Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-03T17:01:50.131Z Has data issue: false hasContentIssue false

23 - Future Prospects for Biomolecular, Biomimetic, and Biomaterials Research Enabled by New Liquid Cell Electron Microscopy Techniques

from Part III - Prospects

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stapels, D. A. C., Ramyar, K. X., Bischoff, M. et al., Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc. Natl. Acad. Sci. USA, 111 (2014), 1318713192.Google Scholar
Kendrew, J. C., Bodo, G., Dintzis, H. M. et al., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181 (1958), 662666.CrossRefGoogle ScholarPubMed
Frank, J., Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct., 31 (2002), 303319.Google Scholar
Schmidt, A., Teeter, M., Weckert, E. and Lamzin, V. S., Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallogr. Sect. F, 67 (2011), 424428.Google Scholar
Bai, X. C., Fernandez, I. S., McMullan, G. and Scheres, S. H. W., Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife, 2 (2013), e00461.Google Scholar
Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. and Subramaniam, S., Structure of beta-galactosidase at 3.2-angstrom resolution obtained by cryo-electron microscopy. Proc. Natl. Acad. Sci. USA, 111 (2014), 1170911714.Google Scholar
Glaeser, R. M., Retrospective: Radiation damage and its associated “Information Limitations”. J. Struct. Biol., 163 (2008), 271276.Google Scholar
Egerton, R. F., Control of radiation damage in the TEM. Ultramicroscopy, 127 (2013), 100108.CrossRefGoogle ScholarPubMed
Gilmore, B. L., Showalter, S. P., Dukes, M. J. et al., Visualizing viral assemblies in a nanoscale biosphere. Lab Chip, 13 (2013), 216219.CrossRefGoogle Scholar
Reimer, L. and Kohl, H., Transmission Electron Microscopy: Physics of Image Formation (New York: Springer, 2008).Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.CrossRefGoogle ScholarPubMed
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.CrossRefGoogle Scholar
Woehl, T. J., Jungjohann, K. L., Evans, J. E. et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.Google Scholar
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15L17.Google Scholar
Evans, J. E. and Browning, N. D., Enabling direct nanoscale observations of biological reactions with dynamic TEM. Microscopy, 62 (2013), 147156.CrossRefGoogle ScholarPubMed
Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A. and Sutter, E. A., In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett., 13 (2013), 29642970.Google Scholar
Lowenstam, H. A. and Weiner, S., On Biomineralization (New York: Oxford University Press, 1989).CrossRefGoogle Scholar
Benzerara, K., Skouri-Panet, F., Li, J. H. et al., Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. USA, 111 (2014), 1093310938.CrossRefGoogle ScholarPubMed
Bazylinski, D. A., Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol, 2 (1999), 7180.Google Scholar
Sumper, M. and Brunner, E., Learning from diatoms: nature’s tools for the production of nanostructured silica. Adv. Funct. Mater., 16 (2006), 1726.CrossRefGoogle Scholar
Woehl, T. J., Kashyap, S., Firlar, E. et al., Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci. Rep., 4 (2014), 6854.CrossRefGoogle ScholarPubMed
Arakaki, A., Webb, J. and Matsunaga, T., A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem., 278 (2003), 87458750.Google Scholar
Poulsen, N., Sumper, M. and Kroger, N., Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. USA, 100 (2003), 1207512080.Google Scholar
Prozorov, T., Bazylinski, D. A., Mallapragada, S. K. and Prozorov, R., Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater. Sci. Eng. R., 74 (2013), 133172.Google Scholar
Lang, C. and Schueler, D., Biomineralization of magnetosomes in bacteria: nanoparticles with potential applications. In Rehm, B., ed., Microbial Bionanotechnology (Wymondham, UK: Horizon Bioscience, 2006) pp. 107124.Google Scholar
Prozorov, T., Palo, P., Wang, L. et al., Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano, 1 (2007), 228233.Google Scholar
