Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T22:18:13.213Z Has data issue: false hasContentIssue false

26 - Rationale for breastfeeding

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Richard J. Schanler
Affiliation:
Neonatal-Perinatal Medicine, Schneider Children's Hospital at North Shore, North Shore University Hospital, Manhasset, NY and Pediatrics, Albert Einstein College of Medicine, Bronx, NY
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

Both governmental and medical professional organizations have strongly recommended breastfeeding for all infants. Human milk is recommended as the exclusive nutrient source for feeding full-term infants for approximately the first 6 months after birth and should be continued, with the addition of solid foods, for at least 12 months, and thereafter for as long as mutually desired. The recommendation for human milk feeding arises because of its acknowledged benefits with respect to infant nutrition, gastrointestinal function, host defense, and psychological wellbeing. It is important to note that favorable outcomes of breastfeeding are reported both for infants and mothers. The unique species-specificity of human milk should be considered in any discussion of the merits of breastfeeding. The incidence of breastfeeding in the USA increased during the 1970s and peaked in the mid-1980s. Nationwide figures for 1983 indicated that 62% of women chose to breastfeed their newborns. Recent data suggest that rates of initiation and maintenance of breastfeeding are continuing to increase at a rate of 2% per year. To meet the challenge imposed by this increased awareness, physicians desire to expand their knowledge to understand the reasons why breastfeeding is so vital to health and wellbeing. This chapter describes the rationale behind the current recommendations for breastfeeding, including the effects of breastfeeding on infants, mothers, and society.

Milk composition

The milk produced in the first few days is colostrum, a relatively denser milk characterized by high concentrations of protein and antibodies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Section on Breastfeeding, American Academy of Pediatrics. Breastfeeding and the use of human milk. Pediatrics 2005;115:496–506.CrossRef
U. S. Department of Health and Human Services and Office on Women's Health. Breastfeeding: HHS Blueprint for Action on Breastfeeding. Washington, DC; 2000.
American College of Obstetricians and Gynecologists. Breastfeeding: maternal and infant aspects. Washington, DC: ACOG Educational Bulletin. 2000;258:1–16.
Freed, G. L., Landers, S., Schanler, R. J.A practical guide to successful breast-feeding management. Am. J. Dis. Child. 1991;145:917–21.Google ScholarPubMed
Ryan, A. S.The resurgence of breastfeeding in the United States. Pediatrics 1997;99.Google ScholarPubMed
Ryan, A. S., Wenjun, Z., Acosta, A.Breastfeeding continues to increase into the new millennium. Pediatrics 2002;110:1103–9.CrossRefGoogle ScholarPubMed
Schanler, R. J., O'Connor, K. G., Lawrence, R. A.Pediatricians' practices and attitudes regarding breastfeeding promotion. Pediatrics 1999a;103:e35.CrossRefGoogle Scholar
Neville, M. C., Keller, R. P., Seacat, J.et al.Studies on human lactation. I. Within-feed and between-breast variation in selected components of human milk. Am. J. Clin. Nutr. 1984;40:635–46.CrossRefGoogle ScholarPubMed
Mennella, J. A.Mother's milk: a medium for early flavor experiences. J. Hum. Lact. 1995;11:39–43.CrossRefGoogle ScholarPubMed
