Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T22:31:48.848Z Has data issue: false hasContentIssue false

Chapter 24 - Treatment of Alzheimer’s disease

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hebert, LE, Weuve, J, Scherr, PA, Evans, DA. Alzheimer’s disease in the USA (2010–2050) estimated using the 2010 Census. Neurology 2013;80(19):1778–83.Google Scholar
Alzheimer’s Association. 2013 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia 2013;9(2):208–45.CrossRefGoogle ScholarPubMed
Mesulam, M, Shaw, P, Mash, D, Weintraub, S. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 2004;55(6):815–28.CrossRefGoogle ScholarPubMed
Whitehouse, PJ, Price, DL, Clark, AW, Coyle, JT, DeLong, MR. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981;10:122–6.CrossRefGoogle ScholarPubMed
Villarroya, M, García, AG, Marco, JL. New classes of AChE inhibitors with additional pharmacological effects of interest for the treatment of Alzheimer’s disease. Curr Pharm Des 2004;10(25):3177–84.Google Scholar
Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006 (1): CD005593.Google ScholarPubMed
Hansen, RA, Gartlehner, G, Webb, AP, Morgan, LC, Moore, CG, Jonas, DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin Interv Aging 2008;3(2):211–25.Google Scholar
Zhu, CW, Livote, EE, Scarmeas, N, Albert, M, Brandt, J, Blacker, D, Sano, M, Stern, Y. Long-term associations between cholinesterase inhibitors and memantine use and health outcomes among patients with Alzheimer’s disease. Alzheimers Dement 2013 Jan 16; pii: S1552–5260(12)02526–5.Google ScholarPubMed
Alva, G, Cummings, JL. Relative tolerability of Alzheimer’s disease treatments. Psychiatry (Edgmont) 2008;5(11):2736.Google Scholar
Emre, M. Switching cholinesterase inhibitors in patients with Alzheimer’s disease. Int J Clin Pract Suppl 2002 Jun;(127):6472.CrossRefGoogle ScholarPubMed
Bartorelli, L, Giraldi, C, Saccardo, M, Cammarata, S, Bottini, G, Fasanaro, AM, Trequattrini, A. Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer’s disease. Curr Med Res Opin 2005;21(11):1809–18.CrossRefGoogle ScholarPubMed
Rogawski, MA, Wenk, GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev 2003 Fall;9(3): 275308.CrossRefGoogle ScholarPubMed
Lipton, SA. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 2004 Dec;6(6 Suppl):S61–74.CrossRefGoogle Scholar
McShane, R, Areosa Sastre, A, Minakaran, N. Memantine for dementia. Cochrane Database Syst Rev 2006 Apr 19;(2):CD003154.CrossRefGoogle ScholarPubMed
Maidment, ID, Fox, CG, Boustani, M, Rodriguez, J, Brown, RC, Katona, CL. Efficacy of memantine on behavioral and psychological symptoms related to dementia: a systematic meta-analysis. Ann Pharmacother 2008 Jan;42(1):32–8.CrossRefGoogle Scholar
Tariot, PN, Farlow, MR, Grossberg, GT, Graham, SM, McDonald, S, Gergel, I. Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004;291:317324.CrossRefGoogle ScholarPubMed
Feldman, HH, Schmitt, FA, Olin, JT. Activities of daily living in moderate-to-severe Alzheimer disease: an analysis of the treatment effects of memantine in patients receiving stable donepezil treatment. Alzheimer Dis Assoc Disord 2006 Oct–Dec;20(4):263–8.CrossRefGoogle Scholar
Porsteinsson, AP, Grossberg, GT, Mintzer, J, Olin, JT. Memantine MEM-MD-12 Study Group. Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res 2008;5:83–9.CrossRefGoogle ScholarPubMed
Atri, A, Molinuevo, JL, Lemming, O, Wirth, Y, Pulte, I, Wilkinson, D. Memantine in patients with Alzheimer’s disease receiving donepezil: new analyses of efficacy and safety for combination therapy. Alzheimers Res Ther 2013 Jan 21;5(1):6.CrossRefGoogle ScholarPubMed
