Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T02:25:26.029Z Has data issue: false hasContentIssue false

1 - Fetal nutrition

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
F. H. Bloomfield
Affiliation:
Liggins Institute, University of Auckland, Auckland, New Zealand
Jane E. Harding
Affiliation:
Liggins Institute, University of Auckland, Auckland, New Zealand
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Fetal nutrients are derived largely from the mother, and fetal nutrition is thus closely related to maternal nutrition. However, it is important to appreciate that maternal nutrition is not the same as fetal nutrition. Firstly, the mother has her own nutrient demands which may be in conflict with those of the fetus. For example, pregnant adolescent sheep deliver smaller fetuses, especially when the ewes are very well nourished and therefore growing well, and the growth restriction appears to be predominantly secondary to reduced placental growth. Human adolescents also tend to give birth to lighter infants, and birth weight has been reported to be less in offspring of adolescents with a higher dietary sugar intake. Secondly, the fetus lies at the end of a long supply line which can be impaired at many points. Nutrients are used by the fetus predominantly for growth and metabolism, with little energy expenditure on other processes such as thermoregulation, movement and digestion. Fetal nutrients are in fact the main drivers of fetal growth, with genetic factors playing a much smaller role. Indeed, the genetic regulation of fetal growth itself appears to be under nutritional regulation, with levels of all the major hormones involved in fetal growth being regulated by circulating nutrient levels. The placenta is also a very metabolically active organ with its own nutrient demands and metabolic pathways.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wallace, J. C., Bourke, D. A., Aitken, R. P., Milne, S. M., Hay, W. W. Jr.Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep. J. Physiol. 2003;547:85–94.CrossRefGoogle ScholarPubMed
Wallace, J. M., Bourke, D. A., Aitken, R. P., Leitch, N., Hay, W. W. Jr.Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;282:R1027–36.CrossRefGoogle ScholarPubMed
Wallace, J. M., Bourke, D. A., , Aitken R. P., et al.Relationship between nutritionally-mediated placental growth restriction and fetal growth, body composition and endocrine status during late gestation in adolescent sheep. Placenta 2000;21:100–8.CrossRefGoogle ScholarPubMed
Lenders, C. M., Hediger, M. L., Scholl, T. O.et al.Gestational age and infant size at birth are associated with dietary sugar intake among pregnant adolescents. J. Nutr. 1997;127:1113–1117.CrossRefGoogle ScholarPubMed
Lenders, C. M., McElrath, T. F., Scholl, T. O.Nutrition in adolescent pregnancy. Curr. Opin. Pediatr. 2000;12: 1–296.CrossRefGoogle ScholarPubMed
Kirchengast, S., Hartmann, B.Maternal prepregnancy weight status and pregnancy weight gain as major determinants for newborn weight and size. Ann. Hum. Biol. 1998;25:17–28.CrossRefGoogle ScholarPubMed
Villar, J., Cogswell, M., Kestler, E.et al.Effect of fat and fat-free mass deposition during pregnancy on birth weight. Am. J. Obstet. Gynecol. 1992;167:1344–52.CrossRefGoogle ScholarPubMed
Brown, J. M., Murtaugh, M. A., Jacobs, D. R. Jr, Margellos, H. C.Variation in newborn size according to pregnancy weight change by trimester. Am. J. Clin. Nutr. 2002;76:205–9.CrossRefGoogle ScholarPubMed
Strauss, R. S., Dietz, W. H.Low maternal weight gain in the second or third trimester increases the risk for intrauterine growth retardation. J. Nutr. 1992;167:1344–52.Google Scholar
Abrams, B., Selvin, S.Maternal weight gain pattern and birth weight. Obstet. Gynecol. 1995;86:163–9.CrossRefGoogle ScholarPubMed
Gardosi, J., Chang, A., , Kaylan B., Sahota, D., Symonds, E. M.Customised antenatal growth charts. Lancet 1992;339:283–7.CrossRefGoogle ScholarPubMed
Mongelli, M., Gardosi, J.Reduction of false-positive diagnosis of fetal growth restriction by application of customised fetal growth standards. Obstet. Gynecol. 1996;88(5):844–8.CrossRefGoogle Scholar
Gardosi, J., Francis, A.Controlled trial of fundal height measurement plotted on customised antenatal growth charts. Br. J. Obstet. Gynaecol. 1999;106:309–17.CrossRefGoogle ScholarPubMed
Hennessy, E., Alberman, E.Intergenerational influences affecting birth outcome. II. Preterm delivery and gestational age in the children of the 1958 British birth cohort. Paediatr. Perinat. Epidemiol. 1998;12:61–75.CrossRefGoogle ScholarPubMed