Atkinson, S. A., Bryan, M. H., Anderson, G. H.Human milk: Difference in nitrogen concentration in milk from mothers of term and premature infants. J. Pediatr. 1978;93:67–9.CrossRefGoogle ScholarPubMed
Butte, N. F., Garza, C., Johnson, C. A., Smith, E. O., Nichols, B. L.Longitudinal changes in milk composition of mothers delivering preterm and term infants. Early Hum. Dev. 1984a;9:153–62.CrossRefGoogle Scholar
Schanler, R. J., Oh, W.Composition of breast milk obtained from mothers of premature infants as compared to breast milk obtained from donors. J. Pediatr. 1980;96:679–81.CrossRefGoogle ScholarPubMed
Gross, S. J., David, R. J., Bauman, L., Tomarelli, R. M.Nutritional composition of milk produced by mothers delivering preterm. J. Pediatr. 1980;96:641–4.CrossRefGoogle ScholarPubMed
Dewey, K. G., Cohen, R. J., Rivera, L. L., Canahuati, J., Brown, K. H.Do exclusively breast-fed infants require extra protein?Pediatr. Res. 1996;39:303–7.CrossRefGoogle ScholarPubMed
Carlson, S. E. Human milk nonprotein nitrogen: occurrence and possible functions. In: Barness, L. A., ed. Advances in Pediatrics. Chicago, IL: Year Book Medical Publishers; 1985:43–70.Google Scholar
Hambraeus, L.Proprietary milk versus human breast milk in infant feeding, a critical appraisal from the nutritional point of view. Pediatr. Clin. N. Am. 1977;24:17–35.CrossRefGoogle ScholarPubMed
Heine, W., Tiess, M., Wutzke, K. D.15N tracer investigations of the physiological availability of urea nitrogen in mother's milk. Acta Paediatr. Scand. 1986;75:439–43.CrossRefGoogle ScholarPubMed
Fomon, S. J., Bier, D. M., Matthews, D. E.et al.Bioavailability of dietary urea nitrogen in the breast-fed infant. J. Pediatr. 1988;113:515–17.CrossRefGoogle ScholarPubMed
Billeaud, C., Guillet, J., Sandler, B.Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur. J. Clin. Nutr. 1990;44:577–83.Google ScholarPubMed
Rassin, D. K., Gaull, G. E., Raiha, N. C. R., Heinonen, K.Milk protein quantity and quality in low-birth-weight infants. IV. Effects on tyrosine and phenylalanine in plasma and urine. J. Pediatr. 1977;90:356–60.CrossRefGoogle ScholarPubMed
Gaull, G. E., Rassin, D. K., Raiha, N. C. R., Heinonen, K.Milk protein quantity and quality in low-birthweight infants. III. Effects on sulfur amino acids in plasma and urine. J. Pediatr. 1977;90:348–55.CrossRefGoogle ScholarPubMed
Jarvenpaa, A. L., Raiha, N. C., Rassin, D. K.Feeding the low-birth-weight infant: I. Taurine and cholesterol supplementation of formula does not affect growth and metabolism. Pediatrics 1983;71:171–8.Google Scholar
Jarvenpaa, A. L., Rassin, D. K., Raiha, N. C. R., Gaull, G. E.Milk protein quantity and quality in the term infant. II. Effects on acidic and neutral amino acids. Pediatrics 1982;70:221–30.Google ScholarPubMed
Picone, T. A., Benson, J. D., Moro, G.et al.Growth, serum biochemistries, and amino acids of term infants fed formulas with amino acid and protein concentrations similar to human milk. J. Pediatr. Gastroenterol. Nutr. 1989;9:351–60.CrossRefGoogle ScholarPubMed
Goldman, A. S., Chheda, S., Keeney, S. E., Schmalsteig, F. C., Schanler, R. J.Immunologic protection of the premature newborn by human milk. Semin. Perinatol. 1994;18:495–501.Google ScholarPubMed
Lonnerdal, B.Biochemistry and physiological function of human milk proteins. Am. J. Clin. Nutr. 1985;42:1299–317.CrossRefGoogle ScholarPubMed
Hanson, L. A., Ahlstedt, S., Andersson, B.et al.Protective factors in milk and the development of the immune system. Pediatrics 1985;75:172–6.Google ScholarPubMed