Colfen, H. and Antonietti, M., Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed., 44 (2005), 55765591.Google Scholar
Bazylinski, D. A., Garrattreed, A. J. and Frankel, R. B., Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech., 27 (1994), 389401.Google Scholar
Komeili, A., Li, Z., Newmana, D. K. and Jensen, G. J., Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science, 311 (2006), 242245.Google Scholar
Pouget, E. M., Bomans, P. H. H., Goos, J. et al., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 323 (2009), 14551458.Google Scholar
Bazylinski, D. A. and Frankel, R. B., Magnetosome formation in prokaryotes. Nat. Rev. Micro., 2 (2004), 217230.Google Scholar
Faivre, D. and Schüler, D., Magnetotactic bacteria and magnetosomes. Chem. Rev., 108 (2008), 48754898.Google Scholar
Prozorov, T., Mallapragada, S. K., Narasimhan, B. et al., Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater., 17 (2007), 951957.Google Scholar
Epp, E. R., Weiss, H. and Santomasso, A., The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Rad. Res., 34 (1968), 320325.Google Scholar
Komeili, A., Vali, H., Beveridge, T. J. and Newman, D. K., Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. USA, 101 (2004), 38393844.CrossRefGoogle ScholarPubMed
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.CrossRefGoogle ScholarPubMed
Kashyap, S., Woehl, T. J., Liu, X., Mallapragada, S. K. and Prozorov, T., Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. ACS Nano, 8 (2014), 90979106.Google Scholar
ISO/ASTM51540-09, USA, 2009. Standard Practices for Use of Radiochromic Liquid Dosimetry System, ASTM International, West Conshohocken, PA, USA.Google Scholar
Fiester, S. E., Helfinstine, S. L., Redfearn, J. C., Uribe, R. M. and Woolverton, C. J., Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int. J. Microbiol. (2012), 579593.Google Scholar
Ward, G. D., Watson, I. A., Stewart-Tull, D. E. et al., Bactericidal action of high-power Nd:YAG laser light on Escherichia coli in saline suspension. J. Appl. Microbiol., 89 (2000), 517525.Google Scholar
Nandakumar, K., Obika, H., Utsumi, A., Ooie, T. and Yano, T., Molecular level damages of low power pulsed laser radiation in a marine bacterium Pseudoalteromonas carrageenovora. Lett. Appl. Microbiol., 42 (2006), 521526.Google Scholar
Tuszyn’ski, J. A., Portet, S., Dixon, J. M., Luxford, C. and Cantiello, H. F., Ionic wave propagation along actin filaments. Biophys. J., 86 (2004), 18901903.Google Scholar
Cantiello, H. F., Patenaude, C. and Zaner, K., Osmotically induced electrical signals from actin filaments. Biophys. J., 59 (1991), 12841289.Google Scholar
Merla, C., Paffi, A., Apollonio, F. et al., Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell. IEEE Trans. Biomed. Eng., 58 (2011), 12941302.Google Scholar
Cowley, J. M., Twenty forms of electron holography. Ultramicroscopy, 41 (1992), 335348.Google Scholar
Formanek, P., Lenk, A., Lichte, H. et al., Electron holography: applications to materials questions. Annu. Rev. Mater. Res., 37 (2007), 539588.Google Scholar
Dunin-Borkowski, R. E., McCartney, M. R., Kardynal, B. et al., Off-axis electron holography of exchange-biased CoFe/FeMn patterned nanostructures. J Appl. Phys., 90 (2001), 28992902.Google Scholar
Simon, P., Lichte, H., Formanek, P. et al., Electron holography of biological samples. Micron, 39 (2008), 229256.CrossRefGoogle ScholarPubMed
Dunin-Borkowski, R. E., McCartney, M. R., Posfai, M. et al., Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral., 13 (2001), 671684.Google Scholar
Kasama, T., Posfai, M., Chong, R. K. K. et al., Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral., 91 (2006), 12161229.Google Scholar
Simpson, E. T., Kasama, T., Posfai, M. et al., Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography. J. Phys. Conf. Ser., 17 (2005), 108121.Google Scholar
Longchamp, J. N., Latychevskaia, T., Escher, C. and Fink, H. W., Non-destructive imaging of an individual protein. Appl. Phys. Lett., 101 (2012), 093701.Google Scholar
