Miljkovic, N., Enright, R. and Wang, E. N., Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano, 6 (2012), 17761785.Google Scholar
Rykaczewski, K., Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir, 28 (2012), 77207729.Google Scholar
Bhattacharya, D., Bosman, M., Mokkapati, V. R. S. S., Leong, F. Y. and Mirsaidov, U., Nucleation dynamics of water nanodroplets. Microsc. Microanal., 20 (2014), 407415.Google Scholar
Leach, R. N., Stevens, F., Langford, S. C. and Dickinson, J. T., Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir, 22 (2006), 88648872.Google Scholar
Steyer, A., Guenoun, P., Beysens, D. and Knobler, C. M., Growth of droplets on a substrate by diffusion and coalescence. Phys. Rev. A, 44 (1991), 82718277.Google Scholar
Rogers, T. M., Elder, K. R. and Desai, R. C., Droplet growth and coarsening during heterogeneous vapor condensation. Physi. Rev. A, 38 (1988), 53035309.Google Scholar
Ucar, I. O. and Erbil, H. Y., Use of diffusion controlled drop evaporation equations for dropwise condensation during dew formation and effect of neighboring droplets. Coll. Surf. A: Physicochem. Eng. Aspects, 411 (2012), 6068.Google Scholar
Whitby, M. and Quirke, N., Fluid flow in carbon nanotubes and nanopipes. Nat. Nano, 2 (2007), 8794.Google Scholar
Naguib, N., Ye, H., Gogotsi, Y. et al., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett., 4 (2004), 22372243.Google Scholar
Mattia, D. and Gogotsi, Y., Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid, 5 (2008), 289305.Google Scholar
Rossi, M. P., Ye, H., Gogotsi, Y. et al., Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett., 4 (2004), 989993.Google Scholar
Patra, N., Wang, B. and Král, P., Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett., 9 (2009), 37663771.Google Scholar
Mirsaidov, U., Mokkapati, V. R. S. S., Bhattacharya, D. et al., Scrolling graphene into nanofluidic channels. Lab Chip, 13 (2013), 28742878.Google Scholar
Dukes, M. J., Jacobs, B. W., Morgan, D. G., Hegde, H. and Kelly, D. F., Visualizing nanoparticle mobility in liquid at atomic resolution. Chem. Commun., 49 (2013), 30073009.Google Scholar
Craster, R. V. and Matar, O. K., Dynamics and stability of thin liquid films. Rev.Mod. Phys., 81 (2009), 11311198.Google Scholar
White, E. R., Mecklenburg, M., Singer, S. B., Aloni, S. and Regan, B. C., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express, 4 (2011), 055201.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2013), 359364.Google Scholar
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J. et al., Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter, 9 (2013), 88568861.Google Scholar
Redon, C., Brochard-Wyart, F. and Rondelez, F., Dynamics of dewetting. Phys. Rev. Lett., 66 (1991), 715718.Google Scholar
Elbaum, M. and Lipson, S. G., How does a thin wetted film dry up? Phys. Rev. Lett., 72 (1994), 35623565.CrossRefGoogle ScholarPubMed
Thiele, U., Mertig, M. and Pompe, W., Dewetting of an evaporating thin liquid film: heterogeneous nucleation and surface instability. Phys. Rev. Lett., 80 (1998), 28692872.Google Scholar
Pompe, T. and Herminghaus, S., Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett., 85 (2000), 19301933.Google Scholar
Ross, J. R. H., Heterogeneous Catalysis: Fundamentals and Applications (Kidlington, UK: Elsevier, 2011).Google Scholar
Reddy, T., Linden’s Handbook of Batteries, 4th edn. (New York: McGraw-Hill Professional, 2010).Google Scholar
Tarascon, J. M. and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.Google Scholar
Ebbinghaus, S., Kim, S. J., Heyden, M. et al., An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA, 104 (2007), 2074920752.Google Scholar
Squires, T. M. and Quake, S. R., Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys., 77 (2005), 9771026.Google Scholar
Tai, K., Liu, Y. and Dillon, S. J., In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal., 20 (2014), 330337.Google Scholar

References

van Dorp, W. F. and Hagen, C. W., A critical literature review of focused electron beam-induced deposition. J. Appl. Phys., 104 (2008), 081301.Google Scholar
Utke, I., Hoffmann, P. and Melngailis, J., Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B, 26 (2008), 11971276.Google Scholar
Randolph, S. J., Fowlkes, J. D. and Rack, P. D., Focused, nanoscale electron beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci., 31 (2006), 5589.Google Scholar
Botman, A., Mulders, J. J. L. and Hagen, C. W., Creating pure nanostructures from electron beam-induced deposition using purification techniques: a technology perspective. Nanotechnology, 20 (2009), 372001.Google Scholar
Furuya, K., Nanofabrication by advanced electron microscopy using intense and focused beam. Sci. Technol. Adv. Mater., 9 (2008), 014110.Google Scholar
Song, M. H. and Furuya, K., Fabrication and characterization of nanostructures on insulator substrates by electron beam-induced deposition. Sci. Technol. Adv. Mater., 9 (2008), 023002.Google Scholar
Lee, S. W. and Sankaran, R. M., Direct writing via electron-driven reactions. Mater. Today, 16 (2013), 117122.Google Scholar
Silvis-Cividjian, N. and Hagen, C. W., Electron Beam-Induced Nanometer-Scale Deposition (San Diego, CA: Academic Press, 2006).Google Scholar
Utke, I., Moshkalev, S. and Russell, P., Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford; New York: Oxford University Press, 2012).Google Scholar
Takahashi, T., Arakawa, Y., Nishioka, M. and Ikoma, T., Selective growth of GaAs wire structures by electron beam-induced metalorganic chemical vapor-deposition. Appl. Phys. Lett., 60 (1992), 6870.Google Scholar
Crozier, P. A., Tolle, J., Kouvetakis, J. and Ritter, C., Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3. Appl. Phys. Lett., 84 (2004), 34413443.Google Scholar
Che, R. C., Takeguchi, M., Shimojo, M., Zhang, W. and Furuya, K., Fabrication and electron holography characterization of FePt alloy nanorods. Appl. Phys. Lett., 87 (2005), 223109.Google Scholar
