Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T11:57:02.867Z Has data issue: false hasContentIssue false

Chapter 22 - Autoimmune antibody-associated encephalopathy and dementia syndromes

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gultekin, SH, Rosenfeld, MR, Voltz, R, Eichen, J, Posner, JB, Dalmau, J. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain: A Journal of Neurology. 2000;123(Pt 7):1481–94.CrossRefGoogle ScholarPubMed
Dalmau, J, Rosenfeld, MR. Paraneoplastic syndromes of the CNS. Lancet Neurology. 2008;7(4):327–40.CrossRefGoogle ScholarPubMed
Geschwind, MD, Tan, KM, Lennon, VA, Barajas, RF Jr., Haman, A, Klein, CJ, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt-Jakob disease. Archives of Neurology. 2008;65(10):1341–6.CrossRefGoogle ScholarPubMed
Geschwind, MD, Josephs, KA, Parisi, JE, Keegan, BM. A 54-year-old man with slowness of movement and confusion. Neurology. 2007;69(19):1881–7.CrossRefGoogle ScholarPubMed
Lancaster, E, Martinez-Hernandez, E, Dalmau, J. Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology. 2011;77(2):179–89.CrossRefGoogle ScholarPubMed
McKeon, A, Robinson, MT, McEvoy, KM, Matsumoto, JY, Lennon, VA, Ahlskog, JE, et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Archives of Neurology. 2012;69(2):230–8.CrossRefGoogle Scholar
Hoftberger, R, Titulaer, MJ, Sabater, L, Dome, B, Rozsas, A, Hegedus, B, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology. 2013;81(17):1500–6.CrossRefGoogle ScholarPubMed
Vernino, S, Tuite, P, Adler, CH, Meschia, JF, Boeve, BF, Boasberg, P, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Annals of Neurology. 2002;51(5):625–30.CrossRefGoogle ScholarPubMed
Chong, JY, Rowland, LP, Utiger, RD. Hashimoto encephalopathy: syndrome or myth? Archives of Neurology. 2003;60(2):164–71.CrossRefGoogle ScholarPubMed
Graus, F, Saiz, A, Dalmau, J. Antibodies and neuronal autoimmune disorders of the CNS. Journal of Neurology. 2010;257(4):509–17.CrossRefGoogle ScholarPubMed
Bien, CG, Vincent, A, Barnett, MH, Becker, AJ, Blumcke, I, Graus, F, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain: A Journal of Neurology. 2012;135(Pt 5):1622–38.CrossRefGoogle ScholarPubMed
Graus, F, Saiz, A, Lai, M, Bruna, J, Lopez, F, Sabater, L, et al. Neuronal surface antigen antibodies in limbic encephalitis: clinical-immunologic associations. Neurology. 2008;71(12):930–6.Google ScholarPubMed
O’Toole, O, Clardy, S, Lin Quek, AM. Paraneoplastic and autoimmune encephalopathies. Seminars in Neurology. 2013;33(4):357–64.CrossRefGoogle ScholarPubMed
Zuliani, L, Graus, F, Giometto, B, Bien, C, Vincent, A. Central nervous system neuronal surface antibody associated syndromes: review and guidelines for recognition. Journal of Neurology, Neurosurgery, and Psychiatry. 2012;83(6):638–45.CrossRefGoogle Scholar
Granerod, J, Ambrose, HE, Davies, NW, Clewley, JP, Walsh, AL, Morgan, D, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. The Lancet Infectious Diseases. 2010;10(12):835–44.CrossRefGoogle ScholarPubMed
Davies, G, Irani, SR, Coltart, C, Ingle, G, Amin, Y, Taylor, C, et al. Anti-N-methyl-D-aspartate receptor antibodies: a potentially treatable cause of encephalitis in the intensive care unit. Critical Care Medicine. 2010;38(2):679–82.CrossRefGoogle ScholarPubMed
Gable, MS, Sheriff, H, Dalmau, J, Tilley, DH, Glaser, CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2012;54(7):899904.Google ScholarPubMed
McKeon, A, Lennon, VA, Pittock, SJ. Immunotherapy-responsive dementias and encephalopathies. Continuum. 2010;16(2 Dementia):80101.CrossRefGoogle ScholarPubMed
Demaerel, P, Van Dessel, W, Van Paesschen, W, Vandenberghe, R, Van Laere, K, Linn, J. Autoimmune-mediated encephalitis. Neuroradiology. 2011;53(11):837–51.CrossRefGoogle ScholarPubMed
Dalmau, J, Lancaster, E, Martinez-Hernandez, E, Rosenfeld, MR, Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurology. 2011;10(1):6374.CrossRefGoogle ScholarPubMed