Kawasaki, T., Endo, J., Matsuda, T., Osakabe, N. and Tonomura, A., Applications of holographic interference electron microscopy to the observation of biological specimens. J. Electron Microsc., 35 (1986), 211214.Google Scholar
Pan, Y.-H., Sader, K., Powell, J. J. et al., 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J. Struct. Biol., 166 (2009), 2231.CrossRefGoogle ScholarPubMed
Lichte, H., Banzhof, H. and Huhle, R., Limitations in electron holography of magnetic microstructures. Proc. Int. Congr. Electr. Microsc., ICEM 14, Cancun, Mexico (1998), pp. 559–560.Google Scholar
Krack, M., Hohenberg, H., Kornowski, A. et al., Nanoparticle-loaded magnetophoretic vesicles. J. Am. Chem. Soc., 130 (2008), 73157320.CrossRefGoogle ScholarPubMed
Hopster, H. and Oepen, H. P. (eds.), Magnetic Microscopy of Nanostructures (Berlin: Springer, 2005).CrossRefGoogle Scholar
Eggeman, A. S., Petford-Long, A. K., Dobson, P. J. et al., Synthesis and characterization of silica encapsulated cobalt nanoparticles and nanoparticle chains. J. Magn. Magn. Mater., 301 (2006), 336342.Google Scholar
Tanase, M. and Petford-Long, A. K., In situ TEM observation of magnetic materials. Microsc. Res. Tech., 72 (2009), 187196.Google Scholar
Campbell, G. H., LaGrange, T. B., King, W. E. et al., The HCP to BCC phase transformation in Ti characterized by nanosecond electron microscopy. Solid-Solid Phase Transform. Inorg. Mater. 2005, Proc. Int. Conf., 2 (2005) 443–448.Google Scholar
Pankhurst, Q. A., Connolly, J., Jones, S. K. and Dobson, J., Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys., 36 (2003), R167R181.Google Scholar
Reiss, G. and Huetten, A., Magnetic nanoparticles: applications beyond data storage. Nat. Mater., 4 (2005), 725726.Google Scholar
Förster, S., Amphiphilic block copolymers for templating applications. Top. Curr. Chem., 226 (2003), 128.Google Scholar
Prozorov, T., Unpublished, 2013.Google Scholar
Zhang, L., Song, S. I., Zheng, S. et al., Nontoxic poly(ethylene oxide phosphonamidate) hydrogels as templates for biomimetic mineralization of calcium carbonate and hydroxyapatite architectures. J. Mater. Sci., 48 (2013), 288298.Google Scholar
Dobrunz, D., Toma, A. C., Tanner, P., Pfohl, T. and Palivan, C. G., Polymer nanoreactors with dual functionality: simultaneous detoxification of peroxynitrite and oxygen transport. Langmuir, 28 (2012), 1588915899.Google Scholar
Tanner, P., Baumann, P., Enea, R. et al., Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res., 44 (2011), 10391049.Google Scholar
Goswami, N., Saha, R. and Pal, S. K., Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. J. Nanopart. Res., 13 (2011), 54855495.CrossRefGoogle Scholar
Vriezema, D. M., Aragones, M. C., Elemans, J. A. A. W. et al., Self-assembled nanoreactors, Chem. Rev., 105 (2005), 14451489.Google Scholar
Kashyap, S., Woehl, T., Valverde-Tercedor, C. et al., Visualization of iron-binding micelles in acidic recombinant biomineralization protein, MamC. J. Nanomater. (2014), 320124.CrossRefGoogle Scholar
Karlin, D. and Belshaw, R., Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One, 7 (2012), e31719.Google Scholar
Heyman, A., Medalsy, I., Bet Or, O. et al., Protein scaffold engineering towards tunable surface attachment. Angew. Chem. Int. Ed., 48 (2009), 92909294.Google Scholar
Ghosh, P. S. and Hamilton, A. D., Noncovalent template-assisted mimicry of multiloop protein surfaces: assembling discontinuous and functional domains. J. Am. Chem. Soc., 134 (2012), 1320813211.Google Scholar
Diao, J., Crystal structure of a super leucine zipper, an extended two-stranded super long coiled coil. Protein Sci., 19 (2010), 319326.Google Scholar
Dedeo, M. T., Duderstadt, K. E., Berger, J. M. and Francis, M. B., Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett., 10 (2010), 181186.Google Scholar
Aniagyei, S. E., DuFort, C., Kao, C. C. and Dragnea, B., Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem., 18 (2008), 37633774.Google Scholar
Sun, J., DuFort, C., Daniel, M.-C. et al., Core-controlled polymorphism in virus-like particles. Proc. Natl. Acad. Sci. USA, 104 (2007), 13541359.Google Scholar