Jensen, R. G.The lipids in human milk. Prog. Lipid Res. 1996;35:53–92.CrossRefGoogle ScholarPubMed
Hernell, O., Blackberg, L.Human milk bile salt-stimulated lipase: functional and molecular aspects. J. Pediatr. 1994;125:S56–61.CrossRefGoogle ScholarPubMed
Jensen, R. G., Jensen, G. L.Specialty lipids for infant nutrition. I. Milks and formulas. J. Pediatr. Gastroenterol. Nutr. 1992;15:232–45.CrossRefGoogle ScholarPubMed
Jensen, R. G., Hagerty, M. M., McMahon, K. E.Lipids of human milk and infant formulas: a review. Am. J. Clin. Nutr. 1978;31:990–1016.CrossRefGoogle ScholarPubMed
Butte, N. F., Garza, C., Smith, E. O.Variability of macronutrient concentrations in human milk. Eur. J. Clin. Nutr. 1988;42:345–9.Google ScholarPubMed
Daly, S. E., Rosso, Di A., Owens, R. A., Hartmann, P. E.Degree of breast emptying explains changes in the fat content, but not fatty acid composition, of human milk. Exp. Physiol. 1993;78:741–55.CrossRefGoogle Scholar
Nommsen, L. A., Lovelady, C. A., Heinig, M. J., Lonnerdal, B., Dewey, K. G.Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 months of lactation: the DARLING study. Am. J. Clin. Nutr. 1991;53:457–65.CrossRefGoogle ScholarPubMed
Butte, N. F., Garza, C., Stuff, J. E., Smith, E. O., Nichols, B. L.Effect of maternal diet and body composition on lactational performance. Am. J. Clin. Nutr. 1984b;39:296–306.CrossRefGoogle Scholar
Sauerwald, T. U., Demmelmair, H., Koletzko, B.Polyunsaturated fatty acid supply with human milk. Lipids 2001;36:991–6.CrossRefGoogle ScholarPubMed
Uauy, R., Hoffman, D., Peirano, P., Birch, D., Birch, E. E.Essential fatty acids in visual and brain development. Lipids 2001;36:885–95.CrossRefGoogle ScholarPubMed
Whyte, R. K., Homer, R., Pennock, C. A.Faecal excretion of oligosaccharides and other carbohydrates in normal neonates. Arch. Dis. Child. 1978;53:913–15.CrossRefGoogle ScholarPubMed
MacLean, W. C., Fink, B. B.Lactose malabsorption by premature infants: magnitude and clinical significance. J. Pediatr. 1980;97:383–8.CrossRefGoogle ScholarPubMed
Ziegler, E. E., Fomon, S. J.Lactose enhances mineral absorption in infancy. J. Pediatr. Gastroenterol. Nutr. 1983;2:288–94.CrossRefGoogle ScholarPubMed
Kunz, C., Rudloff, S.Biological functions of oligosaccharides in human milk. Acta Paediatr. 1993;82:903–12.CrossRefGoogle ScholarPubMed
Hanson, L. A., Adlerberth, I., Carlsson, B.et al.Host defense of the neonate and the intestinal flora. Acta Paediatr. Scand. 1989;351:122–5.CrossRefGoogle ScholarPubMed
Neville, M. C., Watters, C. D.Secretion of calcium into milk: a review. J. Dairy Sci. 1983;66:371–80.CrossRefGoogle Scholar
Venkataraman, P. S., Luhar, H., Neylan, M. J.Bone mineral metabolism in full-term infants fed human milk, cow milk-based, and soy-based formulas. Am. J. Dis. Child. 1992;146:1302–5.Google ScholarPubMed
Casey, C. E., Hambidge, K. M., Neville, M. C.Studies in human lactation: zinc, copper, manganese, and chromium in human milk in the first month of lactation. Am. J. Clin. Nutr. 1985;41:1193–200.CrossRefGoogle ScholarPubMed
Dallman, P. R., Siimes, M. A., Stekel, A.Iron deficiency in infancy and childhood. Am. J. Clin. Nutr. 1980;33:86–118.CrossRefGoogle ScholarPubMed
Lonnerdal, B., Hernell, O.Iron, zinc, copper and selenium status of breast-fed infants and infants fed trace element fortified milk-based infant formula. Acta Paediatr. 1994;83:367–73.CrossRefGoogle ScholarPubMed
Greer, F. R., Suttie, J. W. Vitamin K and the newborn. In: Tsang, R. C., Nichols, B. L., eds. Nutrition during Infancy. Philadelphia, PA: Hanley & Belfus; 1988:289–97.Google Scholar
