Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T23:55:31.424Z Has data issue: false hasContentIssue false

31 - Hypo- and hyperglycemia and other carbohydrate metabolism disorders

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Jane E. McGowan
Affiliation:
Division of Neonatology, The Johns Hopkins Hospital, Baltimore, MD
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Disorders of glucose homeostasis

The presence of neonatal hypoglycemia or hyperglycemia signals a failure of the normal transition from fetal to postnatal patterns of glucose homeostasis. Under normal conditions, glucose from maternal circulation is transported across the placenta via specific glucose transporters to be used by the fetus. The high fetal insulin : glucagon ratio suppresses glycogenolysis and gluconeogenesis and stimulates hepatic glycogen deposition during late gestation.

At delivery, glucose delivery to the infant stops abruptly. Until an exogenous supply of substrate is provided, the infant must rely on hepatic glucose production to meet metabolic needs. Both glycogenolysis and gluconeogenesis contribute to glucose homeostasis during the first few days of extrauterine life. However, hepatic glucose production via these two pathways requires availability of glycogen and gluconeogenic precursors, appropriate levels and activity of hepatic enzymes necessary for glycogenolysis and gluconeogenesis, and a normal endocrine response. The absence of any of these components may result in neonatal hypoglycemia or hyperglycemia.

Hypoglycemia

Incidence and clinical presentation

The reported incidence of neonatal hypoglycemia varies depending on the population studied, the method used for glucose measurement, and the definition of hypoglycemia used. In appropriate-for-gestational-age (AGA) term infants the incidence ranges from 5%–30%, but may be as high as 50% in preterm infants, and 70% in small-for-gestational-age (SGA) infants. Clinical signs of hypoglycemia are nonspecific and may include lethargy, jitteriness, poor feeding, seizures, and temperature disturbances. The frequency of observation of the most common findings is listed in Table 31.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S., Shakya, K. N., Shrestha, L. N., Costello, A. M.Hypoglycaemia: a common problem among uncomplicated newborn infants in Nepal. J. Trop. Pediatr. 1993;39:273–7.CrossRefGoogle ScholarPubMed
Cole, M. D., Peevy, K.Hypoglycemia in normal neonates appropriate for gestational age. J. Perinatol. 1994;14:118–20.Google ScholarPubMed
Lubchenco, L. O., Bard, H.Incidence of hypoglycemia in newborn infants classified by birth weight and gestational age. Pediatrics 1971;47:831–4.Google ScholarPubMed
Srinivasan, G., Pildes, R. S., Caughy, M., Voora, S., Lilien, L. D.Plasma glucose values in normal neonates: a new look. J. Pediatr. 1986;109:114–17.CrossRefGoogle ScholarPubMed
Farrag, H. M., Cowett, R. M.Glucose homeostasis in the micropremie. Clin. Perinatol. 2000;27:1–22.CrossRefGoogle ScholarPubMed
Zanardo, V., Cagdas, S., Golin, R.et al.Risk factors of hypoglycemia in premature infants. Fetal Diagn. Ther. 1999;14:63–7.CrossRefGoogle ScholarPubMed
Duvanel, C. B., Fawer, C. L., Cotting, J., Hohlfield, P., Matthieu, J. M.Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational age infants. J. Pediatr. 1999;134:492–8.CrossRefGoogle Scholar