Vatta, L. L., Sanderson, R. D. and Koch, K. R., Magnetic nanoparticles: properties and potential applications. Pure Appl. Chem., 78 (2006), 17931801.Google Scholar
Ai, H., Flask, C., Weinberg, B. et al., Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater., 17 (2005), 19491952.Google Scholar
Berry, C. C. and Curtis, A. S. G., Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 36 (2003), R198R206.Google Scholar
Chiancone, E., Ceci, P., Ilari, A., Ribacchi, F. and Stefanini, S., Iron and proteins for iron storage and detoxification. BioMetals, 17 (2004), 197202.Google Scholar
Busch, A. P., Rhinow, D., Yang, F. et al., Site-selective biomineralization of native biological membranes. J. Mater. Chem. B, 2 (2014), 69246930.CrossRefGoogle ScholarPubMed
Baumgartner, J., Morin, G., Menguy, N. et al., Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. Proc. Natl. Acad. Sci. USA, 110 (2013), 1488314888.Google Scholar
Baumgartner, J. and Faivre, D., Magnetite biomineralization in bacteria. Prog. Mol. Subcell. Biol., 52 (2011), 327.Google Scholar
Penn, R. L. and Banfield, J. F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 281 (1998), 969971.Google Scholar
Gao, B., Arya, G. and Tao, A. R., Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotechnol., 7 (2012), 433437.Google Scholar
Nakagawa, Y., Kageyama, H., Oaki, Y. and Imai, H., Direction control of oriented self-assembly for 1D, 2D, and 3D microarrays of anisotropic rectangular nanoblocks. J. Am. Chem. Soc., 136 (2014), 37163719.Google Scholar
Song, R. Q. and Colfen, H., Mesocrystals-ordered nanoparticle superstructures. Adv. Mater., 22 (2010), 13011330.CrossRefGoogle ScholarPubMed
Sun, B. L., Wen, M., Wu, Q. S. and Peng, J., Oriented growth and assembly of Ag@C@Co pentagonalprism nanocables and their highly active selected catalysis along the edges for dehydrogenation. Adv. Funct. Mater., 22 (2012), 28602866.Google Scholar
Ihli, J., Bots, P., Kulak, A., Benning, L. G. and Meldrum, F. C., Elucidating mechanisms of diffusion-based calcium carbonate synthesis leads to controlled mesocrystal formation. Adv. Funct. Mater., 23 (2013), 19651973.Google Scholar
Niederberger, M. and Colfen, H., Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys., 8 (2006), 32713287.Google Scholar
Frandsen, C., Legg, B. A., Comolli, L. R. et al., Aggregation-induced growth and transformation of beta-FeOOH nanorods to micron-sized alpha-Fe2O3 spindles. CrystEngComm, 16 (2014), 14511458.Google Scholar
Wang, Y., DePrince, A. E., Gray, S. K., Lin, X. M. and Pelton, M., Solvent-mediated end-to-end assembly of gold nanorods. J. Phys. Chem. Lett., 1 (2010), 26922698.Google Scholar
Colfen, H. and Antonietti, M., Mesocrystals and Nonclassical Crystallization (Chichester, UK: Wiley, 2008).Google Scholar
Woehl, T. J. and Prozorov, T., The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C, 119 (2015), 2126121269.Google Scholar
Burrows, N. D., Hale, C. R. H. and Penn, R. L., Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des., 12 (2012), 47874797.Google Scholar
Penn, R. L. and Soltis, J. A., Characterizing crystal growth by oriented aggregation. CrystEngComm, 16 (2014), 14091418.Google Scholar
Ahmed, W., Laarman, R. P. B., Hellenthal, C. et al., Dipole directed ring assembly of Ni-coated Au-nanorods. Chem. Commun., 46 (2010), 67116713.Google Scholar
Chai, J., Liao, X., Giam, L. R. and Mirkin, C. A., Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc., 134 (2012), 158161.Google Scholar
Yang, M. X., Chen, G., Zhao, Y. F. et al., Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys. Chem. Chem. Phys., 12 (2010), 1185011860.Google Scholar
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.Google Scholar
Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D., Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects, pattern analysis and machine intelligence. IEEE Trans. Pattern Anal. Mach. Intell., 37 (2014), 611624.Google Scholar
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Liao, H. G., Zherebetskyy, D., Xin, H. L. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×