Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T19:36:52.329Z Has data issue: false hasContentIssue false

Chapter 20 - CADASIL: a genetic model of arteriolar degeneration, white matter injury, and dementia in later life

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Leeuw, F. E., de Groot, J. C. and Breteler, M. M. B. (2000) White matter changes: frequency and risk factors. In Pantoni, L., Intzitari, D. and Wallin, A. (eds.) The Matter of White Matter: Clinical and Pathophysiological Aspects of White Matter Disease Related to Cognitive Decline and Vascular Dementia. Utrecht: Academic Pharmaceutical Productions, pp. 1933.CrossRefGoogle ScholarPubMed
Bennett, D. A., Gilley, D. W., Wilson, R. S., Huckman, M. S. and Fox, J. H. (1992) Clinical correlates of high signal lesions on magnetic resonance imaging in Alzheimer’s disease. J Neurol, 239, 186–90.Google ScholarPubMed
Bennett, D. A., Gilley, D. W., Lee, S. and Cochran, E. J. (1994) White matter changes: neurobehavioral manifestations of Binswanger’s disease and clinical correlates in Alzheimer’s disease. Dementia, 5, 148–52.CrossRefGoogle Scholar
Snowdon, D. A. (1997) Aging and Alzheimer’s disease: lessons from the Nun Study. Gerontologist, 37, 150–6.CrossRefGoogle ScholarPubMed
Snowdon, D. A., Greiner, L. H. and Markesbery, W. R. (2000) Linguistic ability in early life and the neuropathology of Alzheimer’s disease and cerebrovascular disease. Findings from the Nun Study. Ann N Y Acad Sci, 903, 34–8.CrossRefGoogle ScholarPubMed
White, L., Petrovitch, H., Hardman, J. et al. (2002) Cerebrovascular pathology and dementia in autopsied Honolulu-Asia Aging Study participants. Ann N Y Acad Sci, 977, 923.CrossRefGoogle ScholarPubMed
Schneider, J.A., Arvanitakis, Z., Leurgans, S.E. and Bennett, D. (2009) The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol, 66, 200–8.Google Scholar
Alzheimer’s Association (2007) Alzheimer’s Disease Facts and Figures. Chicago, IL: Alzheimer’s Association.Google ScholarPubMed
Jellinger, K. A. (2002) The pathology of ischemic-vascular dementia: an update. J Neurol Sci, 203–204, 153–7.CrossRefGoogle ScholarPubMed
Amberla, K., Waljas, M., Tuominen, S. et al. (2004) Insidious cognitive decline in CADASIL. Stroke, 35, 1598–602.CrossRefGoogle ScholarPubMed
Charlton, R. A., Morris, R. G., Nitkunan, A. and Markus, H. S. (2006) The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology, 66, 1523–6.CrossRefGoogle ScholarPubMed
Joutel, A., Corpechot, C., Ducros, A. et al. (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 383, 707–10.CrossRefGoogle ScholarPubMed
Bousser, M. and Tournier-Lasserve, E. (2001) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: from stroke to vessel wall physiology. J Neurol Neurosurg Psychiatry, 70, 285–7.Google Scholar
Salloway, S. and Desbiens, S. (2004) CADASIL and other genetic causes of stroke and vascular dementia. In Paul, R., Cohen, R., Ott, B. and Salloway, S. (eds.) Vascular Dementia: Cerebrovascular Mechanisms and Clinical Management. Totowa, NJ: Humana Press, pp. 8798.CrossRefGoogle ScholarPubMed
Joutel, A., Bousser, M. G., Biousse, V. et al. (1993) A gene for familial hemiplegic migraine maps to chromosome 19. Nat Genet, 5, 40–5.CrossRefGoogle ScholarPubMed
Dong, Y., Hassan, A., Zhang, Z. et al. (2003) Yield of screening for CADASIL mutations in lacunar stroke and leukoaraiosis. Stroke, 34, 203–5.CrossRefGoogle ScholarPubMed
Desmond, D. W., Moroney, J. T., Lynch, T. et al. (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke, 30, 1230–3.CrossRefGoogle ScholarPubMed
