Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T08:07:16.912Z Has data issue: false hasContentIssue false

12 - Reduction for multi-terminal interconnect circuits

Published online by Cambridge University Press:  19 January 2010

Sheldon Tan
Affiliation:
University of California, Riverside
Lei He
Affiliation:
University of California, Los Angeles
Get access

Summary

In this chapter, we study the model order reductions on interconnect circuits with many terminals or ports. We show that projection-based model order reduction techniques are not very efficient for those circuits. We then present an efficient reduction method which combines projection-based MOR with a frequency domain fitting method to produce reduced models for interconnect circuits with large terminals.

Introduction

Krylov subspace projection methods have been widely used for model order reduction, owing to their efficiency and simplicity for implementation [32, 37, 85, 91, 113]. Chapter 2 has a detailed review of those methods.

One problem with the existing projection-based model order reduction techniques is that they are not efficient at reducing circuits with many ports. This is reflected in several aspects of the existing Krylov subspace algorithms like PRIMA [85]. First, the time complexity of PRIMA is proportional to the number of ports of the circuits as moments excited by every port need to be computed and matrix-valued transfer functions are generated. Second, the poles of the reduced models increase linearly with the number of ports, and this makes the reduced models much larger than necessary. The fundamental reason is that all the Krylov-based projection methods are working directly on the moments, which contain the information of both poles and residues for the corresponding transfer function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×