Uauy, R., Quan, R., Gil, A.Role of nucleotides in intestinal development and repair: implications for infant nutrition. J. Nutr. 1994;124:1436S–41S.CrossRefGoogle ScholarPubMed
Carver, J. D., Walker, W. A.The role of nucleotides in human nutrition. Nutr. Biochem. 1995;6:58–72.CrossRefGoogle Scholar
Sheard, N. F., Walker, W. A.The role of breast milk in the development of the gastrointestinal tract. Nutr. Rev. 1988;46:1–8.CrossRefGoogle ScholarPubMed
Dvorak, B., Halpern, M. D., Holubec, H.et al.Epidermal growth factor reduces the development of necrotizing enterocolitis in a neonatal rat model. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;282:G156–64.CrossRefGoogle Scholar
Claud, E. C., Walker, W. A.Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J. 2001;15:1398–403.CrossRefGoogle ScholarPubMed
Steinwender, G., Schimpl, G., Sixl, B., Wenzl, H. H.Gut-derived bone infection in the neonatal rat. Pediatr. Res. 2001;50:767–71.CrossRefGoogle ScholarPubMed
Goldman, A. S., Sharpe, L. W., Goldblum, R. M.Anti-inflammatory properties of human milk. Acta Paediatr. Scand. 1986;75:689–95.CrossRefGoogle ScholarPubMed
Goldman, A. S., Smith, C. W.Host resistance factors in human milk. J. Pediatr. 1973;82:1082–90.CrossRefGoogle ScholarPubMed
Kleinman, R. E., Walker, W. A.The enteromammary immune system. Dig. Dis. Sci. 1979;24:876–82.CrossRefGoogle ScholarPubMed
Fishaut, M., Murphy, D., Neifert, M., McIntosh, K., Ogra, P. L.Bronchomammary axis in the immune response to respiratory syncytial virus. J. Pediatr. 1981;99:186–91.CrossRefGoogle ScholarPubMed
Isaacs, C. E., Kashyap, S., Heird, W. C., Thormar, H.Antiviral and antibacterial lipids in human milk and infant formula feeds. Arch. Dis. Child. 1990;65:861–4.CrossRefGoogle ScholarPubMed
Caplan, M. S., Jilling, T.The role of polyunsaturated fatty acid supplementation in intestinal inflammation and neonatal necrotizing enterocolitis. Lipids 2001;36:1053–7.CrossRefGoogle ScholarPubMed
Boehm, G., Lidestri, M., Casetta, P.et al.Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch. Dis. Child. Fetal Neonatal. 2002;86:F178–81.CrossRefGoogle ScholarPubMed
Caplan, M. S., Lickerman, M., Adler, L., Dietsch, G. N., Yu, A.The role of recombinant platelet-activating factor acetylhydrolase in a neonatal rat model of necrotizing enterocolitis. Pediatr. Res. 1997;42:779–83.CrossRefGoogle Scholar
Garofalo, R., Chheda, S., Mei, F.et al.Interleukin-10 in human milk. Pediatr. Res. 1995;37:444–9.CrossRefGoogle ScholarPubMed
Fituch, C. C., Palkowetz, K. H., Hurst, N. M., Goldman, A. S., Schanler, R. J.Interleukin-10 concentrations in milk of mothers delivering extremely low birth weight infants. Pediatr. Res. 2001;49:398A.Google Scholar
Dewey, K. G., Peerson, J. M., Brown, K. H.et al.Growth of breast-fed infants deviates from current reference data: a pooled analysis of US, Canadian, and European data sets. Pediatrics 1995b;96:495–503.Google Scholar
Dewey, K. G.Nutrition, growth, and complementary feeding of the breastfed infant. Pediatr. Clin. N. Am. 2001;48:87–104.CrossRefGoogle ScholarPubMed
Cohen, R. J., Brown, K. H., Canahuati, J., Rivera, L. L., Dewey, K. G.Effects of age of introduction of complementary foods on infant breast milk intake, total energy intake, and growth: a randomised intervention study in Honduras. Lancet 1994;343:288–93.CrossRefGoogle Scholar
Stuff, J. E., Nichols, B. L.Nutrient intake and growth performance of older infants fed human milk. J. Pediatr. 1989;115:959–68.CrossRefGoogle ScholarPubMed