Winhold, M., Weirich, P. M., Schwalb, C. H. and Huth, M., Superconductivity and metallic behavior in PbxCyOδ structures prepared by focused electron beam-induced deposition. Appl. Phys. Lett., 105 (2014), 162603.Google Scholar
Bresin, M., Chamberlain, A., Donev, E. U. et al., Electron beam-induced deposition of bimetallic nanostructures from bulk liquids. Angew. Chem. Int. Ed., 52 (2013), 80048007.Google Scholar
Bresin, M., Nadimpally, B. R., Nehru, N., Singh, V. P. and Hastings, J. T., Site-specific growth of CdS nanostructures. Nanotechnology, 24 (2013), 505305.Google Scholar
Bresin, M., Nehru, N. and Hastings, J. T., Focused electron beam-induced deposition of plasmonic nanostructures from aqueous solutions. In Proc. SPIE 8613, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI (2013), p. 861306.Google Scholar
Chen, X., Zhou, L. H., Wang, P. et al., A study of electron beam-induced deposition and nano device fabrication using liquid cell TEM technology. Chinese J. Chem., 32 (2014), 399404.Google Scholar
Chen, X., Zhou, L. H., Wang, P., Zhao, C. J. and Miao, X. L., A study of nano materials and their reactions in liquid using in situ wet cell TEM technology. Chinese J. Chem., 30 (2012), 28392843.Google Scholar
den Heijer, M., Shao, I., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of Cu using an electron beam. APL Mater., 2 (2014), 022101.Google Scholar
Donev, E. U. and Hastings, J. T., Liquid-precursor electron beam-induced deposition of Pt nanostructures: dose, proximity, resolution. Nanotechnology, 20 (2009), 505302.Google Scholar
Donev, E. U. and Hastings, J. T., Electron beam-induced deposition of Pt from a liquid precursor. Nano Lett., 9 (2009), 27152718.Google Scholar
Donev, E. U., Schardein, G., Wright, J. C. and Hastings, J. T., Substrate effects on the electron beam-induced deposition of Pt from a liquid precursor. Nanoscale, 3 (2011), 27092717.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.Google Scholar
Hoshino, T. and Morishima, K., Electron beam direct processing on living cell membrane. Appl. Phys. Lett., 99 (2011), 174102.Google Scholar
Jensen, E., Kobler, C., Jensen, P. S. and Molhave, K., In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 129 (2013), 6369.Google Scholar
Kolmakova, N. and Kolmakov, A., Scanning electron microscopy for in situ monitoring of semiconductor-liquid interfacial processes: electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J. Phys. Chem. C, 114 (2010), 1723317237.Google Scholar
Kraus, T. and de Jonge, N., Dendritic Au nanowire growth observed in liquid with transmission electron microscopy. Langmuir, 29 (2013), 84278432.Google Scholar
Liu, Y., Chen, X., Noh, K. W. and Dillon, S. J., Electron beam-induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology, 23 (2012), 385302.Google Scholar
Liu, Y., Tai, K. P. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.Google Scholar
Noh, K. W., Liu, Y., Sun, L. and Dillon, S. J., Challenges associated with in-situ TEM in environmental systems: the case of silver in aqueous solutions. Ultramicroscopy, 116 (2012), 3438.Google Scholar
Ocola, L. E., Joshi-Imre, A., Kessel, C. et al., Growth characterization of electron beam-induced silver deposition from liquid precursor. J. Vac. Sci. Technol. B, 30 (2012), 06FF08.Google Scholar
Schardein, G., Donev, E. U. and Hastings, J. T., Electron beam-induced deposition of Au from aqueous solutions. Nanotechnology, 22 (2011), 015301.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, L., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal Pt nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
Donev, E. U., Nehru, N., Schardein, G. et al., Recent advances in liquid-phase electron beam-induced deposition: characterizing growth processes and optical properties. Microsc. Microanal., 17 (2011), 438439.Google Scholar
Randolph, S. J., Botman, A. and Toth, M., Capsule-free fluid delivery and beam-induced electrodeposition in a scanning electron microscope. RSC Adv., 3 (2013), 2001620023.Google Scholar
Bresin, M., Botman, A., Randolph, S. J., Straw, M. and Hastings, J. T., Liquid phase electron beam-induced deposition on bulk substrates using environmental scanning electron microscopy. Microsc. Microanal., 20 (2014), 376384.Google Scholar
Tsuda, T., Seino, S. and Kuwabata, S., Au nanoparticles prepared with a room-temperature ionic liquid-radiation irradiation method. Chem. Commun., 44 (2009), 67926794.Google Scholar
Roy, P., Lynch, R. and Schmuki, P., Electron beam-induced in-vacuo Ag deposition on TiO2 from ionic liquids. Electrochem. Commun., 11 (2009), 15671570.Google Scholar
Imanishi, A., Tamura, M. and Kuwabata, S., Formation of Au nanoparticles in an ionic liquid by electron beam irradiation. Chem. Commun., 44 (2009), 17751777.Google Scholar
Imanishi, A., Gonsui, S., Tsuda, T., Kuwabata, S. and Fukui, K., Size and shape of Au nanoparticles formed in ionic liquids by electron beam irradiation. Phys. Chem. Chem. Phys., 13 (2011), 1482314830.Google Scholar
de Jonge, N., Introduction to special issue on electron microscopy of specimens in liquid. Microsc. Microanal., 20 (2014), 315316.Google Scholar
de Jonge, N., and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Thiberge, S., Zik, O. and Moses, E., An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscope. Rev. Sci. Instrum., 75 (2004), 22802289.Google Scholar
Ciarlo, D. R., Silicon nitride thin windows for biomedical microdevices. Biomed. Microdevices, 4 (2002), 6368.Google Scholar
Stelmashenko, N. A., Craven, J. P., Donald, A. M., Terentjev, E. M. and Thiel, B. L., Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy. J. Microsc. Oxford, 204 (2001), 172183.Google Scholar
Botman, A., Mulders, J. J. L., Weemaes, R. and Mentink, S., Purification of Pt and Au structures after electron beam-induced deposition. Nanotechnology, 17 (2006), 37793785.Google Scholar
Langford, R. M., Wang, T. X. and Ozkaya, D., Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron. Eng., 84 (2007), 784788.Google Scholar