McKeon, A. Immunotherapeutics for autoimmune encephalopathies and dementias. Current Treatment Options in Neurology. 2013;15(6):723–37.CrossRefGoogle ScholarPubMed
Gabilondo, I, Saiz, A, Galan, L, Gonzalez, V, Jadraque, R, Sabater, L, et al. Analysis of relapses in anti-NMDAR encephalitis. Neurology. 2011;77(10):996–9.CrossRefGoogle ScholarPubMed
Dalmau, J, Tuzun, E, Wu, HY, Masjuan, J, Rossi, JE, Voloschin, A, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Annals of Neurology. 2007;61(1):2536.Google Scholar
Cahalan, S. Brain on Fire: My Month of Madness. New York: Free Press; 2012.CrossRefGoogle ScholarPubMed
Pruss, H, Dalmau, J, Harms, L, Holtje, M, Ahnert-Hilger, G, Borowski, K, et al. Retrospective analysis of NMDA receptor antibodies in encephalitis of unknown origin. Neurology. 2010;75(19):1735–9.CrossRefGoogle ScholarPubMed
Dalmau, J, Gleichman, AJ, Hughes, EG, Rossi, JE, Peng, X, Lai, M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurology. 2008;7(12):1091–8.CrossRefGoogle ScholarPubMed
Hughes, EG, Peng, X, Gleichman, AJ, Lai, M, Zhou, L, Tsou, R, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2010;30(17):5866–75.CrossRefGoogle ScholarPubMed
Martinez-Hernandez, E, Horvath, J, Shiloh-Malawsky, Y, Sangha, N, Martinez-Lage, M, Dalmau, J. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology. 2011;77(6):589–93.CrossRefGoogle ScholarPubMed
Mikasova, L, De Rossi, P, Bouchet, D, Georges, F, Rogemond, V, Didelot, A, et al. Disrupted surface cross-talk between NMDA and ephrin-B2 receptors in anti-NMDA encephalitis. Brain: A Journal of Neurology. 2012;135(Pt 5):1606–21.CrossRefGoogle ScholarPubMed
Manto, M, Dalmau, J, Didelot, A, Rogemond, V, Honnorat, J. Afferent facilitation of corticomotor responses is increased by IgGs of patients with NMDA-receptor antibodies. Journal of Neurology. 2011;258(1):2733.CrossRefGoogle ScholarPubMed
Iizuka, T, Yoshii, S, Kan, S, Hamada, J, Dalmau, J, Sakai, F, et al. Reversible brain atrophy in anti-NMDA receptor encephalitis: a long-term observational study. Journal of Neurology. 2010;257(10):1686–91.CrossRefGoogle ScholarPubMed
Zhang, Q, Tanaka, K, Sun, P, Nakata, M, Yamamoto, R, Sakimura, K, et al. Suppression of synaptic plasticity by cerebrospinal fluid from anti-NMDA receptor encephalitis patients. Neurobiology of Disease. 2012;45(1):610–15.CrossRefGoogle Scholar
Irani, SR, Bera, K, Waters, P, Zuliani, L, Maxwell, S, Zandi, MS, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain: A Journal of Neurology. 2010;133(Pt 6):1655–67.CrossRefGoogle ScholarPubMed
Florance, NR, Davis, RL, Lam, C, Szperka, C, Zhou, L, Ahmad, S, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Annals of Neurology. 2009;66(1):1118.CrossRefGoogle Scholar
Titulaer, MJ, Hoftberger, R, Iizuka, T, Leypoldt, F, McCracken, L, Cellucci, T, et al. Overlapping demyelinating syndromes and anti-NMDA receptor encephalitis. Annals of Neurology. 2014;75(3):411–28.CrossRefGoogle ScholarPubMed
Viaccoz, A, Desestret, V, Ducray, F, Picard, G, Cavillon, G, Rogemond, V, et al. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology. 2014;82(7):55663.CrossRefGoogle ScholarPubMed
Dale, RC, Irani, SR, Brilot, F, Pillai, S, Webster, R, Gill, D, et al. N-methyl-D-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Annals of Neurology. 2009;66(5):704–9.CrossRefGoogle ScholarPubMed
Gresa-Arribas, N, Titulaer, MJ, Torrents, A, Aguilar, E, McCracken, L, Leypoldt, F, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurology. 2014;13(2):167–77.CrossRefGoogle ScholarPubMed
Suh-Lailam, BB, Haven, TR, Copple, SS, Knapp, D, Jaskowski, TD, Tebo, AE. Anti-NMDA-receptor antibody encephalitis: performance evaluation and laboratory experience with the anti-NMDA-receptor IgG assay. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2013;421:16.CrossRefGoogle ScholarPubMed