Greer, F. R., Searcy, J. E., Levin, R. S.et al.Bone mineral content and serum 25-OH D concentrations in breast-fed infants with and without supplemental vitamin D: One year follow-up. J. Pediatr. 1982;100:919–22.CrossRefGoogle Scholar
Armstrong, J., Reilly, J. J.Child Health Information Team. Breastfeeding and lowering the risk of childhood obesity. Lancet 2002;360:1249–50.Google Scholar
Gillman, M. W., Rifas-Shiman, S. L., , Camargo C. A. Jret al.Risk of overweight among adolescents who were breastfed as infants. J. Am. Med. Assoc. 2001;285:2461–7.CrossRefGoogle ScholarPubMed
Toschke, A. M., Vignerova, J., Lhotska, L.et al.Overweight and obesity in 6- to 14-year-old Czech children in 1991: protective effect of breastfeeding. J. Pediatr. 2002;141:764–9.CrossRefGoogle Scholar
Jones, G., Riley, M., Dwyer, T.Breastfeeding in early life and bone mass in prepubertal children: a longitudinal study. Osteoporosis Int. 2000;11:146–52.CrossRefGoogle ScholarPubMed
Kries, R., Koletzko, B., Sauerwald, T.et al.Breast feeding and obesity: cross sectional study. Br. Med. J. 1999;319:147–50.CrossRefGoogle Scholar
Cavell, B.Gastric emptying in infants fed human milk or infant formula. Acta Paediatr. Scand. 1981;70:639–41.CrossRefGoogle ScholarPubMed
Shulman, R. J., Schanler, R. J., Lau, C.et al.Early feeding, feeding tolerance, and lactase activity in preterm infants. J. Pediatr. 1998a;133:645–9.CrossRefGoogle Scholar
Shulman, R. J., Schanler, R. J., Lau, C.et al.Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr. Res. 1998b;44:519–23.CrossRefGoogle Scholar
Popkin, B. M., Adair, L., Akin, J. S.et al. Breast-feeding and diarrheal morbidity. Pediatrics 1990;86:874–82.
Glass, R. I., Stoll, B. J.The protective effect of human milk against diarrhea. Acta Paediatr. Scand. 1989;351:131–6.CrossRefGoogle ScholarPubMed
Leon-Cava, N., Lutter, C., Ross, J., Martin, L.Quantifying the benefits of breastfeeding: a summary of the evidence. Food and Nutrition Program, Pan American Health Organization. 2002;1–168.Google Scholar
Cunningham, A. S.Morbidity in breast-fed and artificially fed infants. J. Pediatr. 1977;90:726–9.CrossRefGoogle ScholarPubMed
Cunningham, A. S.Morbidity in breast-fed and artificially fed infants. II. J. Pediatr. 1979;95:685–9.CrossRefGoogle Scholar
Cunningham, A. S., Jelliffe, D. B., Jelliffe, E. F. P.Breast-feeding and health in the 1980s: a global epidemiologic review. J. Pediatr. 1991;118:659–66.CrossRefGoogle ScholarPubMed
Dewey, K. G., Heinig, M. J., Nommsen-Rivers, L. A.Differences in morbidity between breastfed and formula-fed infants. J. Pediatr. 1995a;126:696–702.CrossRefGoogle Scholar
Kovar, M. G., Serdula, M. D., Marks, J. S., Fraser, D. W.Review of the epidemiologic evidence for an association between infant feeding and infant health. Pediatrics 1984;74:S615–38.Google ScholarPubMed
Howie, P. W., Forsyth, J. S., Ogston, S. A., Clark, A., Florey, C. V.Protective effect of breastfeeding against infection. Br. Med. J. 1990;300:11–16.CrossRefGoogle ScholarPubMed
Rubin, D. H., Leventhal, J. M., Krasilnikoff, P. A.et al.Relationship between infant feeding and infectious illness: a prospective study of infants during the first year of life. Pediatrics 1990;85:464–71.Google ScholarPubMed
Duncan, B., Ey, J., Holberg, C. J.et al.Exclusive breast-feeding for at least 4 months protects against otitis media. Pediatrics 1993;91:867–72.Google ScholarPubMed
Frank, A. L., Taber, L. H., Glezen, W. P.et al.Breast-feeding and respiratory virus infection. Pediatrics 1982;70:239–45.Google ScholarPubMed