Holtrop, P. C.The frequency of hypoglycemia in full-term large and small for gestational age newborns. Am. J. Perinatol. 1993;10:150–4.CrossRefGoogle ScholarPubMed
Pallotto, E. K., Woelnerhannssen, B., Macones, G. A., Simmons, R. A.Hypoglycemia in small-for-gestational-age infants: how extensive is the problem and what are the risks?Pediatr. Res. 2003;53:499A.Google Scholar
Yamaguchi, K., Mishina, J.Mitsuishi, C., Nakabayashi, M., Nishida, H.Neonatal hypoglycemia in infants with intrauterine growth retardation due to pregnancy-induced hypertension. Acta Paediatr Jpn. 1997;39:S48–50.Google ScholarPubMed
Agrawal, R. K., Lui, K., Gupta, J. M.Neonatal hypoglycaemia in infants of diabetic mothers. J. Paediatr. Child Health 2000;36:354–6.CrossRefGoogle ScholarPubMed
Curet, L. B., Izquierdo, L. A., Gilson, G. J.et al.Relative effects of antepartum and intrapartum maternal blood glucose levels on incidence of neonatal hypoglycemia. J. Perinatol. 1997;17:113–15.Google ScholarPubMed
Stenninger, E., Flink, R., Eriksson, B., Sahlen, C.Long-term neurological dysfunction and neonatal hypoglycaemia after diabetic pregnancy. Arch. Dis. Child Fetal Neonatal Edn. 1998;79:F174–9.CrossRefGoogle ScholarPubMed
Schaefer-Graf, U. M., Rossi, R., Buhrer, C.et al.Rate and risk factors of hypoglycemia in large-for-gestational-age newborn infants of nondiabetic mothers. Am. J. Obstet. Gynecol. 2002;187:913–17.CrossRefGoogle ScholarPubMed
Cowett, R. M., Schwartz, R.The infant of the diabetic mother. Pediatr. Clin. N. Am. 1982;29:1213–31.CrossRefGoogle ScholarPubMed
Schlebusch, H., Niesen, M., Sorger, M., Paffenholz, I., Fahnenstich, H.Blood glucose determinations in newborns: four instruments compared. Pediatr. Pathol. Lab. Med. 1998;18:41–8.CrossRefGoogle ScholarPubMed
Giep, T. N., Hall, R. T., Harris, K., Barrick, B., Smith, S.Evaluation of neonatal whole blood versus plasma glucose concentration by ion-selective electrode technology and comparison with two whole blood chromogen test strip methods. J. Perinatol. 1996;16:244–9.Google ScholarPubMed
Maisels, M. J., Lee, C.Chemstrip glucose test strips: correlation with true glucose values less than 80 mg/dL. Crit. Care Med. 1983;71:457–9.Google Scholar
Cornblath, M., Odell, G. B., Levin, E. Y.Symptomatic neonatal hypoglycemia associated with toxemia of pregnancy. J. Pediatr. 1959;55:545–62.CrossRefGoogle ScholarPubMed
Koh, T. H., Eyre, J. A., Aynsley-Green, A.Neonatal hypoglycaemia – the controversy regarding definition. Arch. Dis. Child. 1988;63:1386–8.CrossRefGoogle ScholarPubMed
Koh, T. H., Vong, S. K.Definition of neonatal hypoglycaemia: is there a change?J. Paediatr. Child Health 1996;32:302–5.CrossRefGoogle ScholarPubMed
Griffiths, A. D., Bryant, G. M.Assessment of effects of neonatal hypoglycaemia. Arch. Dis. Child. 1971;46:819–27.CrossRefGoogle ScholarPubMed
Lucas, A., Morley, R., Cole, T. J.Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. Br. Med. J. 1988;297:1304–8.CrossRefGoogle ScholarPubMed
Cornblath, M., Hawdon, J. M., Williams, A.et al.Controversies regarding definition of neonatal hypoglycemia: suggested operational thresholds. Pediatrics 2000;105:1141–5.CrossRefGoogle ScholarPubMed
Kalhan, S., Peter-Wohl, S.Hypoglycemia: what is it for the neonate. Am. J. Perinatol. 2000;17:11–18.CrossRefGoogle ScholarPubMed
Hume, R., McGeechan, A., Burchell, A.Developmental disorders of glucose metabolism in infants. Child Care Health Dev. 2002;28:S45–47.CrossRefGoogle ScholarPubMed