Viswanathan, A., Gray, F., Bousser, M. G., Baudrimont, M. and Chabriat, H. (2006) Cortical neuronal apoptosis in CADASIL. Stroke, 37, 2690–5.CrossRefGoogle ScholarPubMed
Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. and Germaine Bousser, M. (2009b) CADASIL. Lancet Neurol, 8, 643–53.CrossRefGoogle ScholarPubMed
Singhal, S., Bevan, S., Barrick, T., Rich, P. and Markus, H. S. (2004) The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain, 127, 2031–8.CrossRefGoogle ScholarPubMed
Dichgans, M., Markus, H., Salloway, S. et al. (2008) Donepezil in patients with subcortical vascular impairment: a randomized, double-blind trial in CADASIL. Lancet Neurol, 7, 310–18.CrossRefGoogle ScholarPubMed
Opherk, C., Peters, N., Herzog, J., Luedtke, R. and Dichgans, M. (2004) Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain, 127: 2533–9.CrossRefGoogle ScholarPubMed
Vahedi, K., Chabriat, H., Levy, C. et al. (2004) Migraine with aura and brain magnetic resonance imaging abnormalities in patients with CADASIL. Arch Neurol, 61, 1237–40.CrossRefGoogle ScholarPubMed
Gunda, B., Hervé, D., Godin, O. et al. (2012) Effects of gender on the phenotype of CADASIL. Stroke, 43, 137–41.CrossRefGoogle ScholarPubMed
Agostoni, E. and Rigamonti, A. (2007) Migraine and cerebrovascular disease. Neurol Sci, 28(Suppl 2), S156–60.CrossRefGoogle ScholarPubMed
Liem, M. K., van der Grond, J., Haan, J. et al. (2007) Lacunar infarcts are the main correlate with cognitive dysfunction in CADASIL. Stroke, 38, 923–8.CrossRefGoogle ScholarPubMed
Dichgans, M., Mayer, M., Uttner, I. et al. (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol, 44, 731–9.CrossRefGoogle ScholarPubMed
Thomas, N., Mathews, T. and Loganathan, A. (2002) Cadasil: presenting as a mood disorder. Scott Med J, 47, 36–7.CrossRefGoogle ScholarPubMed
Leyhe, T., Wiendl, H., Buchkremer, G. and Wormstall, H. (2005) CADASIL: underdiagnosed in psychiatric patients? Acta Psychiatr Scand, 111, 392–6; discussion 396–7.CrossRefGoogle Scholar
Reyes, R., Viswanathan, A., Godin, O. et al. (2009) Apathy: A major symptom in CADASIL. Neurology, 72, 905–10.Google ScholarPubMed
Chabriat, H., Bousser, M. G. and Pappata, S. (1995) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a positron emission tomography study in two affected family members. Stroke, 26, 1729–30.Google Scholar
Lagas, P. A. and Juvonen, V. (2001) Schizophrenia in a patient with cerebral autosomally dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL disease). Nord J Psychiatry, 55, 41–2.CrossRefGoogle ScholarPubMed
Taillia, H., Chabriat, H., Kurtz, A. et al. (1998) Cognitive alterations in non-demented CADASIL patients. Cerebrovasc Dis, 8, 97101.Google ScholarPubMed
Yousry, T. A., Seelos, K., Mayer, M. et al. (1999) Characteristic MR lesion pattern and correlation of T1 and T2 lesion volume with neurologic and neuropsychological findings in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Am J Neuroradiol, 20, 91100.CrossRefGoogle ScholarPubMed
Peters, N., Herzog, J., Opherk, C. and Dichgans, M. (2004) A two-year clinical follow-up study in 80 CADASIL subjects: progression patterns and implications for clinical trials. Stroke, 35, 1603–8.CrossRefGoogle ScholarPubMed
Peters, N., Opherk, C., Danek, A. et al. (2005) The pattern of cognitive performance in CADASIL: a monogenic condition leading to subcortical ischemic vascular dementia. Am J Psychiatry, 162, 2078–85.CrossRefGoogle ScholarPubMed