Wright, A. L., Holberg, C. J., Martinez, F. D., Morgan, W. J., Taussig, L. M., Group Health Medical Associates. Breast feeding and lower respiratory tract illness in the first year of life. Br. Med. J. 1989;299:945–8.CrossRefGoogle ScholarPubMed
Blaymore-Bier, J., Oliver, T., Ferguson, A., Vohr, B. R.Human milk reduces outpatient upper respiratory symptoms in premature infants during their first year of life. J. Perinatol. 2002;22:354–9.CrossRefGoogle ScholarPubMed
Pisacane, A., Graziano, L., Mazzarella, G., Scarpellino, B., Zona, G.Breast-feeding and urinary tract infection. J. Pediatr. 1992;120:87–9.CrossRefGoogle ScholarPubMed
Goldblum, R. M., Schanler, R. J., Garza, C., Goldman, A. S.Human milk feeding enhances the urinary excretion of immunologic factors in low birth weight infants. Pediatr. Res. 1989;25:184–8.CrossRefGoogle ScholarPubMed
Coppa, G. V., Gabrielli, O., Giorgi, P.et al.Preliminary study of breastfeeding and bacterial adhesion to uroepithelial cells. Lancet 1990;335:569–71.CrossRefGoogle ScholarPubMed
Narayanan, I., Prakash, K., Gujral, V. V.The value of human milk in the prevention of infection in the high-risk low-birth-weight infant. J. Pediatr. 1981;99:496–8.CrossRefGoogle ScholarPubMed
Schanler, R. J., Shulman, R. J., Lau, C.Feeding strategies for premature infants: Beneficial outcomes of feeding fortified human milk vs preterm formula. Pediatrics 1999b;103:1150–7.CrossRefGoogle Scholar
Hylander, M. A., Strobino, D. M., Pezzullo, J. C., Dhanireddy, R.Association of human milk feedings with a reduction in retinopathy of prematurity among very low birthweight infants. J. Perinatol. 2001;21:356–62.CrossRefGoogle ScholarPubMed
Contreras-Lemus, J., Flores-Huerta, S., Cisneros-Silva, I.et al.Disminucion de la morbilidad en neonatos pretermino alimentados con leche de su propia madre. Biol. Med. Hosp. Infant Mex. 1992;49:671–7.Google Scholar
Yu, V. Y. H., Jamieson, J., Bajuk, B.Breast milk feeding in very low birthweight infants. Aust. Paediatr. J. 1981;17:186–90.Google ScholarPubMed
Lucas, A., Cole, T. J.Breast milk and neonatal necrotizing enterocolitis. Lancet 1990;336:1519–23.CrossRefGoogle Scholar
Eibl, M. M., Wolf, H. M., Fürnkranz, H., Rosenkranz, A.Prevention of necrotizing enterocolitis in low-birth-weight infants by IgA-IgG feeding. N. Engl. J. Med. 1988;319:1–7.CrossRefGoogle ScholarPubMed
Carlson, S. E., Montalto, M. B., Ponder, D. L., Werkman, S. H., Korones, S. B.Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatr. Res. 1998;44:491–8.CrossRefGoogle ScholarPubMed
Caplan, M. S., Russell, T., Xiao, Y.et al.Effect of polyunsaturated fatty acid (polyunsaturated fatty acids) supplementation on intestinal inflammation and necrotizing enterocolitis (necrotizing enterocolitis) in a neonatal rat model. Pediatr. Res. 2001;49:647–52.CrossRefGoogle Scholar
Davis, M. K., Savitz, D. A., Graubard, B. I.Infant feeding and childhood cancer. Lancet 1988;1:365–8.CrossRefGoogle Scholar
Koletzko, S., Sherman, P., Corey, M., Griffiths, A., Smith, C.Role of infant feeding practices in development of Crohn's disease in childhood. Br. Med. J. 1998;298:1617–18.CrossRefGoogle Scholar
Gerstein, H. C.Cow's milk exposure and type I diabetes mellitus. Diabetes Care 1994;17:13–19.CrossRefGoogle ScholarPubMed
Beral, V., Fear, N. T., Alexander, F., Appleby, P.Breastfeeding and childhood cancer. Br. J. Cancer 2001;85:1685–94.Google Scholar
Kramer, M. S.Does breast feeding help protect against atopic disease? Biology, methodology, and a golden jubilee of controversy. J. Pediatr. 1988;112:181–90.CrossRefGoogle Scholar