Lin, J. F., Bird, J. P., Rotkina, L. and Bennett, P. A., Classical and quantum transport in focused-ion beam-deposited Pt nanointerconnects. Appl. Phys. Lett., 82 (2003), 802804.Google Scholar
Penate-Quesada, L., Mitra, J. and Dawson, P., Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology, 18 (2007), 215203.Google Scholar
Tao, T., Ro, J. S., Melngailis, J., Xue, Z. L. and Kaesz, H. D., Focused ion beam-induced deposition of Pt. J. Vac. Sci. Technol. B, 8 (1990), 18261829.Google Scholar
Telari, K. A., Rogers, B. R., Fang, H. et al., Characterization of Pt films deposited by focused ion beam-assisted chemical vapor deposition. J. Vac. Sci. Technol. B, 20 (2002), 590595.Google Scholar
Ritchie, N. W. M., Spectrum simulation in DTSA-II. Microsc. Microanal., 15 (2009), 454468.Google Scholar
Ritchie, N. W. M., Using DTSA-II to simulate and interpret energy dispersive spectra from particles. Microsc. Microanal., 16 (2010), 248258.Google Scholar
Folch, A., Servat, J., Esteve, J., Tejada, J. and Seco, M., High-vacuum versus “environmental” electron beam deposition. J. Vac. Sci. Technol. B, 14 (1996), 26092614.Google Scholar
Brintlinger, T., Fuhrer, M. S., Melngailis, J. et al., Electrodes for carbon nanotube devices by focused electron beam-induced deposition of Au. J. Vac. Sci. Technol. B, 23 (2005), 31743177.Google Scholar
Green, T. A., Au electrodeposition for microelectronic, optoelectronic and microsystem applications. Gold Bull., 40 (2007), 105114.Google Scholar
Friedli, V., Utke, I., Molhave, K. and Michler, J., Dose and energy dependence of mechanical properties of focused electron beam-induced pillar deposits from Cu(C5HF6O2)2. Nanotechnology, 20 (2009), 385304.Google Scholar
Ochiai, Y., Fujita, J. and Matsui, S., Electron beam-induced deposition of Cu compound with low resistivity. J. Vac. Sci. Technol. B, 14 (1996), 38873891.Google Scholar
Kunz, R. R. and Mayer, T. M., Electron beam-induced surface nucleation and low-temperature decomposition of metal-carbonyls. J. Vac. Sci. Technol. B, 6 (1988), 15571564.Google Scholar
Chamberlain, A., Donev, E. U., Samantaray, C. B. et al., Electron beam-induced deposition of transition metals from bulk liquids: Ag, Cr, and Ni. In 55th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (Las Vegas, NV, 2011).Google Scholar
Spoddig, D., Schindler, K., Rodiger, P. et al., Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology, 18 (2007), 495202.Google Scholar
Anbar, M. and Neta, P., A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiat. Isot., 18 (1967), 493523.Google Scholar
Hayes, D., Micic, O. I., Nenadovic, M. T., Swayambunathan, V. and Meisel, D., Radiolytic production and properties of ultrasmall cadmium sulfide particles. J. Phys. Chem., 93 (1989), 46034608.Google Scholar
Wu, M. H., Zhong, H. J., Jiao, Z., Li, Z. and Sun, Y. F., Synthesis of PbS nanocrystallites by electron beam irradiation. Coll. Surf. A, 313 (2008), 3539.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Roediger, P., Hochleitner, G., Bertagnolli, E., Wanzenboeck, H. D. and Buehler, W., Focused electron beam-induced etching of silicon using chlorine. Nanotechnology, 21 (2010), 285306.Google Scholar
Roediger, P., Wanzenboeck, H. D., Hochleitner, G., Bertagnolli, E. and Buehler, W., Focused electron beam-induced etching of silicon by chlorine gas: negative effects of residual gas contamination on the etching process. J. Appl. Phys., 108 (2010), 124316.Google Scholar
Martin, A. A. and Toth, M., Cryogenic electron beam-induced chemical etching. ACS Appl. Mater. Inter., 6 (2014), 1845718460.Google Scholar
Roediger, P., Mijic, M., Zeiner, C. et al., Local, direct-write, damage-free thinning of germanium nanowires. J. Vac. Sci. Technol. B, 29 (2011), 06FB03.Google Scholar
Roediger, P., Wanzenboeck, H. D., Hochleitner, G. and Bertagnolli, E., Crystallinity-retaining removal of germanium by direct-write focused electron beam-induced etching. J. Vac. Sci. Technol. B, 29 (2011), 041801.Google Scholar
Fox, D., O’Neill, A., Zhou, D. et al., Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl. Phys. Lett., 98 (2011), 243117.Google Scholar
Bret, T., Afra, B., Becker, R. et al., Gas assisted focused electron beam-induced etching of alumina. J. Vac. Sci. Technol. B, 27 (2009), 27272731.Google Scholar
Spinney, P. S., Howitt, D. G., Smith, R. L. and Collins, S. D., Nanopore formation by low-energy focused electron beam machining. Nanotechnology, 21 (2010), 375301.Google Scholar
Ganczarczyk, A., Geller, M. and Lorke, A., XeF2 gas-assisted focused-electron beam-induced etching of GaAs with 30 nm resolution. Nanotechnology, 22 (2011), 045301.Google Scholar
Noh, J. H., Fowlkes, J. D., Timilsina, R. et al., Pulsed laser-assisted focused electron beam-induced etching of titanium with XeF2: enhanced reaction rate and precursor transport. ACS Appl. Mater. Inter., 7 (2015), 41794184.Google Scholar
Schoenaker, F. J., Cordoba, R., Fernandez-Pacheco, R. et al., Focused electron beam-induced etching of titanium with XeF2. Nanotechnology, 22 (2011), 265304.Google Scholar
Toth, M., Advances in gas-mediated electron beam-induced etching and related material processing techniques. Appl. Phys. A, 117 (2014), 16231629.Google Scholar
Coburn, J. W. and Winters, H. F., Ion-assisted and electron-assisted gas-surface chemistry: important effect in plasma-etching. J. Appl. Phys., 50 (1979), 31893196.Google Scholar
Yemini, M., Hadad, B., Liebes, Y., Auner, A. and Ashkenasy, N., The controlled fabrication of nanopores by focused electron beam-induced etching. Nanotechnology, 20 (2009), 245302.Google Scholar
Liebes, Y., Hadad, B. and Ashkenasy, N., Effects of electrons on the shape of nanopores prepared by focused electron beam-induced etching. Nanotechnology, 22 (2011), 285303.Google Scholar
Crozier, P. A., Nanoscale oxide patterning with electron-solid-gas reactions. Nano Lett., 7 (2007), 23952398.Google Scholar
Dekker, C., Solid-state nanopores. Nat. Nanotechnol., 2 (2007), 209215.Google Scholar
