Skip to main content
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 13
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Merz, Simon Meyerhoff, Hauke S. Spence, Charles and Frings, Christian 2019. Implied tactile motion: Localizing dynamic stimulations on the skin. Attention, Perception, & Psychophysics,

    Gorman, Adam D. Abernethy, Bruce and Farrow, Damian 2018. Reduced attentional focus and the influence on expert anticipatory perception. Attention, Perception, & Psychophysics, Vol. 80, Issue. 1, p. 166.

    Hast, Michael 2018. Representational momentum in displacement tasks: Relative object weight matters in toddlers’ search behavior. International Journal of Behavioral Development, p. 016502541882068.

    De Sá Teixeira, Nuno Alexandre Kerzel, Dirk Hecht, Heiko and Lacquaniti, Francesco 2017. A novel dissociation between representational momentum and representational gravity through response modality. Psychological Research,

    Weilnhammer, Veith A. Sterzer, Philipp Hesselmann, Guido and de Lange, Floris P 2016. Perceptual Stability of the Lissajous Figure Is Modulated by the Speed of Illusory Rotation. PLOS ONE, Vol. 11, Issue. 8, p. e0160772.

    Carlile, Simon and Leung, Johahn 2016. The Perception of Auditory Motion. Trends in Hearing, Vol. 20, Issue. , p. 233121651664425.

    Greenstein, Michael Franklin, Nancy Martins, Mariana Sewack, Christine and Meier, Markus A. 2016. When anticipation beats accuracy: Threat alters memory for dynamic scenes. Memory & Cognition, Vol. 44, Issue. 4, p. 633.

    Wolff, Phillip and Barbey, Aron K. 2015. Causal reasoning with forces. Frontiers in Human Neuroscience, Vol. 9, Issue. ,

    Munger, Margaret P. 2015. The ministry of silly walks’ report: representational momentum sensitive to awkwardness following action, not single posture. Visual Cognition, Vol. 23, Issue. 6, p. 796.

    Hubbard, Timothy L. 2014. Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, Vol. 21, Issue. 6, p. 1371.

    Feinkohl, Arne Locke, Shannon M. Leung, Johahn and Carlile, Simon 2014. The effect of velocity on auditory representational momentum. The Journal of the Acoustical Society of America, Vol. 136, Issue. 1, p. EL20.

    Schmiedchen, Kristina Freigang, Claudia Rübsamen, Rudolf and Richter, Nicole 2013. A comparison of visual and auditory representational momentum in spatial tasks. Attention, Perception, & Psychophysics, Vol. 75, Issue. 7, p. 1507.

    Hubbard, Timothy L and Courtney, Jon R 2010. Cross-Modal Influences on Representational Momentum and Representational Gravity. Perception, Vol. 39, Issue. 6, p. 851.

    ×
  • Print publication year: 2010
  • Online publication date: October 2010

20 - Approaches to representational momentum: theories and models

from Part IV - Spatial phenomena: forward shift effects
Summary

Summary

Memory for the final position of a target is usually displaced in the direction of target motion, a finding referred to as representational momentum. There are several different approaches to explaining representational momentum, and these approaches range from low-level perceptual mechanisms (e.g., oculomotor behavior) to high-level cognitive mechanisms (e.g., internalization of the effects of momentum). These approaches are overviewed, and a classification system involving internalization theories, belief-based theories, neointernalization theories, low-level theories, and network models is proposed. The extent to which each approach is consistent with the wide range of existent empirical data regarding representational momentum is noted, and possible directions of and considerations for a more unified theory of displacement are addressed.