Dahm, L, Ott, C, Steiner, J, Stepniak, B, Teegen, B, Saschenbrecker, S, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Annals of Neurology. 2014;76(1):8294.CrossRefGoogle ScholarPubMed
Iizuka, T, Sakai, F, Ide, T, Monzen, T, Yoshii, S, Iigaya, M, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70(7):504–11.CrossRefGoogle ScholarPubMed
Bayreuther, C, Bourg, V, Dellamonica, J, Borg, M, Bernardin, G, Thomas, P. Complex partial status epilepticus revealing anti-NMDA receptor encephalitis. Epileptic Disorders: International Epilepsy Journal with Videotape. 2009;11(3):261–5.CrossRefGoogle ScholarPubMed
Johnson, N, Henry, C, Fessler, AJ, Dalmau, J. Anti-NMDA receptor encephalitis causing prolonged nonconvulsive status epilepticus. Neurology. 2010;75(16):1480–2.CrossRefGoogle ScholarPubMed
Titulaer, MJ, McCracken, L, Gabilondo, I, Armangue, T, Glaser, C, Iizuka, T, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurology. 2013;12(2):157–65.CrossRefGoogle ScholarPubMed
Ishiura, H, Matsuda, S, Higashihara, M, Hasegawa, M, Hida, A, Hanajima, R, et al. Response of anti-NMDA receptor encephalitis without tumor to immunotherapy including rituximab. Neurology. 2008;71(23):1921–3.CrossRefGoogle ScholarPubMed
Leypoldt, F, Titulaer, MJ, Aguilar, E, Walther, J, Bonstrup, M, Havemeister, S, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology. 2013;81(18):1637–9.CrossRefGoogle ScholarPubMed
Armangue, T, Leypoldt, F, Malaga, I, Raspall-Chaure, M, Marti, I, Nichter, C, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Annals of Neurology. 2014;75(2):317–23.CrossRefGoogle ScholarPubMed
Hacohen, Y, Deiva, K, Pettingill, P, Waters, P, Siddiqui, A, Chretien, P, et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Movement Disorders: Official Journal of the Movement Disorder Society. 2014;29(1):90–6.CrossRefGoogle ScholarPubMed
Mohammad, SS, Sinclair, K, Pillai, S, Merheb, V, Aumann, TD, Gill, D, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor. Movement Disorders: Official Journal of the Movement Disorder Society. 2014;29(1):117–22.CrossRefGoogle ScholarPubMed
Krystal, JH, Perry, EB Jr., Gueorguieva, R, Belger, A, Madonick, SH, Abi-Dargham, A, et al. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Archives of General Psychiatry. 2005;62(9):985–94.CrossRefGoogle ScholarPubMed
Steiner, J, Walter, M, Glanz, W, Sarnyai, Z, Bernstein, HG, Vielhaber, S, et al. Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis. JAMA Psychiatry. 2013;70(3):271–8.CrossRefGoogle ScholarPubMed
Pruss, H, Holtje, M, Maier, N, Gomez, A, Buchert, R, Harms, L, et al. IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology. 2012;78(22):1743–53.CrossRefGoogle ScholarPubMed
Fromer, M, Pocklington, AJ, Kavanagh, DH, Williams, HJ, Dwyer, S, Gormley, P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84.CrossRefGoogle ScholarPubMed
Pilowsky, LS, Bressan, RA, Stone, JM, Erlandsson, K, Mulligan, RS, Krystal, JH, et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Molecular Psychiatry. 2006;11(2):118–19.CrossRefGoogle ScholarPubMed
Heynen, AJ, Bear, MF. Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2001;21(24):9801–13.CrossRefGoogle ScholarPubMed
Cavus, I, Reinhart, RM, Roach, BJ, Gueorguieva, R, Teyler, TJ, Clapp, WC, et al. Impaired visual cortical plasticity in schizophrenia. Biological Psychiatry. 2012;71(6):512–20.Google ScholarPubMed
Anticevic, A, Gancsos, M, Murray, JD, Repovs, G, Driesen, NR, Ennis, DJ, et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proceedings of the National Academy of Sciences of the USA. 2012;109(41):16720–5.CrossRefGoogle ScholarPubMed
Driesen, NR, McCarthy, G, Bhagwagar, Z, Bloch, MH, Calhoun, VD, D’Souza, DC, et al. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2013;38(13):2613–22.CrossRefGoogle ScholarPubMed