Kliegman, R. M.Alterations of fasting glucose and fat metabolism in intrauterine growth-retarded newborn dogs. Am. J. Physiol. 1989;256:E380–5.Google ScholarPubMed
Marconi, A. M., Daviani, E., Baggiani, A. M.et al.An evaluation of fetal glucogenesis in intrauterine growth-retarded pregnancies. Metabolism 1993;42:860–4.CrossRefGoogle ScholarPubMed
Hawdon, J. M., Aynsley-Green, A., Bartlett, K., Ward Platt, M. P.The role of pancreatic insulin secretion in neonatal glucoregulation. II. Infants with disordered blood glucose homoeostasis. Arch. Dis. Child. 1993;68:280–5.CrossRefGoogle ScholarPubMed
Ktorza, A., Bihoreau, M., Nurjhan, N., Picon, L., Girard, J.Insulin and glucagon during the perinatal period: secretion and metabolic effects on the liver. Biol. Neonate 1985;48:204–20.CrossRefGoogle ScholarPubMed
Pribylova, J., Kozlova, J.Glucose and galactose infusions in newborns of diabetic and healthy mothers. Biol. Neonate 1979;36:193–7.CrossRefGoogle ScholarPubMed
Artal, R., Golde, S. H., Dorey, F.et al.The effect of plasma glucose variability on neonatal outcome in the pregnant diabetic patient. Am. J. Obstetr. Gynecol. 1983;147:537–41.CrossRefGoogle ScholarPubMed
Chung, M. A.Galactosemia in infancy: diagnosis, management, and prognosis. Pediatr. Nurs. 1997;23:563–9.Google ScholarPubMed
Barrett, C. T., Oliver, T. K.Hypoglycemia and hyperinsulinism in infants with erythroblastosis fetalis. N. Engl. J. Med. 1968;278:1260–2.CrossRefGoogle ScholarPubMed
Raivio, K. O., Osterlund, K.Hypoglycemia and hyperinsulinemia associated with erythroblastosis fetalis. Pediatrics 1969;43:217–25.Google ScholarPubMed
Schiff, D., Aranda, J. V., Colle, E., Stern, L.Metabolic effects of exchange transfusion. II. Delayed hypoglycemia following exchange transfusion with citrated blood. J. Pediatr. 1971;79:589–93.CrossRefGoogle ScholarPubMed
Leake, R. D., Hobel, C. J., Okada, D. M., Ross, M. G., Williams, P. R.Neonatal metabolic effects of oral ritodrine hydrochloride administration. Pediatr. Pharmacol. 1983;3:101–6.Google ScholarPubMed
Procianoy, R. S., Pinheiro, C. E. A.Neonatal hyperinsulinism after short-term maternal beta sympathomimetic therapy. J. Pediatr. 1982;101:612–14.CrossRefGoogle ScholarPubMed
DeBaun, M. R., King, A. A., White, N.Hypoglycemia in Beckwith–Weidemann syndrome. Semin. Perinatol. 2000;24:164–71.CrossRefGoogle Scholar
Brown, K. W., Gardner, A., Williams, J. C.et al.Paternal origin of 11p15 duplications in the Beckwith–Wiedemann syndrome. A new case and review of the literature. Cancer Genet Cytogenet. 1992;58:66–70.CrossRefGoogle ScholarPubMed
Waziri, M., Patil, S. R., Hanson, J. W., Bartley, J. A.Abnormality of chromosome 11 in patients with features of Beckwith–Wiedemann syndrome. J. Pediatr. 1983:102:873–6.CrossRefGoogle ScholarPubMed
Cresto, J. C., Abdenur, J. P., Bergada, I., Martino, R.Long term follow up of persistent hyperinsulinaemic hypoglycaemia of infancy. Arch. Dis. Child. 1998;79:440–4.CrossRefGoogle ScholarPubMed
Lonlay, P., Fournet, J. C., Touati, G.et al.Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. Eur. J. Pediatr. 2002;161:37–48.CrossRefGoogle ScholarPubMed
Glaser, B.Hyperinsulinism of the newborn. Semin. Perinatol. 2000;24:150–63.CrossRefGoogle ScholarPubMed
Glaser, B., Ryan, F., Donath, M.et al.Hyperinsulinism caused by paternal-specific inheritance of a recessive mutation in the sulfonylurea-receptor gene. Diabetes 1999;48:1652–7.CrossRefGoogle ScholarPubMed