Memory for the final position of a previously viewed target is often displaced in the direction of target motion. This forward displacement has been referred to as representational momentum (Freyd & Finke 1984) and is influenced by numerous variables (Hubbard 1995b, 2005). Although initial studies of representational momentum appeared consistent with the hypothesis that observers internalize or incorporate the principle of momentum into the representation of the target, subsequent studies reported displacement inconsistent with such a literal internalization or incorporation of momentum. For example, variables other than implied momentum such as conceptual knowledge about target identity (Reed & Vinson 1996), expectations regarding future target motion (Verfaillie & d'Ydewalle 1991; Johnston & Jones 2006), attributions about the source of target motion (Hubbard & Ruppel 2002; Hubbard & Favretto 2003), and whether observers visually track the target (Kerzel 2000; Kerzel et al. 2001) influence displacement.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Space and Time in Perception and Action
  • Online ISBN: 9780511750540
  • Book DOI: https://doi.org/10.1017/CBO9780511750540
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
References
Bertamini, M. (2002). Representational momentum, internalized dynamics, and perceptual adaptation. Vis Cogn 9: 195–216.
Bonnet, C., Le Gall, M., & Lorenceau, J. (1984). Visual motion aftereffects: adaptation and conditioned processes. In L., Spillman & B. R., Wooten (eds.), Sensory Experience, Adaptation, and Perception. Hillsdale, NJ: Erlbaum.
Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. J Exp Psychol Hum Percept Perform 22: 480–501.
Brouwer, A. M., Franz, V. H., & Thornton, I. M. (2004). Representational momentum in perception and grasping: translating versus transforming object. J Vis 4: 575–584.
Conners, F. A., Wyatt, B. S., & Dulaney, C. L. (1998). Cognitive representation of motion in individuals with mental retardation. Am J Ment Retard 102: 438–450.
Cooper, L. A., & Munger, M. P. (1993). Extrapolations and remembering positions along cognitive trajectories: uses and limitations of analogies to physical momentum. In N., Eilen, R., McCarthy, & B., Brewer (eds.), Spatial Representation: Problems in Philosophy and Psychology (112–131). Cambridge, MA: Blackwell.
Courtney, J. R., & Hubbard, T. L. (2008). Spatial memory and explicit knowledge: an effect of instruction on representational momentum. Q J Exp Psychol 61: 1778–1784.
Dawson, M. R. W. (1998). Understanding Cognitive Science. Cambridge, MA: Blackwell.
Desmurget, M., & Grafton, S. (2003). Feedback or feedforward control: end of a dichotomy. In S. H., Johnson-Frey (ed.), Taking Action: Cognitive Neuroscience Perspectives on Intentional Acts (289–338). Cambridge, MA: MIT Press.
Erlhagen, W. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.
Erlhagen, W., & Jancke, D. (1999). Motion waves in primary visual cortex as a neural correlate for the perception of moving objects. Abstracts of the Society Neuroscience 25: 679.
Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: a modeling study. Vis Cogn 11: 315–340.
Faust, M. (1990). Representational Momentum: A Dual Process Perspective. Unpublished doctoral dissertation, University of Oregon, Eugene, OR.
Finke, R. A., & Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. J Exp Psychol Learn Mem Cogn 11: 780–794.
Finke, R. A., & Freyd, J. J. (1989). Mental extrapolation and cognitive penetrability: reply to Ranney and proposals for evaluative criteria. J Exp Psychol Gen 118: 403–408.
Finke, R. A., Freyd, J. J., & Shyi, G. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory. J Exp Psychol Gen 115: 175–188.
Finke, R. A., & Shyi, G. C. W. (1988). Mental extrapolation and representational momentum for complex implied motions. J Exp Psychol Learn Mem Cogn 14: 112–120.
Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Percept Psychophys 33: 575–581.
Freyd, J. J. (1987). Dynamic mental representations. Psychol Rev 94: 427–438.