Donev, E. U., Samantaray, C. B., Bresin, M. and Hastings, J. T., Recent advances in liquid-phase e-beam-induced processing: silicon nitride etching and palladium deposition. In 39th International Conference on Micro and Nano Engineering (London, 2013), p. O-FEBIP-04.Google Scholar
Drezner, Y., Greenzweig, Y. and Raveh, A., Strategy for focused ion beam compound material removal for circuit editing. J. Vac. Sci. Technol. B, 30 (2012), 011207.Google Scholar
Jaeckervoirol, A., Ponche, J. L. and Mirabel, P., Vapor-pressures in the ternary-system water nitric-acid sulfuric-acid at low-temperatures. J. Geophys. Res. Atmos., 95 (1990), 1185711863.Google Scholar
Bresin, M. and Hastings, J. T., Etching of Cu using liquid reactants and a focused electron beam. In International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (Washington, D.C., 2014).Google Scholar
Massucci, M., Clegg, S. L. and Brimblecombe, P., Equilibrium vapor pressure of H2O above aqueous H2SO4 at low temperature. J. Chem. Eng. Data, 41 (1996), 765778.Google Scholar

References

Beveridge, T. J., Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol., 43 (1989), 147171.Google Scholar
Banfield, J. F. and Zhang, H. Z., Nanoparticles in the environment. In Banfield, J. F. and Navrotsky, A., eds., Nanoparticles and the Environment, Reviews in Mineralogy & Geochemistry 44 (Mineralogical Society of America, 2001) pp. 158.Google Scholar
Schmidt, M. W. I., Torn, M. S., Abiven, S. et al., Persistence of soil organic matter as an ecosystem property. Nature, 478 (2011), 4956.Google Scholar
Knoll, A. H., Biomineralization and evolutionary history. In Dove, P. M., DeYoreo, J. J. and Weiner, S., eds., Biomineralization, Reviews in Mineralogy & Geochemistry 54 (Mineralogical Society of America, 2003) pp. 329356.Google Scholar
Lowenstam, H. A. and Weiner, S., On Biomineralization (New York: Oxford University Press, 1989).Google Scholar
Hoose, C. and Mohler, O., Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys., 12 (2012), 98179854.Google Scholar
Hendricks, S. B., Nelson, R. A. and Alexander, L. T., Hydration mechanism of the clay mineral montmorillonite saturated with various cations. J. Am. Chem. Soc., 62 (1940), 14571464.Google Scholar
Sposito, G., Skipper, N. T., Sutton, R. et al., Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA, 96 (1999), 33583364.Google Scholar
Hu, Q., Nielsen, M. H., Freeman, C. L. et al., The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways. Faraday Discuss., 159 (2012), 509523.Google Scholar
Giuffre, A. J., Hamm, L. M., Han, N., De Yoreo, J. J. and Dove, P. M., Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc. Natl. Acad. Sci. USA, 110 (2013), 92619266.Google Scholar
Hamm, L. M., Giuffre, A. J., Han, N. et al., Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. Proc. Natl. Acad. Sci. USA, 111 (2014), 13041309.Google Scholar
Fang, P. A., Conway, J. F., Margolis, H. C., Simmer, J. P. and Beniash, E., Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc. Natl. Acad. Sci. USA, 108 (2011), 1409714102.Google Scholar
Nudelman, F., Pieterse, K., George, A. et al., The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater., 9 (2010), 10041009.Google Scholar
Tester, C. C., Brock, R. E., Wu, C. H. et al., In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm, 13 (2011), 39753978.Google Scholar
Smeets, P. J. M., Cho, K. R., Kempen, R. G. E., Sommerdijk, N. A. J. M. and De Yoreo, J. J., In situ TEM shows ion binding is key to directing CaCO3 nucleation in a biomimetic matrix. Nat. Mater., 14 (2015), 394399.Google Scholar
Rieger, J., Frechen, T., Cox, G. et al., Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Faraday Discuss., 136 (2007), 265277.Google Scholar
Lee, J. R. I., Han, T. Y. J., Willey, T. M. et al., Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film. J. Am. Chem. Soc., 129 (2007), 1037010381.Google Scholar
Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. and Navrotsky, A., Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA, 107 (2010), 1643816443.Google Scholar
Bots, P., Benning, L. G., Rodriguez-Blanco, J. D., Roncal-Herrero, T. and Shaw, S., Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Crys. Growth Des., 12 (2012), 38063814.Google Scholar
Gibbs, J. W., On the equilibrium of heterogeneous substances. Trans. Connect. Acad. Arts Sci., 3 (1876), 108248; (1878), 343–524.Google Scholar
Gebauer, D., Volkel, A. and Colfen, H., Stable prenucleation calcium carbonate clusters. Science, 322 (2008), 18191822.Google Scholar
Pouget, E. M., Bomans, P. H. H., Goos, J. A. C. M. et al., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 323 (2009), 14551458.Google Scholar
Bewernitz, M. A., Gebauer, D., Long, J., Colfen, H. and Gower, L. B., A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss., 159 (2012), 291312.Google Scholar
Demichelis, R., Raiteri, P., Gale, J. D., Quigley, D. and Gebauer, D., Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun., 2 (2011), 590.Google Scholar
Wallace, A. F., Hedges, L. O., Fernandez-Martinez, A. et al., Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science, 341 (2013), 885889.Google Scholar
Brecevic, L. and Nielsen, A. E., Solubility of amorphous calcium carbonate. J. Cryst. Growth, 98 (1989), 504510.Google Scholar
Rieger, J., Thieme, J. and Schmidt, C., Study of precipitation reactions by X-ray microscopy: CaCO3 precipitation and the effect of polycarboxylates. Langmuir, 16 (2000), 83008305.Google Scholar
Habraken, W. J. E. M., Tao, J. H., Brylka, L. J. et al., Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun., 4 (2013), 1507.Google Scholar
Erdemir, D., Lee, A. Y. and Myerson, A. S., Nucleation of crystals from solution: classical and two-step models. Accounts Chem. Res., 42 (2009), 621629.Google Scholar
Galkin, O., Chen, K., Nagel, R. L., Hirsch, R. E. and Vekilov, P. G., Liquid-liquid separation in solutions of normal and sickle cell hemoglobin. Proc. Natl. Acad. Sci. USA, 99 (2002), 84798483.Google Scholar