Saarinen, U. M., Backman, A., Kajosaari, M., Siimes, M. A.Prolonged breast-feeding as prophylaxis for atopic disease. Lancet 1979;i:163–6.CrossRefGoogle Scholar
Gdalevich, M., Mimouni, D., Mimouni, M.Breast-feeding and the risk of bronchial asthma in childhood: asystematic review with meta-analysis of prospective studies. J. Pediatr. 2001;139:261–6.CrossRefGoogle Scholar
Karjalainen, J., Martin, J. M., Knip, M.et al.A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus. N. Engl. J. Med. 1992;327:302–7.CrossRefGoogle ScholarPubMed
Owen, C. G., Whincup, P. H., Odoki, K., Gilg, J. A., Cook, D. G.Infant feeding and blood cholesterol: a study in adolescents and a systematic review. Pediatrics 2002;110:597–608.CrossRefGoogle ScholarPubMed
Anderson, J. W., Johnstone, B. M., Remley, D. T.Breastfeeding and cognitive development: a meta-analysis. Am. J. Clin. Nutr. 1999;70:525–35.CrossRefGoogle ScholarPubMed
Mortensen, E. L., Michaelsen, K. F., Sanders, S. A., Reinisch, J. M.The association between duration of breastfeeding and adult intelligence. J. Am. Med. Assoc. 2002;287:2365–71.CrossRefGoogle ScholarPubMed
Rogan, W. J., Gladen, B. C.Breast-feeding and cognitive development. Early Hum. Dev. 1993;31:181–93.CrossRefGoogle ScholarPubMed
Lucas, A., Morley, R., Cole, T. J., Lister, G., Leeson-Payne, C.Breast milk and subsequent intelligence quotient in children born preterm. Lancet 1992;339:261–4.CrossRefGoogle ScholarPubMed
Horwood, L. J., Mogridge, N., Darlow, B. A.Cognitive, educational, and behavioral outcomes at 7 to 8 years in a national very low birthweight cohort. Arch. Dis. Child. Fetal Neonatal 1998;79:F12–20.CrossRefGoogle Scholar
Horwood, L. J., Darlow, B. A., Mogridge, N.Breast milk feeding and cognitive ability at 7–8 years. Arch. Dis. Child. Fetal Neonatal 2001;84:F23–7.CrossRefGoogle ScholarPubMed
McKinley, L. T., Thorp, J. W., Tucker, R.Outcomes at 18 months corrected age of very low birth weight (VLBW) infants who received human milk during hospitalization. Pediatr. Res. 2000;47:1720A.Google Scholar
Riva, E., Agostoni, C., Biasucci, G.et al.Early breastfeeding is linked to higher intelligence quotient scores in dietary treated phenylketonuric children. Acta Paediatr. 1996;85:56–8.CrossRefGoogle ScholarPubMed
Anderson, G. J., Connor, W. E., Corliss, J. D.Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr. Res. 1990;27:89–97.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H., Rhodes, P. G., Tolley, E. A.Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am. J. Clin. Nutr. 1993;58:35–42.CrossRefGoogle ScholarPubMed
Hylander, M. A., Strobino, D. M., Pezzullo, J. C., Dhanireddy, R.Association of human milk feedings with a reduction in retinopathy of prematurity among very low birthweight infants. J. Perinatol. 2001;21:356–62.CrossRefGoogle ScholarPubMed
Friel, J. K., Martin, S. M., Langdon, M., Herzberg, G. R., Buettner, G. R.Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr. Res. 2002;51:612–18.CrossRefGoogle ScholarPubMed
Amin, S. B., Merle, K. S., Orlando, M. S., Dalzell, L. E., Guillet, R.Brainstem maturation in premature infants as a function of enteral feeding type. Pediatrics 2000;106:318–22.CrossRefGoogle ScholarPubMed
Riordan, J. Anatomy and psychophysiology of lactation. In: Riordan, J., Auerbach, K. G., eds. Breastfeeding and Human Lactation. Boston, MA: Jones and Bartlett; 1993:81–104.Google Scholar
Mezzacappa, E. S., Kelsey, R. M., Myers, M. M., Katkin, E. S.Breast-feeding and maternal cardiovascular function. Psychophysiology 2001;38:988–97.CrossRefGoogle ScholarPubMed