Peters, N., Opherk, C., Zacherle, S. et al. (2004) CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk. Exp Cell Res, 299, 454–64.CrossRefGoogle ScholarPubMed
Monet-Lepretre, M., Bardot, B., Lemaire, B. et al. (2009) Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain, 132, 1601–12.Google ScholarPubMed
O’Sullivan, M., Ngo, E., Viswanathan, A. et al. (2009) Hippocampal volume is an independent predictor of cognitive performance in CADASIL. Neurobiol Aging, 30, 890–7.CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M. and Raz, N. (2003) Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia, 41, 1929–41.CrossRefGoogle Scholar
Desmond, D. W. (2004) The neuropsychology of vascular cognitive impairment: is there a specific cognitive deficit? J Neurol Sci, 226, 37.Google ScholarPubMed
Roman, G. C. (1987) Senile dementia of the Binswanger type. A vascular form of dementia in the elderly. JAMA, 258, 1782–8.CrossRefGoogle ScholarPubMed
Fein, G., Di Sclafani, V., Tanabe, J. et al. (2000) Hippocampal and cortical atrophy predict dementia in subcortical ischemic vascular disease. Neurology, 55, 1626–35.Google Scholar
Patel, K., Correia, S., Foley, J. et al. (2007) Cognitive impairment, hippocampal volume, and white matter integrity in CADASIL. In 35th Annual Meeting of the International Neuropsychological Society, abstract 95.CrossRefGoogle Scholar
van den Boom, R., Lesnik Oberstein, S. A., Ferrari, M. D., Haan, J. and van Buchem, M. A. (2003) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages: 3rd–6th decades. Radiology, 229, 683–90.CrossRefGoogle ScholarPubMed
Lesnik Oberstein, S. A., van den Boom, R., van Buchem, M. A. et al. (2001) Cerebral microbleeds in CADASIL. Neurology, 57, 1066–70.CrossRefGoogle ScholarPubMed
Dichgans, M. (2002) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: phenotypic and mutational spectrum. J Neurol Sci, 203–204, 7780.CrossRefGoogle ScholarPubMed
Maclean, A. V., Woods, R., Alderson, L. M. et al. (2005) Spontaneous lobar haemorrhage in CADASIL. J Neurol Neurosurg Psychiatry, 76, 456–7.CrossRefGoogle ScholarPubMed
Choi, J. C., Kang, S. Y., Kang, J. H. and Park, J. K. (2006) Intracerebral hemorrhages in CADASIL. Neurology, 67, 2042–4.Google ScholarPubMed
Werbrouck, B. F. and de Bleecker, J. L. (2006) Intracerebral haemorrhage in CADASIL. A case report. Acta Neurol Belg, 106, 219–21.CrossRefGoogle ScholarPubMed
Auer, D. P., Putz, B., Gossl, C. et al. (2001) Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison. Radiology, 218, 443–51.CrossRefGoogle ScholarPubMed
Chabriat, H., Levy, C., Taillia, H. et al. (1998) Patterns of MRI lesions in CADASIL. Neurology, 51, 452–7.CrossRefGoogle ScholarPubMed
Chabriat, H., Mrissa, R., Levy, C. et al. (1999) Brain stem MRI signal abnormalities in CADASIL. Stroke, 30, 457–9.CrossRefGoogle ScholarPubMed
O’Sullivan, M., Jones, D. K., Summers, P. E. et al. (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57, 632–8.CrossRefGoogle Scholar
van den Boom, R., Lesnik Oberstein, S. A., van Duinen, S. G. et al. (2002) Subcortical lacunar lesions: an MR imaging finding in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Radiology, 224, 791–6.CrossRefGoogle ScholarPubMed
van den Boom, R., Lesnik Oberstein, S. A., Spilt, A. et al. (2003) Cerebral hemodynamics and white matter hyperintensities in CADASIL. J Cereb Blood Flow Metab, 23, 599604.Google Scholar
Liem, M.K., Lesnik Oberstein, S.A.J., Haan, J. et al. (2009) Cerebrovascular reactivity is a main determinant of white matter hyperintensity progression in CADASIL. AJNR Am J Neuroradiol, 60, 1244–7.CrossRefGoogle ScholarPubMed