Chung, S., Shin, S. H., Bertozzi, C. R. and De Yoreo, J. J., Self-catalyzed growth of S layers via an amorphous to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. USA, 107 (2010), 1653616541.Google Scholar
Penn, R. L. and Banfield, J. F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 281 (1998), 969971.Google Scholar
Frandsen, C., Legg, B. A., Comolli, L. R. et al., Aggregation-induced growth and transformation of beta-FeOOH nanorods to micron-sized alpha-Fe2O3 spindles. CrystEngComm, 16 (2014), 14511458.Google Scholar
Baumgartner, J., Dey, A., Bomans, P. H. H. et al., Nucleation and growth of magnetite from solution. Nat. Mater., 12 (2013), 310314.Google Scholar
De Yoreo, J. J., Gilbert, P. U. P. A., Sommerdijk, N. A. J. M. et al., Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349 (2015), aaa6760.Google Scholar
Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.Google Scholar
Nielsen, M. H., Lee, J. R. I., Hu, Q. N., Han, T. Y. J. and De Yoreo, J. J., Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss., 159 (2012), 105121.Google Scholar
Nielsen, M. H., Aloni, S. and De Yoreo, J. J., In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.Google Scholar
Bischoff, J. L., Fitzpatrick, J. A. and Rosenbauer, R. J., The solubility and stabilization of ikaite (CaCO3.6H2O) from 0–25 °C: environmental and paleoclimatic implications for thinolite tufa. J. Geol., 101 (1993), 2133.Google Scholar
Chernov, A. A., Modern Crystallography III. Springer Series in Solid-State Sciences (Berlin: Springer, 1984).Google Scholar
Trotsenko, O., Roiter, Y. and Minko, S., Conformational transitions of flexible hydrophobic polyelectrolytes in solutions of monovalent and multivalent salts and their mixtures. Langmuir, 28 (2012), 60376044.Google Scholar
Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. and Weiner, S., A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA, 84 (1987), 27322736.Google Scholar
Nudelman, F., Gotliv, B. A., Addadi, L. and Weiner, S., Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol., 153 (2006), 176187.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.Google Scholar
Liao, H. G., Cui, L. K., Whitelam, S. and Zheng, H. M., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.Google Scholar
Parent, L. R., Robinson, D. B., Woehl, T. J. et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, L., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Nielsen, M. H., Li, D. S., Zhang, H. Z. et al., Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal., 20 (2014), 425436.Google Scholar
Fukami, A., Fukushima, K., Kohyama, N., Observation technique for wet clay minerals using film-sealed environmental cell equipment attached to high-resolution electron microscope. In Bennett, R. et al., eds., Microstructure of Fine-Grained Sediments ( New York: Springer, 1991) pp. 321331.Google Scholar
Adachi, K., Freney, E. J. and Buseck, P. R., Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering. Geophys. Res. Lett., 38 (2011), L13804.Google Scholar

References

Parsons, D. F., Matricardi, V. R., Moretz, R. C. and Turner, J. N., Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys., 15 (1974), 161270.Google Scholar
Parsons, D. F., Structure of wet specimens in electron microscopy. Science, 186 (1974), 407414.Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
Peckys, D. B., Veith, G. M., Joy, D. C. and de Jonge, N., Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One, 4 (2009), e8214.Google Scholar
Peckys, D. B. and de Jonge, N., Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal., 20 (2014), 346365.Google Scholar
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. and Drouin, D., Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110, 11141119 (2010).Google Scholar
Peckys, D. B. and de Jonge, N., Gold nanoparticle uptake in whole cells in liquid examined by environmental scanning electron microscopy. Microsc. Microanal., 20 (2014), 189197.Google Scholar
Peckys, D. B., Baudoin, J. P., Eder, M., Werner, U. and de Jonge, N., Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep., 3 (2013), 2626.Google Scholar
Dukes, M. J., Peckys, D. B. and de Jonge, N., Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 4 (2010), 41104116.Google Scholar
Peckys, D. B., Mazur, P., Gould, K. L. and de Jonge, N., Fully hydrated yeast cells imaged with electron microscopy. Biophys. J., 100 (2011), 25222529.Google Scholar
Peckys, D. B. and de Jonge, N., Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Lett., 11 (2011), 17331738.Google Scholar
Ring, E. A. and de Jonge, N., Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P. H. and Gauthier, C., Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 104 (2005), 290301.Google Scholar
de Jonge, N., Sougrat, R., Peckys, D. B., Lupini, A. R. and Pennycook, S. J., 3-Dimensional aberration corrected scanning transmission electron microscopy for biology. In Vo-Dinh, T., ed., Nanotechnology in Biology and Medicine-Methods, Devices and Applications (Boca Raton, FL: CRC Press, 2007) pp. 13.1113.27.Google Scholar
Lippincott-Schwartz, J., Snapp, E. and Kenworthy, A., Studying protein dynamics in living cells. Nat. Rev. Mol. Cell. Biol., 2 (2001), 444456.Google Scholar
Pawley, J. B., Handbook of Biological Confocal Microscopy, 2nd edn. (New York: Springer, 1995).Google Scholar
Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. and Hell, S. W., STED microscopy reveals that synapthotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440 (2006), 935939.Google Scholar
Hell, S. W., Far-field optical nanoscopy. Science, 316 (2007), 11531158.Google Scholar
Betzig, E., Patterson, G. H., Sougrat, R. et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313 (2006), 16421645.Google Scholar
Bates, M., Huang, B., Dempsey, G. T. and Zhuang, X., Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 317 (2007), 17491753.Google Scholar