Wang, M, Yang, Y, Wang, CJ, Gamo, NJ, Jin, LE, Mazer, JA, et al. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron. 2013;77(4):736–49.CrossRefGoogle ScholarPubMed
Vincent, A, Buckley, C, Schott, JM, Baker, I, Dewar, BK, Detert, N, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain: A Journal of Neurology. 2004;127(Pt 3):701–12.CrossRefGoogle ScholarPubMed
Thieben, MJ, Lennon, VA, Boeve, BF, Aksamit, AJ, Keegan, M, Vernino, S. Potentially reversible autoimmune limbic encephalitis with neuronal potassium channel antibody. Neurology. 2004;62(7):1177–82.CrossRefGoogle ScholarPubMed
Buckley, C, Oger, J, Clover, L, Tuzun, E, Carpenter, K, Jackson, M, et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Annals of Neurology. 2001;50(1):73–8.CrossRefGoogle ScholarPubMed
Kleopa, KA, Elman, LB, Lang, B, Vincent, A, Scherer, SS. Neuromyotonia and limbic encephalitis sera target mature Shaker-type K+ channels: subunit specificity correlates with clinical manifestations. Brain: A Journal of Neurology. 2006;129(Pt 6):1570–84.CrossRefGoogle ScholarPubMed
Irani, SR, Alexander, S, Waters, P, Kleopa, KA, Pettingill, P, Zuliani, L, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain: A Journal of Neurology. 2010;133(9):2734–48.CrossRefGoogle ScholarPubMed
Lai, M, Huijbers, MG, Lancaster, E, Graus, F, Bataller, L, Balice-Gordon, R, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurology. 2010;9(8):776–85.CrossRefGoogle ScholarPubMed
Lancaster, E, Huijbers, MG, Bar, V, Boronat, A, Wong, A, Martinez-Hernandez, E, et al. Investigations of CASPR2, an autoantigen of encephalitis and neuromyotonia. Annals of Neurology. 2011;69(2):303–11.CrossRefGoogle ScholarPubMed
Paterson, RW, Zandi, MS, Armstrong, R, Vincent, A, Schott, JM. Clinical relevance of positive voltage-gated potassium channel (VGKC)-complex antibodies: experience from a tertiary referral centre. Journal of Neurology, Neurosurgery, and Psychiatry. 2014;85(6):625–30.CrossRefGoogle ScholarPubMed
McKeon, A, Marnane, M, O’Connell, M, Stack, JP, Kelly, PJ, Lynch, T. Potassium channel antibody associated encephalopathy presenting with a frontotemporal dementia like syndrome. Archives of Neurology. 2007;64(10):1528–30.CrossRefGoogle ScholarPubMed
Yoo, JY, Hirsch, LJ. Limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies mimicking Creutzfeldt-Jakob disease. JAMA Neurology. 2014;71(1):7982.CrossRefGoogle ScholarPubMed
Fujita, K, Yuasa, T, Watanabe, O, Takahashi, Y, Hashiguchi, S, Adachi, K, et al. Voltage-gated potassium channel complex antibodies in Creutzfeldt-Jakob disease. Journal of Neurology. 2012;259(10):2249–50.CrossRefGoogle ScholarPubMed
Jones, M, Odunsi, S, du Plessis, D, Vincent, A, Bishop, M, Head, MW, et al. Gerstmann-Straussler-Scheinker disease: Novel PRNP mutation and VGKC-complex antibodies. Neurology. 2014;82(23):2107–11.CrossRefGoogle ScholarPubMed
Ohkawa, T, Fukata, Y, Yamasaki, M, Miyazaki, T, Yokoi, N, Takashima, H, et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2013;33(46):18161–74.CrossRefGoogle ScholarPubMed
Andrade, DM, Tai, P, Dalmau, J, Wennberg, R. Tonic seizures: a diagnostic clue of anti-LGI1 encephalitis? Neurology. 2011;76(15):1355–7.CrossRefGoogle ScholarPubMed
Irani, SR, Michell, AW, Lang, B, Pettingill, P, Waters, P, Johnson, MR, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Annals of Neurology. 2011;69(5):892900.CrossRefGoogle Scholar
Irani, SR, Stagg, CJ, Schott, JM, Rosenthal, CR, Schneider, SA, Pettingill, P, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain: A Journal of Neurology. 2013;136(Pt 10):3151–62.CrossRefGoogle Scholar
Naasan, G, Irani, Sarosh R, Bettcher, Brianne M., Geschwind, Michael D., Gelfand, Jeffrey M. Episodic bradycardia: neurocardiac prodrome to voltage-gated channel complex/leucine glioma-rich inactivated 1 antibody encephalitis. JAMA Neurology. 2014; (in press).CrossRefGoogle ScholarPubMed