Freyd, J. J. (1992). Dynamic representations guiding adaptive behavior. In F., Macar, V., Pouthas, & W. J., Friedman (eds.), Time, Action, and Cognition: Towards Bridging the Gap (309–323). Dordrecht: Kluwer Academic Publishers.
Freyd, J. J. (1993). Five hunches about perceptual processes and dynamic representations. In D., Meyer & S., Kornblum (eds.), Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience (99–119). Cambridge, MA: MIT Press.
Freyd, J. J., & Finke, R. A. (1984). Representational momentum. J Exp Psychol Learn Mem Cogn 10: 126–132.
Freyd, J. J., & Finke, R. A. (1985). A velocity effect for representational momentum. Bull Psychon Soc 23: 443–446.
Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. J Exp Psychol Learn Mem Cogn 13: 259–269.
Freyd, J. J., & Jones, K. T. (1994). Representational momentum for a spiral path. J Exp Psychol Learn Mem Cogn 20: 968–976.
Freyd, J. J., Kelly, M. H., & DeKay, M. L. (1990). Representational momentum in memory for pitch. J Exp Psychol Learn Mem Cogn 16: 1107–1117.
Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. J Exp Psychol Gen 117: 395–407.
Futterweit, L. R., & Beilin, H. (1994). Recognition memory for movement in photographs: a developmental study. J Exp Child Psychol 57: 163–179.
Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception 33: 591–599.
Halpern, A. R., & Kelly, M. H. (1993). Memory biases in left versus right implied motion. J Exp Psychol Learn Mem Cogn 19: 471–484.
Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Vis Cogn 9: 8–27.
Hubbard, T. L. (1990). Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Memory & Cognition 18: 299–309.
Hubbard, T. L. (1993a). Auditory representational momentum: musical schemata and modularity. Bull Psychon Soc 31: 201–204.
Hubbard, T. L. (1993b). The effects of context on visual representational momentum. Memory & Cognition 21: 103–114.
Hubbard, T. L. (1994). Judged displacement: a modular process? Am J Psychol 107: 359–373.
Hubbard, T. L. (1995a). Cognitive representation of motion: evidence for representational friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21: 241–254.
Hubbard, T. L. (1995b). Environmental invariants in the representation of motion: implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychon Bull Rev 2: 322–338.
Hubbard, T. L. (1996). Representational momentum, centripetal force, and curvilinear impetus. J Exp Psychol Learn Mem Cogn 22: 1049–1060.
Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: effects of implied weight and evidence of representational gravity. J Exp Psychol Learn Mem Cogn 23: 1484–1493.
Hubbard, T. L. (1998a). Representational momentum and other displacements in memory as evidence for nonconscious knowledge of physical principles. In S., Hameroff, A., Kaszniak, & A., Scott (eds.), Towards a Science of Consciousness II: The Second Tucson Discussions and Debates (505–512). Cambridge, MA: MIT Press.
Hubbard, T. L. (1998b). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets. Can J Exp Psychol 52: 44–49.
Hubbard, T. L. (1999). How consequences of physical principles influence mental representation: the environmental invariants hypothesis. In P. R., Killeen & W. R., Uttal (eds.), Fechner Day 99: The End of 20th Century Psychophysics. Proceedings of the 15th Annual Meeting of the International Society for Psychophysics (274–279). Tempe, AZ: The International Society for Psychophysics.
Hubbard, T. L. (2004). The perception of causality: insights from Michotte's launching effect, naive impetus theory, and representational momentum. In A. M., Oliveira, M.P., Teixeira, G. F., Borges, & M. J., Ferro (eds.), Fechner Day 2004 (116–121). Coimbra, Portugal: The International Society for Psychophysics.
Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the findings. Psychon Bull Rev 12: 822–851.
Hubbard, T. L. (2006a). Bridging the gap: possible roles and contributions of representational momentum. Psicologica 27: 1–34.