Opherk, C., Peters, N., Holtmannspotter, M. et al. (2006) Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke, 37, 2684–9.CrossRefGoogle ScholarPubMed
Dichgans, M., Filippi, M., Bruning, R. et al. (1999) Quantitative MRI in CADASIL: correlation with disability and cognitive performance. Neurology, 52, 1361–7.CrossRefGoogle ScholarPubMed
Peters, N., Holtmannspotter, M., Opherk, C. et al. (2006) Brain volume changes in CADASIL: a serial MRI study in pure subcortical ischemic vascular disease. Neurology, 66, 1517–22.CrossRefGoogle ScholarPubMed
Davous, P. (1998) CADASIL: a review with proposed diagnostic criteria. Eur J Neurol, 5, 219–33.CrossRefGoogle ScholarPubMed
Markus, H. S., Martin, R. J., Simpson, M. A. et al. (2002) Diagnostic strategies in CADASIL. Neurology, 59, 1134–8.Google ScholarPubMed
O’Riordan, S., Nor, A. M. and Hutchinson, M. (2002) CADASIL imitating multiple sclerosis: the importance of MRI markers. Mult Scler, 8, 430–2.CrossRefGoogle ScholarPubMed
Trojano, M. and Paolicelli, D. (2001) The differential diagnosis of multiple sclerosis: classification and clinical features of relapsing and progressive neurological syndromes. Neurol Sci, 22(Suppl 2), S98–102.CrossRefGoogle ScholarPubMed
Chabriat, H., Pappata, S., Poupon, C. et al. (1999) Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI. Stroke, 30, 2637–43.CrossRefGoogle ScholarPubMed
Benisty, S., Reyes, S., Godin, O., et al. (2012). White-matter lesions without lacunar infarcts in CADASIL. J Alzheimers Dis, 29, 903911.Google Scholar
Lee, JS, Choi, JC, Kang, SY, et al. (2011). J Clin Neurol, 7, 210–14.CrossRefGoogle ScholarPubMed
Trojano, L., Ragno, M., Manca, A. and Caruso, G. (1998) A kindred affected by cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). A 2-year neuropsychological follow-up. J Neurol, 245, 217–22.CrossRefGoogle ScholarPubMed
Scheid, R., Preul, C., Lincke, T. et al. (2006) Correlation of cognitive status, MRI- and SPECT-imaging in CADASIL patients. Eur J Neurol, 13, 363–70.CrossRefGoogle ScholarPubMed
Viswanathan, A., Godin, O., Jouvent, E. et al. (2010) Impact of MRI markers in subcortical vascular dementia: A multi-modal analysis in CADASIL. Neurobiol Aging, 31, 1629–36.CrossRefGoogle ScholarPubMed
Jouvent, E., Mangin, J.F., Porcher, R. et al. (2008) Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL. Brain, 131, 2201–08.CrossRefGoogle ScholarPubMed
Jouvent, E., Mangin, J.F., Duchesnay, E. et al. (2012) Longitudinal changes of cortical morphology in CADASIL. Neurobiol Aging, 33, 1002.e291002.e36.Google ScholarPubMed
Righart, R., Deuring, M., Gonik, M. et al. (2013). Impact of regional cortical and subcortical changes on processing speed in cerebral small vessel disease. NeuroImage: Clinical, 2, 854–61.CrossRefGoogle ScholarPubMed
Duering, M., Gonik, M., Zieren, N. et al. (2012). Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. NeuroImage, 66, 177183.CrossRefGoogle ScholarPubMed
Duering, M., Zieren, N., Herve, D. et al. (2011). Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain, 134, 2366–75.CrossRefGoogle ScholarPubMed
Filippi, M. and Grossman, R. I. (2002) MRI techniques to monitor MS evolution: the present and the future. Neurology, 58, 1147–53.CrossRefGoogle ScholarPubMed
Moseley, M. (2002) Diffusion tensor imaging and aging: a review. NMR Biomed, 15, 553–60.CrossRefGoogle ScholarPubMed
Malloy, P., Correia, S., Stebbins, G. and Laidlaw, D. H. (2007) Neuroimaging of white matter in aging and dementia. Clin Neuropsychol, 21, 73109.Google ScholarPubMed