Bettcher, BM, Gelfand, JM, Irani, SR, Neuhaus, J, Forner, S, Hess, CP, et al. More than memory impairment in voltage-gated potassium channel complex encephalopathy. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies. 2014;21:10.CrossRefGoogle ScholarPubMed
Poliak, S, Salomon, D, Elhanany, H, Sabanay, H, Kiernan, B, Pevny, L, et al. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. The Journal of Cell Biology. 2003;162(6):1149–60.CrossRefGoogle ScholarPubMed
Alarcon, M, Abrahams, BS, Stone, JL, Duvall, JA, Perederiy, JV, Bomar, JM, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. American Journal of Human Genetics. 2008;82(1):150–9.CrossRefGoogle ScholarPubMed
Friedman, JI, Vrijenhoek, T, Markx, S, Janssen, IM, van der Vliet, WA, Faas, BH, et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Molecular Psychiatry. 2008;13(3):261–6.CrossRefGoogle ScholarPubMed
Zweier, C, de Jong, EK, Zweier, M, Orrico, A, Ousager, LB, Collins, AL, et al. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. American Journal of Human Genetics. 2009;85(5):655–66.CrossRefGoogle ScholarPubMed
Liguori, R, Vincent, A, Clover, L, Avoni, P, Plazzi, G, Cortelli, P, et al. Morvan’s syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain: A Journal of Neurology. 2001;124(Pt 12):2417–26.CrossRefGoogle ScholarPubMed
Boronat, A, Sabater, L, Saiz, A, Dalmau, J, Graus, F. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology. 2011;76(9):795800.CrossRefGoogle ScholarPubMed
Alamowitch, S, Graus, F, Uchuya, M, Rene, R, Bescansa, E, Delattre, JY. Limbic encephalitis and small cell lung cancer. Clinical and immunological features. Brain: A Journal of Neurology. 1997;120 (Pt 6):923–8.CrossRefGoogle ScholarPubMed
Ladera, C, del Carmen Godino, M, Jose Cabanero, M, Torres, M, Watanabe, M, Lujan, R, et al. Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. Journal of Neurochemistry. 2008;107(6):1506–17.CrossRefGoogle ScholarPubMed
Bettler, B, Kaupmann, K, Mosbacher, J, Gassmann, M. Molecular structure and physiological functions of GABA(B) receptors. Physiological Reviews. 2004;84(3):835–67.CrossRefGoogle Scholar
Schuler, V, Luscher, C, Blanchet, C, Klix, N, Sansig, G, Klebs, K, et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron. 2001;31(1):4758.CrossRefGoogle ScholarPubMed
Gambardella, A, Manna, I, Labate, A, Chifari, R, La Russa, A, Serra, P, et al. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology. 2003;60(4):560–3.CrossRefGoogle Scholar
Lancaster, E, Lai, M, Peng, X, Hughes, E, Constantinescu, R, Raizer, J, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurology. 2010;9(1):6776.CrossRefGoogle ScholarPubMed
Titulaer, MJ, Soffietti, R, Dalmau, J, Gilhus, NE, Giometto, B, Graus, F, et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies. 2011;18(1):19e3.CrossRefGoogle ScholarPubMed
Lai, M, Hughes, EG, Peng, X, Zhou, L, Gleichman, AJ, Shu, H, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Annals of Neurology. 2009;65(4):424–34.CrossRefGoogle Scholar
Bataller, L, Galiano, R, Garcia-Escrig, M, Martinez, B, Sevilla, T, Blasco, R, et al. Reversible paraneoplastic limbic encephalitis associated with antibodies to the AMPA receptor. Neurology. 2010;74(3):265–7.CrossRefGoogle ScholarPubMed
Graus, F, Boronat, A, Xifro, X, Boix, M, Svigelj, V, Garcia, A, et al. The expanding clinical profile of anti-AMPA receptor encephalitis. Neurology. 2010;74(10):857–9.CrossRefGoogle ScholarPubMed
Wei, YC, Liu, CH, Lin, JJ, Lin, KJ, Huang, KL, Lee, TH, et al. Rapid progression and brain atrophy in anti-AMPA receptor encephalitis. Journal of Neuroimmunology. 2013;261(1–2):129–33.CrossRefGoogle ScholarPubMed
Shepherd, JD, Huganir, RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annual Review of Cell and Developmental Biology. 2007;23:613–43.CrossRefGoogle ScholarPubMed
Rogawski, MA. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Currents/American Epilepsy Society. 2011;11(2):5663.CrossRefGoogle Scholar