Lippincott-Schwartz, J. and Manley, S., Putting super-resolution fluorescence microscopy to work. Nat. Meth., 6 (2009), 2123.Google Scholar
Herbert, S., Soares, H., Zimmer, C. and Henriques, R., Single-molecule localization super-resolution microscopy: deeper and faster. Microsc. Microanal., 18 (2012), 14191429.Google Scholar
Piston, D. W. and Kremers, G. J., Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci., 32 (2007), 407414.Google Scholar
Warren, C. M. and Landgraf, R., Signaling through ERBB receptors: multiple layers of diversity and control. Cell. Signal., 18 (2006), 923933.Google Scholar
Needham, S. R., Hirsch, M., Rolfe, D. J. et al., Measuring EGFR separations on cells with ~10 nm resolution via fluorophore localization imaging with photobleaching. PLoS One, 8 (2013), e62331.Google Scholar
Liu, P., Sudhaharan, T., Koh, R. M. et al., Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys. J., 93 (2007), 684698.Google Scholar
Hoenger, A. and McIntosh, J. R., Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol., 21 (2009), 8996.Google Scholar
Kourkoutis, L. F., Plitzko, J. M. and Baumeister, W., Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res., 42 (2012), 3358.Google Scholar
Medalia, O., Weber, I., Frangakis, A. S. et al., Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science, 298 (2002), 12091213.Google Scholar
Fujimoto, K., Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins: application to the immunogold labeling of intercellular junctional complexes. J. Cell Sci., 108 (1995), 34433449.Google Scholar
Bushby, A. J., P'Ng, K. M., Young, R. D. et al., Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat. Protoc., 6 (2011), 845858.Google Scholar
Bergersen, L. H., Storm-Mathisen, J. and Gundersen, V., Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat. Protoc., 3 (2008), 144152.Google Scholar
Larabell, C. A. and Nugent, K. A., Imaging cellular architecture with X-rays. Curr. Opin. Struct. Biol., 20 (2010), 623631.Google Scholar
Peckys, D. B., Korf, U. and de Jonge, N., Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci. Adv., 1 (2015), e1500165.Google Scholar
Peckys, D. B. and de Jonge, N., Studying the stoichiometry of epidermal growth factor receptor in intact cells using correlative microscopy. J. Vis. Exp. (2015). Epub. 2015/09/19.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.Google Scholar
Thiberge, S., Nechushtan, A., Sprinzak, D. et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 3346.Google Scholar
Ring, E. A., Peckys, D. B., Dukes, M. J., Baudoin, J. P. and de Jonge, N., Silicon nitride windows for electron microscopy of whole cells. J. Microsc., 243 (2011), 273283.Google Scholar
Grogan, J. M. and Bau, H. H., The nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Sys., 19 (2010), 885894.Google Scholar
Nishiyama, H., Suga, M., Ogura, T. et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 169 (2010), 438449.Google Scholar
Liv, N., Lazic, I., Kruit, P. and Hoogenboom, J. P., Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy, 143 (2014), 9399.Google Scholar
Stokes, D. J., Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Phil. Trans. R. Soc. Lond. A, 361 (2003), 27712787.Google Scholar
Stokes, D. L., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-SEM) (New York: Wiley, 2008).Google Scholar
Li, N., Zonnevylle, A. C., Narvaez, A. C. et al., Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One, 8 (2013), e55707.Google Scholar
Masenelli-Varlot, K., Malchere, A., Ferreira, J. et al., Wet-STEM tomography: principles, potentialities and limitations. Microsc. Microanal., 20 (2014), 366375.Google Scholar
de Jonge, N., Peckys, D. B., Veith, G. M. et al., Scanning transmission electron microscopy of samples in liquid (liquid STEM). Microsc. Microanal., 13 (2007), 242243.Google Scholar
Ramachandra, R., Demers, H. and de Jonge, N., Atomic-resolution scanning transmission electron microscopy through 50 nm-thick silicon nitride membranes. Appl. Phys. Lett., 98 (2011), 93109.Google Scholar
Liu, K. L., Wu, C. C., Huang, Y. J. et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip, 8 (2008), 19151921.Google Scholar
Klein, K. L., Anderson, I. M. and de Jonge, N., Transmission electron microscopy with a liquid flow cell. J. Microsc., 242 (2011), 117123.Google Scholar
Coskun, U. and Simons, K., Cell membranes: the lipid perspective. Structure, 19 (2011), 15431548.Google Scholar
Arkhipov, A., Shan, Y., Das, R. et al., Architecture and membrane interactions of the EGF receptor. Cell, 152 (2013), 557569.Google Scholar
Normanno, N., De Luca, A., Bianco, C. et al., Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366 (2006), 216.Google Scholar
Schlessinger, J., Signal transduction by allosteric receptor oligomerization. Trends Biochem. Sci., 13 (1988), 443447.Google Scholar
Ullrich, A. and Schlessinger, J., Signal transduction by receptors with tyrosine kinase activity. Cell, 61 (1990), 203212.Google Scholar
Endres, N. F., Das, R., Smith, A. W. et al., Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell, 152 (2013), 543556.Google Scholar
Lidke, D. S., Nagy, P., Heintzmann, R. et al., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol., 22 (2004), 198203.Google Scholar
Tanaka, K. A., Suzuki, K. G., Shirai, Y. M. et al., Membrane molecules mobile even after chemical fixation. Nat. Meth., 7 (2010), 865866.Google Scholar
Glenney, J. R. Jr., Chen, W. S., Lazar, C. S. et al., Ligand-induced endocytosis of the EGF receptor is blocked by mutational inactivation and by microinjection of anti-phosphotyrosine antibodies. Cell, 52 (1988), 675684.Google Scholar
Hoenger, A. and Bouchet-Marquis, C., Cellular tomography. Adv. Protein Chem. Struct. Biol., 82 (2011), 6790.Google Scholar
Sousa, A. A., Azari, A. A., Zhang, G. and Leapman, R. D., Dual-axis electron tomography of biological specimens: extending the limits of specimen thickness with bright-field STEM imaging. J. Struct. Biol., 174 (2011), 107114.Google Scholar