Nestorowicz, A., Inagaki, N., Gonoi, T.et al.A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997;46:1743–8.CrossRefGoogle ScholarPubMed
Verkarre, V., Fournet, J. C., Lonlay, P.et al.Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J. Clin. Invest. 1998;102:1286–91.CrossRefGoogle ScholarPubMed
Glaser, B., Kesavan, P., Heyman, M.et al.Familial hyperinsulinism caused by an activating glucokinase mutation. N. Engl. J. Med. 1998;338:226–30.CrossRefGoogle ScholarPubMed
Miki, Y., Taki, T., Ohura, T.et al.Novel missense mutations in the glutamate dehydrogenase gene in the congenital hyperinsulinism-hyperammonemia syndrome. J. Pediatr. 2000;136:69–72.CrossRefGoogle ScholarPubMed
Stanley, C. A., Lieu, Y. K., Hsu, B. Y.et al.Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med. 1998;338:1352–7.CrossRefGoogle ScholarPubMed
Davis, D. J., Creery, W. D., Radziuk, J.Inappropriately high plasma insulin levels in suspected perinatal asphyxia. Acta. Paediatrica Scand. 2000;88:76–81.CrossRefGoogle Scholar
Pal, D. K., Manandhar, D. S., Rajbhandari, S.et al.Neonatal hypoglycaemia in Nepal 1. Prevalence and risk factors. Arch. Dis. Child. Fetal Neonatal Edn. 2000;82:F46–51.CrossRefGoogle ScholarPubMed
Leake, R. D., Fiser, R. H., Oh, W.Rapid glucose disappearance in infants with infection. Clin. Pediatr. 1981;20:397–401.CrossRefGoogle ScholarPubMed
Hawdon, J. M., Weddell, A., Aynsley-Green, A., Ward Platt, M. P.Hormonal and metabolic response to hypoglycaemia in small for gestational age infants. Arch. Dis. Child. 1993;68:269–73.CrossRefGoogle ScholarPubMed
Stanley, C. A., Anday, E. K., Baker, L., Delivoria-Papadopoulos, M.Metabolic fuel and hormone responses to fasting in newborn infants. Pediatrics 1979;64:613–19.Google ScholarPubMed
Hussain, K., Hindmarsh, P., Aynsley-Green, A.Spontaneous hypoglycemia in childhood is accompanied by paradoxically low serum growth hormone and appropriate cortisol counterregulatory hormonal responses. J. Clin. Endocrinol. Metab. 2003;88:3715–23.CrossRefGoogle ScholarPubMed
Costello, A. M., Pal, D. K., Manandhar, D. S.et al.Neonatal hypoglycaemia in Nepal 2. Availability of alternative fuels. Arch. Dis. Child. Fetal Neonatal Edn. 2000;82:F52–8.CrossRefGoogle Scholar
Hawdon, J. M., Ward Platt, M. P., Aynsley-Green, A.Patterns of metabolic adaptation for preterm and term infants in the first neonatal week. Arch. Dis. Child. 1992;67:357–65.CrossRefGoogle ScholarPubMed
Vannucci, R. C., Vannucci, S.Hypoglycemic brain injury. Semin. Neonatol. 2001;6:147–55.CrossRefGoogle ScholarPubMed
Belik, J., Wagerle, L. C., Stanley, C. A.et al.Cerebral metabolic response and mitochondrial activity following insulin-induced hypoglycemia in newborn lambs. Biol. Neonate 1989;55:281–9.CrossRefGoogle ScholarPubMed
Katsura, K., Folbergrova, J., Bengtsson, F.et al.Recovery of mitochondrial and plasma membrane function following hypoglycemic coma: coupling of adenosine triphosphate synthesis, K+ transport, and changes in extra- and intracellular pH. J. Cerebr. Blood Flow Metabol. 1993;13:820–6.CrossRefGoogle ScholarPubMed
Kristian, T., Gido, G., Siesjö, B. K.Brain calcium metabolism in hypoglycemic coma. J. Cereb. Blood Flow Metabol. 1993;13:955–61.CrossRefGoogle ScholarPubMed
Siesjö, B. K., Bengtsson, F.Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metabol. 1989;9:127–40.CrossRefGoogle ScholarPubMed