Minoshima, S, Giordani, B, Berent, S, Frey, KA, Foster, NL, Kuhl, DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997 Jul;42(1):8594.CrossRefGoogle ScholarPubMed
Henderson, ST. Ketone bodies as a therapeutic for Alzheimer’s disease. Neurotherapeutics 2008 Jul;5(3):470–80.CrossRefGoogle ScholarPubMed
Henderson, ST, Vogel, JL, Barr, LJ, Garvin, F, Jones, JJ, Costantini, LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 2009; 6:31.CrossRefGoogle ScholarPubMed
Seshadri, S, Beiser, A, Selhub, J, Jacques, PF, Rosenberg, IH, D’Agostino, RB, Wilson, PW, Wolf, PA. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002;346(7):476–83.Google Scholar
Kruman, II, Kumartavel, TS, Lohani, A, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 2002;70:694702.CrossRefGoogle ScholarPubMed
Zhang, CE, Wei, W, Liu, YH, et al. Hyperhomocysteinemia increases β-amyloid by enhancing expression of γ-secretase on phosphorylation of amyloid precursor protein in rat brain. Am J Pathol 2009;174:1481–91.CrossRefGoogle ScholarPubMed
Guidi, I, Galimberti, D, Lonarti, S, et al. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2006;27(2):262–9.CrossRefGoogle ScholarPubMed
Puertas, MC, Martínez-Martos, JM, Cobo, MP, Carrera, MP, Mayas, MD, Ramírez-Expósito, MJ. Plasma oxidative stress parameters in men and women with early stage Alzheimer-type dementia. Exp Gerontol 2012;47: 625–30.CrossRefGoogle ScholarPubMed
McCaddon, A, Hudson, PR. l-methylfolate, methylcobalamin, and N-acetylcysteine in the treatment of Alzheimer’s disease-related cognitive decline. CNS Spectr 2010;15 (Suppl 1):25.CrossRefGoogle ScholarPubMed
de Jager, CA, Oulhaj, A, Jacoby, R, Refsum, H, Smith, AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry 2012 Jun;27(6):592600.CrossRefGoogle ScholarPubMed
Douaud, G, Refsum, H, de Jager, CA, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA 2013 Jun 4;110(23):9523–8.CrossRefGoogle ScholarPubMed
Selkoe, DJ. Alzheimer’s disease is a synaptic failure. Science 2002;298(5594): 789–91.CrossRefGoogle Scholar
Cansev, M, Wurtman, RJ. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils. Neuroscience 2007 Aug 24;148(2):421–31.CrossRefGoogle ScholarPubMed
Sakamoto, T, Cansev, M, Wurtman, RJ. Oral supplementation with docosahexaenoic acid and uridine-5’-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res 2007 Nov 28;1182:50–9.CrossRefGoogle ScholarPubMed
Scheltens, P, Kamphuis, PJ, Verhey, FR, et al. Efficacy of a medical food in mild Alzheimer’s disease: a randomized controlled trial. Alzheimers Dement 2010; 6(1):110.Google ScholarPubMed
Scheltens, P, Stam, CJ, Swinkels, SH, et al. Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. Journal of Alzheimer’s Disease 2012;31(1):225–36.Google Scholar
Phrma. Medicines in development: Alzheimer’s diseases. PhRMA’s Communications & Public Affairs Department. 2012. (Epub.)CrossRefGoogle ScholarPubMed
Corbett, A, Smith, J, Ballard, C. New and emerging treatments for Alzheimer’s disease. Expert Rev Neurother 2012;12(5):535–43.CrossRefGoogle ScholarPubMed
Caraci, F, Bosco, P, Leggio, GM, Malaguarnera, M, Drago, F, Bucolo, C, Salomone, S. Clinical pharmacology of novel anti-Alzheimer disease modifying medications. Curr Top Med Chem 2013;13(15):1853–63.CrossRefGoogle ScholarPubMed
Wang, Y, Mandelkow, E. Tau in physiology and pathology. Nat Rev Neurosci 2016 Jan;17(1):2235.CrossRefGoogle ScholarPubMed