Petit-Pedrol, M, Armangue, T, Peng, X, Bataller, L, Cellucci, T, Davis, R, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurology. 2014;13:276–86.CrossRefGoogle ScholarPubMed
Jensen, CS, Rasmussen, HB, Misonou, H. Neuronal trafficking of voltage-gated potassium channels. Molecular and Cellular Neurosciences. 2011;48(4):288–97.CrossRefGoogle ScholarPubMed
Boronat, A, Gelfand, JM, Gresa-Arribas, N, Jeong, HY, Walsh, M, Roberts, K, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Annals of Neurology. 2013;73(1):120–8.CrossRefGoogle ScholarPubMed
Balint, B, Jarius, S, Nagel, S, Haberkorn, U, Probst, C, Blocker, IM, et al. Progressive encephalomyelitis with rigidity and myoclonus: A new variant with DPPX antibodies. Neurology. 2014;82(17):1521–8.Google ScholarPubMed
Carr, I. The Ophelia syndrome: memory loss in Hodgkin’s disease. Lancet. 1982;1(8276):844–5.CrossRefGoogle ScholarPubMed
Lancaster, E, Martinez-Hernandez, E, Titulaer, MJ, Boulos, M, Weaver, S, Antoine, JC, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology. 2011;77(18):1698–701.CrossRefGoogle ScholarPubMed
Faas, GC, Adwanikar, H, Gereau, RWt, Saggau, P. Modulation of presynaptic calcium transients by metabotropic glutamate receptor activation: a differential role in acute depression of synaptic transmission and long-term depression. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2002;22(16):6885–90.CrossRefGoogle ScholarPubMed
Coesmans, M, Smitt, PA, Linden, DJ, Shigemoto, R, Hirano, T, Yamakawa, Y, et al. Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Annals of Neurology. 2003;53(3):325–36.CrossRefGoogle ScholarPubMed
Greenlee, JE, Brashear, HR. Antibodies to cerebellar Purkinje cells in patients with paraneoplastic cerebellar degeneration and ovarian carcinoma. Annals of Neurology. 1983;14(6):609–13.CrossRefGoogle ScholarPubMed
Graus, F, Cordon-Cardo, C, Posner, JB. Neuronal antinuclear antibody in sensory neuronopathy from lung cancer. Neurology. 1985;35(4):538–43.CrossRefGoogle Scholar
Braik, T, Evans, AT, Telfer, M, McDunn, S. Paraneoplastic neurological syndromes: unusual presentations of cancer. A practical review. The American Journal of the Medical Sciences. 2010;340(4):301–8.CrossRefGoogle Scholar
Graus, F, Keime-Guibert, F, Rene, R, Benyahia, B, Ribalta, T, Ascaso, C, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain: A Journal of Neurology. 2001;124(Pt 6):1138–48.CrossRefGoogle Scholar
Pittock, SJ, Kryzer, TJ, Lennon, VA. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Annals of Neurology. 2004;56(5):715–19.CrossRefGoogle ScholarPubMed
Paterson, RW, Takada, LT, Geschwind, MD. Diagnosis and treatment of rapidly progressive dementias. Neurology Clinical Practice. 2012;2(3):187200.CrossRefGoogle ScholarPubMed
McKeon, A, Pittock, SJ, Lennon, VA. CSF complements serum for evaluating paraneoplastic antibodies and NMO-IgG. Neurology. 2011;76(12):1108–10.CrossRefGoogle ScholarPubMed
McKeon, A, Pittock, SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathologica. 2011;122(4):381400.CrossRefGoogle ScholarPubMed
Josephson, SA, Papanastassiou, AM, Berger, MS, Barbaro, NM, McDermott, MW, Hilton, JF, et al. The diagnostic utility of brain biopsy procedures in patients with rapidly deteriorating neurological conditions or dementia. Journal of Neurosurgery. 2007;106(1):72–5.CrossRefGoogle ScholarPubMed
McKeon, A, Apiwattanakul, M, Lachance, DH, Lennon, VA, Mandrekar, JN, Boeve, BF, et al. Positron emission tomography-computed tomography in paraneoplastic neurologic disorders: systematic analysis and review. Archives of Neurology. 2010;67(3):322–9.CrossRefGoogle ScholarPubMed
Dalmau, J, Graus, F, Rosenblum, MK, Posner, JB. Anti-Hu–associated paraneoplastic encephalomyelitis/sensory neuronopathy. A clinical study of 71 patients. Medicine. 1992;71(2):5972.CrossRefGoogle ScholarPubMed