O’Sullivan, M., Morris, R. G., Huckstep, B. et al. (2004) Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry, 75, 441–7.CrossRefGoogle ScholarPubMed
Molko, N., Pappata, S., Mangin, J. F. et al. (2001) Diffusion tensor imaging study of subcortical gray matter in CADASIL. Stroke, 32, 2049–54.CrossRefGoogle ScholarPubMed
O’Sullivan, M., Barrick, T. R., Morris, R. G., Clark, C. A. and Markus, H. S. (2005) Damage within a network of white matter regions underlies executive dysfunction in CADASIL. Neurology, 65, 1584–90.CrossRefGoogle ScholarPubMed
Molko, N., Cohen, L., Mangin, J. F. et al. (2002) Visualizing the neural bases of a disconnection syndrome with diffusion tensor imaging. J Cogn Neurosci, 14, 629–36.CrossRefGoogle ScholarPubMed
Holtmannspotter, M., Peters, N., Opherk, C. et al. (2005) Diffusion magnetic resonance histograms as a surrogate marker and predictor of disease progression in CADASIL: a two-year follow-up study. Stroke, 36, 2559–65.CrossRefGoogle ScholarPubMed
Correia, S., Lee, S. Y., Voorn, T. et al. (2008) Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage, 42, 568–81.CrossRefGoogle ScholarPubMed
Baudrimont, M., Dubas, F., Joutel, A., Tournier-Lasserve, E. and Bousser, MG. (1993) Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study. Stroke, 24, 122–5.CrossRefGoogle ScholarPubMed
Jung, H. H., Bassetti, C., Tournier-Lasserve, E. et al. (1995) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a clinicopathological and genetic study of a Swiss family. J Neurol Neurosurg Psychiatry59, 138–14.CrossRefGoogle ScholarPubMed
Liem, M.K., van der Grond, J., Versluis, M.J. et al. (2010) Lenticulostriate arterial lumina are normal in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a high-field in vivo MRI study. Stroke, 41, 2812–16.CrossRefGoogle ScholarPubMed
Ruchoux, M. M. and Maurage, C. A. (1998) Endothelial changes in muscle and skin biopsies in patients with CADASIL. Neuropathol Appl Neurobiol, 24, 60–5.CrossRefGoogle ScholarPubMed
Brulin, P., Godfraind, C., Leteurtre, E. and Ruchoux, M. M. (2002) Morphometric analysis of ultrastructural vascular changes in CADASIL: analysis of 50 skin biopsy specimens and pathogenic implications. Acta Neuropathol (Berl), 104, 241–8.CrossRefGoogle ScholarPubMed
Dziewulska, D. and Lewandowska, E. (2012) Pericytes as a new target for pathological processes in CADASIL. Neuropathology, 32, 515–21.CrossRefGoogle ScholarPubMed
Okeda, R., Arima, K. and Kawai, M. (2002) Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case. Stroke, 33, 2565–9.CrossRefGoogle ScholarPubMed
Brennan-Krohn, T., Salloway, S., Correia, S. et al. (2010) Glial vascular degeneration in CADASIL. J Alzheimers Dis, 21, 1392–402.CrossRefGoogle Scholar
Prakash, N., Hansson, E., Betsholtz, C., Mitsiadis, T. and Lendahl, U. (2002) Mouse Notch 3 expression in the pre- and postnatal brain: relationship to the stroke and dementia syndrome CADASIL. Exp Cell Res, 278, 3144.CrossRefGoogle Scholar
Lundkvist, J., Zhu, S., Hansson, E. M. et al. (2005) Mice carrying a R142C Notch 3 knock-in mutation do not develop a CADASIL-like phenotype. Genesis, 41, 1322.CrossRefGoogle ScholarPubMed
Ruchoux, M. M., Domenga, V., Brulin, P. et al. (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol, 162, 329–42.CrossRefGoogle Scholar
Dubroca, C., Lacombe, P., Domenga, V. et al. (2005) Impaired vascular mechanotransduction in a transgenic mouse model of CADASIL arteriopathy. Stroke, 36, 113–17.CrossRefGoogle Scholar