Thomsen, MS, Hansen, HH, Timmerman, DB, Mikkelsen, JD. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr Pharm Des 2010;16(3):323–43.CrossRefGoogle Scholar
Geldenhuys, WJ, Van der Schyf, CJ. The seratonin 5-HT6 receptor: a viable drug target for treating cognitive deficits in Alzheimer’s disease. Expert Rev Neurother 2009;9(7):1073–85.CrossRefGoogle ScholarPubMed
Naddafi, F, Mirshafiey, A. The neglected role of histamine in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2013;28(4):327–36.CrossRefGoogle ScholarPubMed
Dai, Y, Kamal, MA. Fighting Alzheimer’s disease and type 2 diabetes: pathological links and treatment strategies. CNS Neurol Disord Drug Targets 2014 Mar;13(2):271–82.CrossRefGoogle ScholarPubMed
Morgan, D. Immunotherapy for Alzheimer’s disease. J Alzheimers Dis. 2006;9(3 Suppl):425–32.Google ScholarPubMed
Lambracht-Washington, D, Rosenberg, RN. Advances in the development of vaccines for Alzheimer’s disease. Discov Med 2013;15(84):319–26.CrossRefGoogle ScholarPubMed
Götz, J, Ittner, A, Ittner, LM. Tau-targeted treatment strategies in Alzheimer’s disease. Br J Pharmacol 2012;165(5):1246–59.CrossRefGoogle ScholarPubMed
Jayasena, T, Poljak, A, Smythe, G, Braidy, N, Münch, G, Sachdev, P. The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer’s disease. Ageing Res Rev 2013;12(4):867–83.CrossRefGoogle ScholarPubMed
Fang, L, Gou, S, Fang, X, Cheng, L, Fleck, C. Current progresses of novel natural products and their derivatives/analogs as anti-Alzheimer candidates: an update. Mini Rev Med Chem. 2013;13(6):870–87.CrossRefGoogle ScholarPubMed
Chen, WW, Blurton-Jones, M. Concise review: Can stem cells be used to treat or model Alzheimer’s disease? Stem Cells. 2012;30(12):2612–18.CrossRefGoogle ScholarPubMed
Sopova, K, Gatsiou, A, Stellos, K, Laske, C. Dysregulation of neurotrophic and haematopoietic growth factors in Alzheimer’s Disease: From pathophysiology to novel treatment strategies. Curr Alzheimer Res 2014 Jan;11(1):2739.CrossRefGoogle Scholar
Cummings, J, Zhong, K. Biomarker-driven therapeutic management of Alzheimer’s disease: Establishing the foundations. Clin Pharmacol Ther 2013 Oct 8. (Epub ahead of print.)CrossRefGoogle ScholarPubMed
Sigurdsson, EM. Tau immunotherapy and imaging. Neurodegener Dis 2014;13(2–3):103–6.CrossRefGoogle ScholarPubMed
Vellas, B, Aisen, PS, Sampaio, C, et al. Prevention trials in Alzheimer’s disease: an EU-US task force report. Prog Neurobiol 2011;95(4):594600.CrossRefGoogle ScholarPubMed
Dubois, B, Feldman, HH, Jacova, C, et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 2010;9(11):1118–27.CrossRefGoogle Scholar
Jack, CR Jr, Albert, MS, Knopman, DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):257–62.CrossRefGoogle ScholarPubMed
Pollock, BG, Mulsant, BH, Rosen, J, et al. A double-blind comparison of citalopram and risperidone for the treatment of behavioral and psychotic symptoms associated with dementia. Am J Geriatr Psychiatry 2007;15(11):942–52.CrossRefGoogle Scholar
Lanctôt, KL, Chau, SA, Herrmann, N, et al. Effect of methylphenidate on attention in apathetic AD patients in a randomized, placebo-controlled trial. Int Psychogeriatr 2014 Feb;26(2):239–46.CrossRefGoogle ScholarPubMed
Pioro, EP, Brooks, BR, Cummings, J, et al. Safety, tolerability, and efficacy results trial of AVP-923 in PBA investigators. Dextromethorphan plus ultra low-dose quinidine reduces pseudobulbar affect. Ann Neurol 2010;68(5):693702.CrossRefGoogle ScholarPubMed
Cummings, J, Isaacson, S, Mills, R, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 2014 Feb 8;383(9916):533–40.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×