Uchuya, M, Graus, F, Vega, F, Rene, R, Delattre, JY. Intravenous immunoglobulin treatment in paraneoplastic neurological syndromes with antineuronal autoantibodies. Journal of Neurology, Neurosurgery, and Psychiatry. 1996;60(4):388–92.CrossRefGoogle ScholarPubMed
Vernino, S, O’Neill, BP, Marks, RS, O’Fallon, JR, Kimmel, DW. Immunomodulatory treatment trial for paraneoplastic neurological disorders. Neuro-Oncology. 2004;6(1):5562.CrossRefGoogle ScholarPubMed
de Jongste, AH, van Gelder, T, Bromberg, JE, de Graaf, MT, Gratama, JW, Schreurs, MW, et al. A prospective open-label study of sirolimus for the treatment of anti-Hu associated paraneoplastic neurological syndromes. Neuro-Oncology. 2015;17(1):145–50.CrossRefGoogle ScholarPubMed
Darnell, RB. RNA regulation in neurologic disease and cancer. Cancer Research and Treatment: Official Journal of Korean Cancer Association. 2010;42(3):125–9.CrossRefGoogle ScholarPubMed
Manley, GT, Smitt, PS, Dalmau, J, Posner, JB. Hu antigens: reactivity with Hu antibodies, tumor expression, and major immunogenic sites. Annals of Neurology. 1995;38(1):102–10.CrossRefGoogle ScholarPubMed
Bernal, F, Graus, F, Pifarre, A, Saiz, A, Benyahia, B, Ribalta, T. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathologica. 2002;103(5):509–15.CrossRefGoogle ScholarPubMed
Lucchinetti, CF, Kimmel, DW, Lennon, VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology. 1998;50(3):652–7.CrossRefGoogle ScholarPubMed
Keime-Guibert, F, Graus, F, Broet, P, Rene, R, Molinuevo, JL, Ascaso, C, et al. Clinical outcome of patients with anti-Hu-associated encephalomyelitis after treatment of the tumor. Neurology. 1999;53(8):1719–23.CrossRefGoogle ScholarPubMed
Meinck, HM, Thompson, PD. Stiff man syndrome and related conditions. Movement Disorders: Official Journal of the Movement Disorder Society. 2002;17(5):853–66.CrossRefGoogle Scholar
Walikonis, JE, Lennon, VA. Radioimmunoassay for glutamic acid decarboxylase (GAD65) autoantibodies as a diagnostic aid for stiff-man syndrome and a correlate of susceptibility to type 1 diabetes mellitus. Mayo Clinic Proceedings. 1998;73(12):1161–6.CrossRefGoogle ScholarPubMed
Pittock, SJ, Yoshikawa, H, Ahlskog, JE, Tisch, SH, Benarroch, EE, Kryzer, TJ, et al. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clinic Proceedings. 2006;81(9):1207–14.CrossRefGoogle ScholarPubMed
Saiz, A, Blanco, Y, Sabater, L, Gonzalez, F, Bataller, L, Casamitjana, R, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain: A Journal of Neurology. 2008;131(Pt 10):2553–63.CrossRefGoogle ScholarPubMed
Malter, MP, Helmstaedter, C, Urbach, H, Vincent, A, Bien, CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Annals of Neurology. 2010;67(4):470–8.CrossRefGoogle ScholarPubMed
Reetz, A, Solimena, M, Matteoli, M, Folli, F, Takei, K, De Camilli, P. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. The EMBO Journal. 1991;10(5):1275–84.CrossRefGoogle ScholarPubMed
Vianello, M, Bisson, G, Dal Maschio, M, Vassanelli, S, Girardi, S, Mucignat, C, et al. Increased spontaneous activity of a network of hippocampal neurons in culture caused by suppression of inhibitory potentials mediated by anti-gad antibodies. Autoimmunity. 2008;41(1):6673.CrossRefGoogle ScholarPubMed
Manto, MU, Laute, MA, Aguera, M, Rogemond, V, Pandolfo, M, Honnorat, J. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Annals of Neurology. 2007;61(6):544–51.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Yu, Z, Kryzer, TJ, Griesmann, GE, Kim, K, Benarroch, EE, Lennon, VA. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Annals of Neurology. 2001;49(2):146–54.CrossRefGoogle ScholarPubMed
Kellinghaus, C, Kraus, J, Blaes, F, Nabavi, DG, Schabitz, WR. CRMP-5-autoantibodies in testicular cancer associated with limbic encephalitis and choreiform dyskinesias. European Neurology. 2007;57(4):241–3.CrossRefGoogle ScholarPubMed