Hubbard, T. L. (2006b). Computational theory and cognition in representational momentum and related types of displacement: a reply to Kerzel. Psychon Bull Rev 13: 174–177.
Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Percept Psychophys 44: 211–221.
Hubbard, T. L., Blessum, J. A., & Ruppel, S. E. (2001). Representational momentum and Michotte's (1946/1963) “Launching Effect” paradigm. J Exp Psychol Learn Mem Cogn 27: 294–301.
Hubbard, T. L., & Courtney, J. R. (2006). Evidence for a separation of perceptual and cognitive dynamics. In L., Albertazzi (ed.), Visual Depictive Thought (71–97). New York: Benjamins Publishing Company.
Hubbard, T. L., & Favretto, A. (2003). Explorations of Michotte's “Tool Effect”: evidence from representational momentum. Psychol Res 67: 134–152.
Hubbard, T. L., Kumar, A. M., & Carp, C. L. (2009). Effects of spatial cueing on representational momentum. J Exp Psychol Learn Mem Cogn. 35: 666–677.
Hubbard, T. L., Matzenbacher, D. L., & Davis, S. E. (1999). Representational momentum in children: dynamic information and analogue representation. Percept Mot Skills 88: 910–916.
Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and landmark attraction effects. Can J Exp Psychol 53: 242–256.
Hubbard, T. L., & Ruppel, S. E. (2002). A possible role of naive impetus in Michotte's “Launching Effect:” evidence from representational momentum. Vis Cogn 9: 153–176.
Jarrett, C. B., Phillips, M., Parker, A., & Senior, C. (2002). Implicit motion perception in schizotypy and schizophrenia: a representational momentum study. Cogn Neuropsychiatry 7: 1–14.
Johnston, H., & Jones, M. R. (2006). Higher-order pattern structure influences auditory representational momentum. J Exp Psychol Hum Percept Perform 32: 2–17.
Joordens, S., Spalek, T. M., Razmy, S., & van Duijn, M. (2004). A clockwork orange: compensation opposing momentum in memory for location. Memory & Cognition 32: 39–50.
Jordan, J. S. (1998). Recasting Dewey's critique of the reflex-arc concept via a theory of anticipatory consciousness: implications for theories of perception. New Ideas Psychol 16: 165–187.
Jordan, J. S., & Hunsinger, M. (2008). Learned patterns of action-effect extrapolation contribute to the spatial displacement of continuously moving stimuli. J Exp Psychol Hum Percept Perform 34(1): 113–124.
Jordan, J. S., & Knoblich, G. (2004). Spatial perception and control. Psychon Bull Rev 11: 54–59.
Jordan, J. S., Stork, S., Knuf, L., Kerzel, D., & Müsseler, J. (2002). Action planning affects spatial localization. In W., Prinz & B., Hommel (eds.), Attention and Performance XIX: Common Mechanisms in Perception and Action. (158–176). New York: Oxford University Press.
Kaiser, M. K., Proffitt, D. R., & Anderson, K. (1985). Judgments of natural and anomalous trajectories in the presence and absence of motion. J Exp Psychol Learn Mem Cognition 11: 795–803.
Kaiser, M. K., Proffitt, D. R., Whelan, S. M., & Hecht, H. (1992). Influence of animation on dynamical judgments. J Exp Psychol Hum Percept Perform 18: 669–690.
Kelly, M. H., & Freyd, J. J. (1987). Explorations of representational momentum. Cogn Psychol 19: 369–401.
Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Res 40: 3703–3715.
Kerzel, D. (2002a). A matter of design: no representational momentum without predictability. Vis Cogn 9: 66–80.
Kerzel, D. (2002b). Attention shifts and memory averaging. Q J Exp Psychol 55(A): 425–443.
Kerzel, D. (2002c). The locus of “memory displacement” is at least partially perceptual: effects of velocity, expectation, friction, memory averaging, and weight. Percept Psychophys 64: 680–692.
Kerzel, D. (2003a). Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.
Kerzel, D. (2003b). Centripetal force draws the eyes, not memory of the target, toward the center. J Exp Psychol Learn Mem Cogn 29: 458–466.
Kerzel, D. (2003c). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Res 43: 2623–2635.
Kerzel, D. (2005). Representational momentum beyond internalized physics. Curr Dir Psychol Sci 14: 180–184.
Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum.”Psychon Bull Rev 13: 166–173.
Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13: 1975–1978.
Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. J Exp Psychol Hum Percept Perform 27: 829–840.
Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics: dissociation between explicit and implicit knowledge about motion. Psychon Bull Rev 8: 439–453.
Marr, D. (1982). Vision. New York: W. H. Freeman and Company.
McCloskey, M. (1983). Naive theories of motion. In D., Gentner & A. L., Stevens (eds.), Mental Models (299–324). Hillsdale, NJ: Erlbaum.
McCloskey, M., & Kohl, D. (1983). Naive physics: the curvilinear impetus principle and its role in interactions with moving objects. J Exp Psychol Learn Mem Cogn 9: 146–156.
Michotte, A. (1963). The Perception of Causality (T. R., Miles & E., Miles, Trans.). New York: Basic Books (original work published 1946).
Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. J Exp Psychol Learn Mem Cogn 34: 1076–1083.
Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object's location. Vis Cogn 9: 177–194.
Munger, M. P., & Owens, T. R. (2004). Representational momentum and the flash-lag effect. Vis Cogn 11: 81–103.
Munger, M. P., Solberg, J. L., & Horrocks, K. K. (1999). On the relation between mental rotation and representational momentum. J Exp Psychol Learn Mem Cogn 25: 1557–1568.
Munger, M. P., Solberg, J. L., Horrocks, K. K., & Preston, A. S. (1999). Representational momentum for rotations in depth: effects of shading and axis. J Exp Psychol Learn Mem Cogn 25: 157–171.
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: the Fröhlich effect and an attention-shifting explanation, Percept Psychophys 60: 683–695.
Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: the Fröhlich effect, the flash-lag, and representational momentum. Vis Cogn 9: 120–138.
Müsseler, J., van der Heijden, A. H. C., Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Percept Psychophys 61: 1646–1661.
Nijhawan, R. (2002). Neural delays, visual motion and flash-lag effect. Trends Cogn Sci 6: 387–393.
Poljansek, A. (2002). The effect of motion acceleration on displacement of continuous and staircase motion in the frontoparallel plane. Psiholoska obzorja/Horizons of Psychology 11: 7–21.
Raymond, J. E., O'Donnell, H. L., & Tipper, S. P. (1998). Successive episodes produce direction contrast effects in motion perception. Vision Res 38: 579–590.
Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. J Exp Psychol Hum Percept Perform 22: 839–850.
Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cogn Psychol 8: 382–439.
Rosenbaum, D. A., Kenny, S., & Derr, M. A. (1983). Hierarchical control of rapid motor sequences. J Exp Psychol Hum Percept Perform 9: 86–102.
Ruppel, S. E., Fleming, C. N., & Hubbard, T. L. (2009). Representational momentum is not (totally) impervious to error feedback. Can J Exp Psychol 63: 49–58.
Senior, C., Barnes, J., & David, A. S. (2001). Mental imagery increases representational momentum: preliminary findings. J Ment Imagery 25: 177–184.
Shepard, R. N. (1975). Form, formation, and transformation of internal representations. In R. L., Solso (ed.), Information Processing and Cognition: The Loyola Symposium (87–122). Hillsdale, NJ: Erlbaum.
Shepard, R. N. (1981). Psychophysical complementarity. In M., Kubovy & J. R., Pomerantz (eds.), Perceptual Organization (279–341). Hillsdale, NJ: Erlbaum.
Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: shapes of states. Cogn Psychol 1: 1–17.
Thornton, I. M., & Hayes, A. E. (2004). Anticipating action in complex scenes. Vis Cogn 11: 341–370.
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogn Psychol 12: 97–136.
Verfaillie, K., & d'Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. J Exp Psychol Learn Mem Cogn 17: 302–313.
Vinson, N. G., & Reed, C. R. (2002). Sources of object-specific effect in representational momentum. Vis Cogn 9: 41–65.
Whitney, D., & Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli. Vis Cogn 9: 139–152.