Demers, H., Poirier-Demers, N., Drouin, D. and de Jonge, N., Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc. Microanal., 16 (2010), 795804.Google Scholar
Schuh, T. and de Jonge, N., Liquid scanning transmission electron microscopy: nanoscale imaging in micrometers-thick liquids. C. R. Phys., 15 (2014), 214223.Google Scholar
Ring, E. A. and de Jonge, N., Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron, 43 (2012), 10781084.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charger nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.Google Scholar
Verch, A., Pfaff, M. and de Jonge, N., Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir, 31 (2015), 69566964.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Lillemeier, B. F., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S. and Davis, M. M., Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl. Acad. Sci. USA, 103 (2006), 1899218997.Google Scholar
McBride, J., Treadway, J., Feldman, L. C., Pennycook, S. J. and Rosenthal, S. J., Structural basis for near unity quantum yield core/shell nanocrystals. Nano Lett., 6 (2006), 14961501.Google Scholar
Peckys, D. B., Bandmann, V. and de Jonge, N., Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid. Meth. Cell Biol., 124 (2014), 305322.Google Scholar
Tanaka, K. A., Suzuki, K. G., Shirai, Y. M. et al., Membrane molecules mobile even after chemical fixation. Nat. Meth., 7 (2010), 865866.Google Scholar
Reimer, L. and Kohl, H., Transmission Electron Microscopy: Physics of Image Formation (New York: Springer, 2008).Google Scholar
Pohlmann, E. S., Patel, K., Guo, S. et al., Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett., 15 (2015), 23292335.Google Scholar
Spence, J. C. H., High-Resolution Electron Microscopy, 3rd edn. (Oxford: Oxford University Press, 2003).Google Scholar
Agronskaia, A. V., Valentijn, J. A., van Driel, L. F. et al., Integrated fluorescence and transmission electron microscopy. J. Struct. Biol., 164 (2008), 183189.Google Scholar
Matricardi, V. R., Moretz, R. C. and Parsons, D. F., Electron diffraction of wet proteins: catalase. Science, 177 (1972), 268270.Google Scholar
Siegwart, D. J., Srinivasan, A., Bencherif, S. A. et al., Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromol., 10 (2009), 23002309.Google Scholar
Chithrani, B. D., Ghazani, A. A. and Chan, W. C., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 6 (2006), 662668.Google Scholar
Bright, N. A., Reaves, B. J., Mullock, B. M. and Luzio, J. P., Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J. Cell Sci., 110 (1997), 20272040.Google Scholar
Tantra, R. and Knight, A., Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques. Nanotoxicology, 5 (2011), 381392.Google Scholar
Glavinovic, M. I., Vitale, M. L. and Trifaro, J. M., Comparison of vesicular volume and quantal size in bovine chromaffin cells. Neuroscience, 85 (1998), 957968.Google Scholar
Brandenberger, C., Muhlfeld, C., Ali, Z. et al., Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small, 6 (2010), 16691678.Google Scholar
Sartori, A., Gatz, R., Beck, F. et al., Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol., 160 (2007), 135145.Google Scholar
Gilmore, B. L., Showalter, S. P., Dukes, M. J. et al., Visualizing viral assemblies in a nanoscale biosphere. Lab Chip, 13 (2013), 216219.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
Woehl, T. J., Jungjohann, K. L., Evans, J. E. et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.Google Scholar
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15–17.Google Scholar
Mueller, C., Harb, M., Dwyer, J. R. and Dwayne Miller, R. J., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.Google Scholar
Shu, X., Lev-Ram, V., Deerinck, T. J. et al., A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol., 9 (2011), e1001041.Google Scholar
Gaietta, G., Deerinck, T. J., Adams, S. R. et al., Multicolor and electron microscopic imaging of connexin trafficking. Science, 296 (2002), 503507.Google Scholar
Risco, C., Sanmartin-Conesa, E., Tzeng, W. P. et al., Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure, 20 (2012), 759766.Google Scholar
Tantra, R. and Shard, A., We need answers. Nat. Nanotechnol., 8 (2013), 71.Google Scholar

References

De Carlo, S. and Harris, J. R., Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron, 42 (2011), 117131.Google Scholar
Dubochet, J. et al., Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys., 21 (1988), 129228.Google Scholar
Unwin, N. and Henderson, R., The structure of proteins in biological membranes. Sci. Am., 250 (1984), 7894.Google Scholar
Parsons, D. F., Matricardi, V. R., Moretz, R. C. and Turner, J. N., Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys., 15 (1974), 161270.Google Scholar
Parsons, D. F., Structure of wet specimens in electron microscopy: improved environmental chambers make it possible to examine wet specimens easily. Science, 186 (1974), 407414.Google Scholar
Dukes, M. J., Jacobs, B. W., Morgan, D. G., Hegde, H. and Kelly, D. F., Visualizing nanoparticle mobility in liquid at atomic resolution. Chem. Commun., 49 (2013), 30073009.Google Scholar
Kelly, D. F., Abeyrathne, P. D., Dukovski, D. and Walz, T., The Affinity Grid: a pre-fabricated EM grid for monolayer purification. J. Mol. Biol., 382 (2008), 423433.Google Scholar
Kelly, D. F., Dukovski, D. and Walz, T., A practical guide to the use of monolayer purification and affinity grids. Methods Enzymol., 481 (2010), 83107.Google Scholar
Degen, K., Dukes, M., Tanner, J. R. and Kelly, D. F., The development of affinity capture devices: a nanoscale purification platform for biological in situ transmission electron microscopy. RSC Adv., 2 (2012), 24082412.Google Scholar
Gilmore, B. L., Showalter, S. P., Dukes, M. J. et al., Visualizing viral assemblies in a nanoscale biosphere. Lab Chip, 13 (2013), 216219.Google Scholar
Dukes, M. J., Thomas, R., Damiano, J. et al., Improved microchip design and application for in situ transmission electron microscopy of macromolecules. Microsc. Microanal., 20 (2014), 338345.Google Scholar