Rogemond, V, Honnorat, J. Anti-CV2 autoantibodies and paraneoplastic neurological syndromes. Clinical Reviews in Allergy & Immunology. 2000;19(1):51–9.CrossRefGoogle ScholarPubMed
Goshima, Y, Nakamura, F, Strittmatter, P, Strittmatter, SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature. 1995;376(6540):509–14.CrossRefGoogle ScholarPubMed
Cross, SA, Salomao, DR, Parisi, JE, Kryzer, TJ, Bradley, EA, Mines, JA, et al. Paraneoplastic autoimmune optic neuritis with retinitis defined by CRMP-5-IgG. Annals of Neurology. 2003;54(1):3850.CrossRefGoogle Scholar
Werry, C, Gotz, F, Wurster, U, Stangel, M, Giess, R, Heidenreich, F, et al. Paraneoplastic autoimmune encephalitis associated with CV2/CRMP-5 IgG antineuronal antibodies in a patient with thymoma. Journal of Neurology. 2009;256(1):129–31.CrossRefGoogle ScholarPubMed
Voltz, R, Gultekin, SH, Rosenfeld, MR, Gerstner, E, Eichen, J, Posner, JB, et al. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. The New England Journal of Medicine. 1999;340(23):1788–95.CrossRefGoogle ScholarPubMed
Dalmau, J, Gultekin, SH, Voltz, R, Hoard, R, DesChamps, T, Balmaceda, C, et al. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain: A Journal of Neurology. 1999;122(Pt 1):2739.CrossRefGoogle ScholarPubMed
Hoffmann, LA, Jarius, S, Pellkofer, HL, Schueller, M, Krumbholz, M, Koenig, F, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: 22 newly diagnosed patients and review of previous cases. Journal of Neurology, Neurosurgery, and Psychiatry. 2008;79(7):767–73.CrossRefGoogle ScholarPubMed
Rosenfeld, MR, Eichen, JG, Wade, DF, Posner, JB, Dalmau, J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Annals of Neurology. 2001;50(3):339–48.CrossRefGoogle ScholarPubMed
Dalmau, J, Graus, F, Villarejo, A, Posner, JB, Blumenthal, D, Thiessen, B, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain: A Journal of Neurology. 2004;127(Pt 8):1831–44.CrossRefGoogle ScholarPubMed
Adams, C, McKeon, A, Silber, MH, Kumar, R. Narcolepsy, REM sleep behavior disorder, and supranuclear gaze palsy associated with Ma1 and Ma2 antibodies and tonsillar carcinoma. Archives of Neurology. 2011;68(4):521–4.CrossRefGoogle ScholarPubMed
Sabater, L, Titulaer, M, Saiz, A, Verschuuren, J, Gure, AO, Graus, F. SOX1 antibodies are markers of paraneoplastic Lambert-Eaton myasthenic syndrome. Neurology. 2008;70(12):924–8.CrossRefGoogle ScholarPubMed
Titulaer, MJ, Klooster, R, Potman, M, Sabater, L, Graus, F, Hegeman, IM, et al. SOX antibodies in small-cell lung cancer and Lambert-Eaton myasthenic syndrome: frequency and relation with survival. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(26):4260–7.CrossRefGoogle ScholarPubMed
Graus, F, Vincent, A, Pozo-Rosich, P, Sabater, L, Saiz, A, Lang, B, et al. Anti-glial nuclear antibody: marker of lung cancer-related paraneoplastic neurological syndromes. Journal of Neuroimmunology. 2005;165(1–2):166–71.CrossRefGoogle ScholarPubMed
Chan, KH, Vernino, S, Lennon, VA. ANNA-3 anti-neuronal nuclear antibody: marker of lung cancer-related autoimmunity. Annals of Neurology. 2001;50(3):301–11.CrossRefGoogle ScholarPubMed
Flanagan, EP, McKeon, A, Lennon, VA, Kearns, J, Weinshenker, BG, Krecke, KN, et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology. 2011;76(24):2089–95.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Vernino, S, Lennon, VA. New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Annals of Neurology. 2000;47(3):297305.CrossRefGoogle ScholarPubMed
Corvin, A, Morris, DW. Genome-wide association studies: Findings at the major histocompatibility complex locus in psychosis. Biological Psychiatry. 2014;75(4):276–83.CrossRefGoogle ScholarPubMed
Tuzun, E, Erdag, E, Durmus, H, Brenner, T, Turkoglu, R, Kurtuncu, M, et al. Autoantibodies to neuronal surface antigens in thyroid antibody-positive and -negative limbic encephalitis. Neurology India. 2011;59(1):4750.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×