Lacombe, P., Oligo, C., Domenga, V., Tournier-Lasserve, E. and Joutel, A. (2005) Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke, 36, 1053–8.CrossRefGoogle ScholarPubMed
Carmelli, D., Decarli, C., Swan, G. E. et al. (1998) Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke, 29, 1177–81.CrossRefGoogle ScholarPubMed
Atwood, L. D., Wolf, P. A., Heard-Costa, N. L. et al. (2004) Genetic variation in white matter hyperintensity volume in the Framingham Study. Stroke, 35, 1609–13.CrossRefGoogle ScholarPubMed
Turner, S. T., Jack, C. R., Fornage, M. et al. (2004) Heritability of leukoaraiosis in hypertensive sibships. Hypertension, 43, 483–7.CrossRefGoogle ScholarPubMed
Leblanc, G. G., Meschia, J. F., Stuss, D. T. and Hachinski, V. (2006) Genetics of vascular cognitive impairment: the opportunity and the challenges. Stroke, 37, 248–55.CrossRefGoogle ScholarPubMed
Sierra, C., de la Sierra, A., Mercader, J. et al. (2002) Silent cerebral white matter lesions in middle-aged essential hypertensive patients. J Hypertens, 20, 519–24.CrossRefGoogle ScholarPubMed
Schmidt, R., Schmidt, H., Fazekas, F. et al. (2000) MRI cerebral white matter lesions and paraoxonase PON1 polymorphisms: three-year follow-up of the Austrian stroke prevention study. Arterioscler Thromb Vasc Biol, 20, 1811–16.CrossRefGoogle ScholarPubMed
Skoog, I. (1997) The relationship between blood pressure and dementia: a review. Biomed Pharmacother, 51, 367–75.CrossRefGoogle Scholar
Bronge, L., Fernaeus, S., Blomberg, M. et al. (1999) White matter lesions in Alzheimer patients are influenced by apoliprotein E genotype. Dement Geriatr Cogn Disord, 10, 8996.CrossRefGoogle ScholarPubMed
Barber, R., Gholkar, A., Scheltens, P. et al. (1999) Apolipoprotein E epsilon4 allele, temporal lobe atrophy, and white matter lesions in late-life dementias. Arch Neurol, 56, 961–5.CrossRefGoogle Scholar
Sawada, H., Udaka, F., Izumi, Y. et al. (2000) Cerebral white matter lesions are not associated with ApoE genotype but with age and female sex in Alzheimer’s disease. J Neurol Neurosurg Psychiatry, 68, 653–6.CrossRefGoogle ScholarPubMed
De Leeuw, F. E., Richard, F., de Groot, J. C. et al. (2004) Interaction between hypertension, apoE, and cerebral white matter lesions. Stroke, 35, 1057–60.CrossRefGoogle ScholarPubMed
Shawber, C. J. and Kitajewski, J. (2004) Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays, 26, 225–34.CrossRefGoogle ScholarPubMed
Mazzei, R., Conforti, F. L., Lanza, P. L. et al. (2004) A novel Notch3 gene mutation not involving a cysteine residue in an Italian family with CADASIL. Neurology, 63, 561–4.CrossRefGoogle ScholarPubMed
Weinmaster, G. (1997) The ins and outs of Notch signaling. Mol Cell Neurosci, 9, 91102.CrossRefGoogle ScholarPubMed
Baron, M. (2003) An overview of the Notch signalling pathway. Semin Cell Dev Biol, 14, 113–19.CrossRefGoogle ScholarPubMed
Bianchi, S., Dotti, M. T. and Federico, A. (2006) Physiology and pathology of the Notch signalling system. J Cell Physiol, 207, 300–8.CrossRefGoogle ScholarPubMed
Joutel, A., Andreux, F., Gaulis, S. et al. (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest, 105, 597605.CrossRefGoogle Scholar
Louvi, A., Arboleda-Velasquez, J. F. and Artavanis-Tsakonas, S. (2006) CADASIL: a critical look at a Notch disease. Dev Neurosci, 28, 512.CrossRefGoogle Scholar
Arboleda-Velasquez, J. F., Lopera, F., Lopez, E. et al. (2002) C455R Notch3 mutation in a Colombian CADASIL kindred with early onset of stroke. Neurology, 59, 277–9.CrossRefGoogle ScholarPubMed