Pohlmann, E. S., Patel, K., Guo, S. et al., Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett., 15 (2015), 23292335.Google Scholar
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15–17.Google Scholar
Ring, E. A., Peckys, D. B., Dukes, M. J., Baudoin, J. P. and de Jonge, N., Silicon nitride windows for electron microscopy of whole cells. J. Microsc. Oxford, 243 (2011), 273283.Google Scholar
Cameron Varano, A., Rahimi, A., Dukes, M. J. et al., Visualizing virus particle mobility in liquid at the nanoscale. Chem Commun., 51 (2015), 1617616179.Google Scholar
Scheres, S. H., A Bayesian view on cryo-EM structure determination. J. Mol. Biol., 415 (2012), 406418.Google Scholar
Zhang, X., Settembre, E., Xu, C. et al., Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. USA, 105 (2008), 18671872.Google Scholar
Tilney, L. G., Actin filaments in the acrosomal reaction of Limulus sperm: motion generated by alterations in the packing of the filaments. J. Cell. Biol., 64 (1975), 289310.Google Scholar
Shin, J. H., Tam, B. K., Brau, R. R. et al., Force of an actin spring. Biophys. J., 92 (2007), 37293733.Google Scholar
Wade, R. H., The temperature-dependence of radiation-damage in organic and biological materials. Ultramicroscopy, 14 (1984), 265270.Google Scholar
Leapman, R. D. and Sun, S. Q., Cryoelectron energy-loss spectroscopy: observations on vitrified hydrated specimens and radiation-damage. Ultramicroscopy, 59 (1995), 7179.Google Scholar
Aronova, M. A., Sousa, A. A. and Leapman, R. D., EELS characterization of radiolytic products in frozen samples. Micron, 42 (2011), 252256.Google Scholar
Yakovlev, S., Misra, M., Shi, S. and Libera, M., Specimen thickness dependence of hydrogen evolution during cryo-transmission electron microscopy of hydrated soft materials. J. Microsc. Oxford, 236 (2009), 174179.Google Scholar
Danev, R. and Nagayama, K, Transmission electron microscopy with Zernike phase plate. Ultramicroscopy, 88 (2001), 243252.Google Scholar

References

Sugi, H., Akimoto, T., Chaen, K. et al., Dynamic electron microscopy of ATP-induced myosin head movement in living muscle thick filaments. Proc Natl. Acad. Sci. USA, 94 (1997), 43784382.Google Scholar
Sugi, H., Minoda, H., Inayoshi, Y. et al., Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber. Proc Natl. Acad. Sci. USA, 105 (2008), 1739617401.Google Scholar
Minoda, H., Okabe, T., Inayoshi, Y. et al., Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber. Biochem. Biophys. Res. Commun., 405 (2011), 651656.Google Scholar
Sugi, H., Minoda, H., Miyakawa, T. and Tanokura, M, Electron microscopic recording of the cross-bridge power stroke in hydrated myosin filaments using the gas environmental chamber. J. Muscle Res. Cell Motility, 32 (2011), 34.Google Scholar
Sugi, H., Visualization and recording of the power stroke in individual myosin heads coupled with ATP hydrolysis using the gas environmental chamber. J. Physiol. Sci. Japan, 103 (2013), S53.Google Scholar
Huxley, H. E. and Hanson, J., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, 173 (1954), 973976.Google Scholar
Huxley, H. E., The double array of filaments in cross-striated muscle. J. Biophys. Biochem. Cytol., 3 (1957), 631648.Google Scholar
Woledge, R. C., Curtin, N. A. and Homsher, E., Energetic Aspects of Muscle Contraction (London and New York: Academic Press, 1985).Google Scholar
Bagshaw, C. R., Muscle Contraction (London: Chapman & Hall, 1993).Google Scholar
Huxley, H. E., The mechanism of muscular contraction. Science, 164 (1969), 13561366.Google Scholar
Huxley, A. F., Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 7 (1957), 255318.Google Scholar
Cooke, R., The mechanism of muscle contraction. CRC Crit. Rev. Biochem., 21 (1986), 53118.Google Scholar
Hibbard, M. G. and Trentham, D. R., Relationships between chemical and mechanical events during muscular contraction. Annu. Rev. Biochem., 15 (1986), 119161.Google Scholar
Sugi, H., Molecular mechanism of actin-myosin interaction in muscle contraction. In Sugi, H., ed., Muscle Contraction and Cell Motility, Advances in Comparative & Environmental Physiology Vol. 12 (Berlin: Springer, 1992).Google Scholar
Geeves, M. A. and Holmes, K. C., Structural mechanism of muscle contraction. Annu. Rev. Biochem., 68 (1999), 687728.Google Scholar
Huxley, A. F., Support for the lever arm. Nature, 396 (1998), 317318.Google Scholar
Fukami, A. and Adachi, K., A new method of preparation of a self-perforated micro plastic grid and its application. J. Electron Microsc. (Tokyo), 14 (1965), 112116.Google Scholar
Suda, H., Ishikawa, A. and Fukami, A., Evaluation of the critical electron dose on the contractile activity of hydrated muscle fibers in the film-sealed environmental cell. J. Electron Microsc. (Tokyo), 41 (1992), 223229.Google Scholar
Sutoh, K., Tokunaga, M. and Wakabayashi, T., Electron microscopic mapping of myosin head with site-directed antibodies. J. Mol. Biol., 206 (1989), 357363.Google Scholar
Oiwa, K., Chaen, S. and Sugi, H., Measurement of work done by ATP-induced sliding between rabbit muscle myosin and algal cell actin cables in vitro. J. Physiol. (London), 437 (1991), 751763.Google Scholar
Lymn, R. W. and Taylor, E. W., Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10 (1971), 46174624.Google Scholar
Sugi, H., Chaen, S., Akimoto, T. et al., Electron microscopic recording of myosin head power stroke in hydrated myosin filaments. Sci. Rep., 5 (2015), 15700.Google Scholar
Squire, J. M., The Structural Basis of Muscular Contraction (New York; London: Plenum, 1981).Google Scholar
Sugi, H., Abe, T., Kobayashi, T. et al., Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength. PLOS One, 8 (2013), e63658.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Applications
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Applications
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Applications
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×