Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-15T15:16:28.076Z Has data issue: false hasContentIssue false

9 - Block structure-preserving reduction for RLCK circuits

Published online by Cambridge University Press:  19 January 2010

Sheldon Tan
Affiliation:
University of California, Riverside
Lei He
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

In the chapter, we introduce another structure-preserving model order reduction method, which extends the SPRIM method [37] to more general block forms while the 2q moment-matching property is still preserved. The SPRIM method partitions the state matrix in the MNA (modified nodal analysis) form into natural 2 × 2 block matrices, i.e., conductance, capacitance, inductance, and adjacent matrices. Accordingly, the projection matrix is partitioned. As a result, SPRIM matches twice the moments of the models by using the projection matrix given by PRIMA. The reduced models also preserve the structural properties of the original models like symmetry (reciprocity). This idea has been extended to deal with more partitions by block structure-preserving model order reduction (BSMOR) [136], as shown in Chapter 8 to further exploit the regularity of the many parasitic networks. It was shown that by introducing more partitions, more poles are matched and this leads to more accurate order-reduced models [138].

However, the BSMOR method simply introduce more partitions or blocks; it does not truly preserve the circuit structures for general RLCK circuits for different input sources (voltages or currents). The reduced model does not match the 2q moments of the original models, as SPRIM does.

In this chapter, we first show theoretically that structure-preserving model order reduction can be applied to RLCK admittance networks, which are driven by voltage sources and requires partitioning of the original MNA circuit matrix into 2 × 2 block matrices.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×