Wieloch, T., Harris, R. J., Symon, L., Siesjö, B. K.Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J. Neurochem. 1984;43:160–8.CrossRefGoogle ScholarPubMed
Mujsce, D. J., Christensen, M. A., Vannucci, R. C.Regional cerebral blood flow and glucose utilization during hypoglycemia in newborn dogs. Am. J. Physiol. 1989;256:H1659–66.Google ScholarPubMed
Pryds, O., Christensen, N. J., Friis-Hansen, B.Increased cerebral blood flow and plasma epinephrine in hypoglycemic, preterm neonates. Pediatrics 1990;85:172–6.Google ScholarPubMed
Ruth, V. J., Park, T. S., Gonzales, E. R., Gidday, J. M.Adenosine and cerebrovascular hyperemia during insulin-induced hypoglycemia in newborn piglet. Am. J. Physiol. 1993;265:H1762–8.Google ScholarPubMed
Auer, R. N.Progress review: hypoglycemic brain damage. Stroke 1986;17:699–708.CrossRefGoogle ScholarPubMed
Auer, R. N., Alimo, H., Olsson, Y., Siesjö, B. K.The temporal evolution of hypoglycemic brain damage. I. Light and electron microscopic findings in the rat cerebral cortex. Acta Neuropathol. 1985;67:13–24.CrossRefGoogle ScholarPubMed
Bank, B. Q.The neuropathological effects of anoxia and hypoglycemia in the newborn. Dev. Med. Child Neurol. 1967;9:544–50.CrossRefGoogle Scholar
Barkovich, A. J., Ali, F. A., Rowley, H. A., Bass, N.Imaging patterns of neonatal hypoglycemia. Am. J. Neuroradiol. 1998;19:523–8.Google ScholarPubMed
Chiu, N. T., Huang, C. C., Chang, Y. C.et al.Technetium-99m-HMPAO brain SPECT in neonates with hypoglycemic encephalopathy. J. Nucl. Med. 1998;39:1711–13.Google ScholarPubMed
Kinnala, A., Rikalainen, H., Lapinleimu, H.et al.Cerebral magnetic resonance imaging and ultrasonography findings after neonatal hypoglycemia. Pediatrics 1999;103:724–9.CrossRefGoogle ScholarPubMed
Murakami, Y., Yamashita, Y., Matsuishi, T.et al.Cranial MRI of neurologically impaired children suffering from neonatal hypoglycaemia. Pediatr. Radiol. 1999;29:23–7.CrossRefGoogle ScholarPubMed
Traill, Z., Squier, M., Anslow, P.Brain imaging in neonatal hypoglycaemia. Arch. Dis. Child. Fetal Neonatal Edn. 1998;79:F145–7.CrossRefGoogle ScholarPubMed
Cornblath, M., Wybregt, S. H., Baens, G. S., Klein, R. I.Symptomatic neonatal hypoglycemia. Studies of carbohydrate metabolism in the newborn infant VIII. Pediatrics 1964;33:388–402.Google ScholarPubMed
Fluge, G.Neurological findings at follow-up in neonatal hypoglycaemia. Acta. Paediatrica Scand. 1975;64:629–34.CrossRefGoogle ScholarPubMed
Yamaguchi, K., Mishina, J., Mitsuishi, C., Takamura, T., Nishida, H.Follow-up study of neonatal hypoglycemia. Acta Paediatrica Jpn. 1997;39:S51–3.Google ScholarPubMed
Koh, T. H., Aynsley-Green, A., Tarbit, M., Eyre, J. A.Neural dysfunction during hypoglycaemia. Arch. Dis. Child. 1988;63:1353–8.CrossRefGoogle ScholarPubMed
Cowett, R. M., Howard, G. M., Johnson, J., Vohr, B.Brain stem auditory-evoked response in relation to neonatal glucose metabolism. Biol. Neonate 1997;71:31–6.CrossRefGoogle ScholarPubMed
Meissner, T., Wendel, U., Burgard, P., Schaetzle, S., Mayatepek, E.Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur. J. Endocrinol. 2003;149:43–51.CrossRefGoogle ScholarPubMed
Menni, F., Lonlay, P., Sevin, C.et al.Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics 2001;107:476–9.CrossRefGoogle ScholarPubMed
Aynsley-Green, A., Hussain, K., Hall, J.et al.Practical management of hyperinsulinism in infancy. Arch. Dis. Child. Fetal Neonatal Edn. 2000;82:F98–107.CrossRefGoogle ScholarPubMed