Donahue, C. P. and Kosik, K. S. (2004) Distribution pattern of Notch3 mutations suggests a gain-of-function mechanism for CADASIL. Genomics, 83, 5965.CrossRefGoogle ScholarPubMed
Arboleda-Velasquez, J. F., Rampal, R., Fung, E. et al. (2005) CADASIL mutations impair Notch3 glycosylation by Fringe. Hum Mol Genet, 14, 1631–9.CrossRefGoogle ScholarPubMed
Karlström, H., Beatus, P., Dannaeus, K. et al. (2002) A CADASIL-mutated Notch 3 receptor exhibits impaired intracellular trafficking and maturation but normal ligand-induced signaling. Proc Natl Acad Sci USA, 99, 17119–24.CrossRefGoogle Scholar
Haritunians, T., Boulter, J., Hicks, C. et al. (2002) CADASIL Notch3 mutant proteins localize to the cell surface and bind ligand. Circ Res, 90, 506–8.CrossRefGoogle ScholarPubMed
Haritunians, T., Chow, T., De Lange, R. P. et al. (2005) Functional analysis of a recurrent missense mutation in Notch3 in CADASIL. J Neurol Neurosurg Psychiatry, 76, 1242–8.CrossRefGoogle ScholarPubMed
Dichgans, M., Ludwig, H., Muller-Hocker, J., Messerschmidt, A. and Gasser, T. (2000) Small in-frame deletions and missense mutations in CADASIL: 3D models predict misfolding of Notch3 EGF-like repeat domains. Eur J Hum Genet, 8, 280–5.CrossRefGoogle ScholarPubMed
Joutel, A., Monet, M., Domenga, V., Riant, F. and TournierLasserve, E. (2004) Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling pathway. Am J Hum Genet, 74, 338–47.CrossRefGoogle ScholarPubMed
Monet-Lepretre, M., Haddad, I., Baron-Menguy, C. et al. (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3: a new pathomechanism in CADASIL. Brain, 136, 1830–45.CrossRefGoogle ScholarPubMed
Carrera, P., Stenirri, S., Ferrari, M. and Battistini, S. (2001) Familial hemiplegic migraine: a ion channel disorder. Brain Res Bull, 56, 239–41.Google ScholarPubMed
Koga, S. J., Hodges, M., Markin, C. and Gorman, P. (1995) MELAS syndrome. West J Med, 163, 379–81.CrossRefGoogle Scholar
Pescini, F., Nannucci, S., Bertaccini, B. et al. (2012) The cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) Scale: A screening tool to select patients for NOTCH3 gene analysis. Stroke, 43, 2871–76.CrossRefGoogle Scholar
Malandrini, A., Mykkanen, K., Ruchoux, M.M. et al. (2007) Diagnostic value of ultrastructural skin biopsy studies in CADASIL. Neurology, 24, 1430.CrossRefGoogle ScholarPubMed
Tikka, S., Mykkänen, K., Ruchoux, M.M. et al. (2009) Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain, 132, 933–9.Google ScholarPubMed
Lewandowska, E., Szpak, G.M., Wierzba-Bobrowicz, T. et al. (2010) Capillary vessel wall in CADASIL angiopathy. Folia Neuropathol, 48, 104–15.CrossRefGoogle ScholarPubMed
Peters, N., Freilinger, T., Opherk, C., Pfefferkorn, T. and Dichgans, M. (2007) Effects of short-term atorvastatin treatment on cerebral hemodynamics in CADASIL. J Neurol Sci, 260, 100–5.CrossRefGoogle ScholarPubMed
Willmot, M., Gray, L., Gibson, C., Murphy, S. and Bath, P. M. (2005) A systematic review of nitric oxide donors and l-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide, 12, 141–9.CrossRefGoogle ScholarPubMed
Schulman, S. P., Becker, L. C., Kass, D. A. et al. (2006) l-arginine therapy in acute myocardial infarction: the Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA, 295, 5864.CrossRefGoogle ScholarPubMed
Donnini, I., Nannucci, S., Valenti, R. et al. (2012) Acetazolamide for the prophylaxis of migraine in CADASIL: a preliminary experience. J Headache Pain, 13, 299302.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×