Wang, I. Y., Fraser, I. S.Reproductive function and contraception in the postpartum period. Obstet. Gynecol. Survey 1994;49:56–63.CrossRefGoogle ScholarPubMed
Campbell, O. M., Gray, R. H.Characteristics and determinants of postpartum ovarian function in women in the United States. Am. J. Obstet. Gynecol. 1993;169:55–60.CrossRefGoogle ScholarPubMed
Dewey, K. G., Heinig, M. J., Nommsen, L. A.Maternal weight-loss patterns during prolonged lactation. Am. J. Clin. Nutr. 1993;58:162–6.CrossRefGoogle ScholarPubMed
Specker, B. L., Tsang, R. C., Ho, M. L.Changes in calcium homeostasis over the first year postpartum: effect of lactation and weaning. Obstet. Gynecol. 1991;78:56–62.Google ScholarPubMed
Sowers, M. F., Corton, G., Shapiro, B.et al.Changes in bone density with lactation. J. Am. Med. Assoc. 1993;269:3130–5.CrossRefGoogle ScholarPubMed
Cumming, R. G., Klineberg, R. J.Breastfeeding and other reproductive factors and the risk of hip fracture in elderly women. Int. J. Epidemiol. 1993;2:684–91.CrossRefGoogle Scholar
Bauer, D. C., Browner, W. S., Cauley, J. A.et al.Factors associated with appendicular bone mass in older women. Ann. Intern. Med. 1993;118:657–65.CrossRefGoogle ScholarPubMed
Yoo, K., Tajima, K., Kuroishi, T.et al.Independent protective effect of lactation against breast cancer: a case control study in Japan. Am. J. Epidemiol. 1992;135:726–33.CrossRefGoogle ScholarPubMed
Newcomb, P. A., Storer, B. E., Longnecker, M. P.et al.Lactation and a reduced risk of premenopausal breast cancer. N. Engl. J. Med. 1994;330:81–7.CrossRefGoogle Scholar
Furberg, H., Newman, B., Moorman, P., Millikan, R.Lactation and breast cancer risk. Int. J. Epidemiol. 1999;28:396–402.CrossRefGoogle ScholarPubMed
Zheng, T., Holford, T. R., Mayne, S. T.et al.Lactation and breast cancer risk: a case-control study in Connecticut. Br. J. Cancer 2001;84:1472–6.CrossRefGoogle ScholarPubMed
Lawrence, R. M., Lawrence, R. A.Given the benefits of breastfeeding, what contraindications exist?Pediatr. Clin. N. Am. 2001;48:235–52.CrossRefGoogle ScholarPubMed
Committee on Drugs and American Academy of Pediatrics. The transfer of drugs and other chemicals into human milk. Pediatrics 2001;108:776–89.CrossRef
Weimer, J. P.Economic benefits of breastfeeding: a review and analysis. Washington, DC: USDA Food Assistance and Nutrition Research Report. 2001;13:1–14.Google Scholar
Montgomery, D. L., Splett, P. L.Economic benefit of breast-feeding infants enrolled in WIC. J. Am. Diet. Assoc. 1997;97:379–85.CrossRefGoogle ScholarPubMed
Ball, T. M., Bennett, D. M.The economic impact of breastfeeding. Pediatr. Clin. N. Am. 2001;48:253–62.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Rationale for breastfeeding
    • By Richard J. Schanler, Neonatal-Perinatal Medicine, Schneider Children's Hospital at North Shore, North Shore University Hospital, Manhasset, NY and Pediatrics, Albert Einstein College of Medicine, Bronx, NY
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Rationale for breastfeeding
    • By Richard J. Schanler, Neonatal-Perinatal Medicine, Schneider Children's Hospital at North Shore, North Shore University Hospital, Manhasset, NY and Pediatrics, Albert Einstein College of Medicine, Bronx, NY
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Rationale for breastfeeding
    • By Richard J. Schanler, Neonatal-Perinatal Medicine, Schneider Children's Hospital at North Shore, North Shore University Hospital, Manhasset, NY and Pediatrics, Albert Einstein College of Medicine, Bronx, NY
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.027
Available formats
×