Lovvorn, H. N. III, Nance, M. L., Ferry, R. Jr.et al.Congenital hyperinsulinism and the surgeon: lessons learned over 35 years. J. Pediatr. 1999;34:786–92.Google ScholarPubMed
Meetze, W., Bowsher, R., Compton, J., Moorehead, H.Hyperglycemia in extremely- low-birth-weight infants. Biol. Neonate 1998;74:214–21.CrossRefGoogle ScholarPubMed
Cowett, R. M., Oh, W., Schwartz, R.Persistent glucose production during glucose infusion in the neonate. J. Clin. Inv. 1983;71:467–75.CrossRefGoogle ScholarPubMed
Sunehag, A., Gustafsson, J., Ewald, U.Very immature infants (≤30 wk) respond to glucose infusion with incomplete suppression of glucose production. Pediatr. Res. 1994;36:550–5.CrossRefGoogle ScholarPubMed
Vileisis, R. A., Cowett, R. M., Oh, W.Glycemic response to lipid infusion in the premature neonate. J. Pediatr. 1982;100:108–12.CrossRefGoogle ScholarPubMed
Fosel, S.Transient and permanent neonatal diabetes. Eur. J. Pediatr. 1995;154:944–8.CrossRefGoogle ScholarPubMed
Muhlendahl, K. E., Herkenhoff, H.Long-term course of neonatal diabetes. N. Engl. J. Med. 1995;333:704–8.CrossRefGoogle Scholar
Marquis, E., Robert, J. J., Bouvattier, C.et al.Major difference in aetiology and phenotypic abnormalities between transient and permanent neonatal diabetes. J. Med. Genet. 2002;39:370–4.CrossRefGoogle ScholarPubMed
Metz, C., Cave, H., Bertrand, A. M.et al.Neonatal diabetes mellitus: chromosomal analysis in transient and permanent cases. J. Pediatr. 2002;141:483–9.CrossRefGoogle ScholarPubMed
James, T. III, Blessa, M., Boggs, T. R. Jr.Recurrent hyperglycemia associated with sepsis in a neonate. Am. J. Dis. Child. 1979;133:645–6.Google Scholar
Srinivasan, G., Singh, J., Cattamanchi, G., Yeh, T. F., Pildes, R. S.Plasma glucose changes in preterm infants during oral theophylline therapy. J. Pediatr. 1983;103:473–6.CrossRefGoogle ScholarPubMed
Pildes, R. S., Pyati, S. P.Hypoglycemia and hyperglycemia in tiny infants. Clin. Perinatol. 1986;13:351–75.CrossRefGoogle ScholarPubMed
Garg, R., Agthe, A. G., Donohue, P. K., Lehmann, C. U.Hyperglycemia and retinopathy of prematurity in very low birth weight infants. J. Perinatol. 2003;23:186–94.CrossRefGoogle ScholarPubMed
Binder, N., Raschko, P. K., Benda, G. I., Reynolds, D. W.Insulin infusion with parenteral nutrition in extremely low birth weight infants with hyperglycemia. J. Pediatr. 1989;114:273–80.CrossRefGoogle ScholarPubMed
Ostertag, S. G., Jovanovic-Peterson, L., Lewis, B., Auld, P.Insulin pump therapy in the very low birth weight infant. Pediatrics 1986;78:625–30.Google ScholarPubMed
Goldman, S. L., Hirata, T.Attenuated response to insulin in very low birthweight infants. Pediatr. Res. 1980;14:50–3.CrossRefGoogle ScholarPubMed
Murray, R. D., Boutton, T. W., Klein, P. D.et al.Comparative absorption of [13C]glucose and [13C]lactose by premature infants. Am. J. Clin. Nutr. 1990;51:59–66.CrossRefGoogle Scholar
Shulman, R. J., Schanler, R. J., Lau, C.et al.Early feeding, feeding tolerance, and lactase activity in preterm infants. J. Pediatr. 1998;133:645–9.CrossRefGoogle ScholarPubMed
Bhatia, J., Prihoda, A. R., Richardson, J.Parenteral antibiotics and carbohydrate intolerance in term neonates. Am. J. Dis. Child. 1986;140:111–13.Google ScholarPubMed
Novelli, G., Reichardt, J. K.Molecular basis of disorders of human galactose metabolism: past, present, and future. Mol. Genet. Metab. 2000;71:62–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×