Ramakrishnan, U., Martorell, R., Schroeder, D. G., Flores, R.Role of intergenerational effects on linear growth. J. Nutr. 1999 Feb;129(2S Suppl):544S–9S.CrossRefGoogle Scholar
Kramer, M. S. Balanced protein/energy supplementation in pregnancy (Cochrane review). The Cochrane Library. Oxford: Update Software; 2003.Google Scholar
Kramer, M. S. High protein supplementation in pregnancy (Cochrane review). The Cochrane Library. Oxford: Update Software; 2003.Google Scholar
Godfrey, K., Robinson, S., , Barker D. J. P., Osmond, C., Cox, V.Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. Br. Med. J. 1996;312:410–14.CrossRefGoogle ScholarPubMed
Schofield, C., Steward, J., Wheeler, E.The diets of pregnant and post-pregnant women in different social groups in London and Edinburgh: calcium, iron, retinol, ascorbic acid and folic acid. Br. J. Nutr. 1989;62:363–77.CrossRefGoogle ScholarPubMed
Rogers, I., Emmett, P.Diet during pregnancy in a population of pregnant women in South West England. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Eur. J. Clin. Nutr. 1998;52:246–50.CrossRefGoogle Scholar
Mathews, F., Yudkin, P., Neil, A.Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. Br. Med. J. 1999;319:339–43.CrossRefGoogle ScholarPubMed
Christian, P., Khatry, S. K., Pradhan, E. K.et al.Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial. Br. Med. J. 2003;326:571–6.CrossRefGoogle ScholarPubMed
Kudo, Y., Boyd, C. A.Placental tryosine transport and maternal phenylketonuria. Acta Paediatr, 1996;85:109–10.CrossRefGoogle Scholar
Kudo, Y., Boyd, C. A.Transport of amino acids by the human placenta: predicted effects thereon of maternal hyperphenylalaninaemia. J. Inherit. Metab. Dis. 1990;13:617–26.CrossRefGoogle ScholarPubMed
Meakins, T. S., Persaud, C., Jackson, A. A.Dietary supplementation with L-methionine impairs the utilization of urea-nitrogen and increases 5-L-oxoprolinuria in normal women consuming a low protein diet. J. Nutr. 1998;128:720–27.CrossRefGoogle ScholarPubMed
Rao, S., Yajnik, C. S., Kanade, A., Fall, C. H.et al.Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J. Nutr. 2001;131:1217–24.CrossRefGoogle ScholarPubMed
Brabin, B. J., Fletcher, Alexander K., Brown, N.Do disturbances within the folate pathway contribute to low birth weight in malaria?Trends Parasitol. 2003;19:39–43.CrossRefGoogle ScholarPubMed
Jackson, A. A.The glycine story. Eur. J. Clin. Nutr. 1991;45:59–65.Google ScholarPubMed
Christensen, H. N.Amino acid nutrition across the placenta. Nutr. Rev. 1992;50(1):13–24.CrossRefGoogle ScholarPubMed
Cetin, I., Marconi, A. M., Baggiani, A. M.et al.In vivo placental transport of glycine and leucine in human pregnancies. Pediatr. Res. 1995;37:571–5.CrossRefGoogle ScholarPubMed
Paolini, C. L., Marconi, A. M., Ronzoni, S.et al.Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J. Clin. Endocrinol. Metab. 2001;86:5427–32.CrossRefGoogle ScholarPubMed
Jackson, A. A., Badaloo, A. V., Forrester, T., Hibbert, J. M., Persaud, C.Urinary excretion of 5-oxoproline (pyroglutamic aciduria) as an index of glycine insufficiency in normal man. Br. J. Nutr. 1987;58:207–14.CrossRefGoogle ScholarPubMed
Jackson, A. A., Persaud, C., Werkmeister, G.et al.Comparison of urinary 5-L-oxoproline (L-pyroglutamate) during normal pregnancy in women in England and Jamaica. Br. J. Nutr. 1997;77:183–96.CrossRefGoogle ScholarPubMed
Malandro, M. S., Beveridge, M. J., Kilberg, M. S., Novak, D. A.Effect of low-protein diet-induced intrauterine growth retardation on rat placental amino acid transport. Am. J. Physiol. 1996;271:C295–303.CrossRefGoogle ScholarPubMed
Norberg, S., Powell, T. L., Jansson, T.Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr. Res. 1998;44:233–8.CrossRefGoogle ScholarPubMed
Cherif, H., Reusens, B., Ahn, M. T., Hoet, J. J., Remacle, C.Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J. Endocrinol. 1998;159:341– 8.CrossRefGoogle ScholarPubMed
Bertin, E., Gangnerau, M. N., Bellon, G.et al.Development of beta-cell mass in fetuses of rats deprived of protein and/or energy in last trimester of pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;283:R623–30.CrossRefGoogle ScholarPubMed
Boujendar, S., Reusens, B., Merezak, S.et al.Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia. 2002;45(6):856–866.CrossRefGoogle ScholarPubMed
Carlson, B. M. Extraembryonic membranes and placenta. In Carlson, B. M., ed. Patten's Foundations of Embryology. New York: McGraw-Hill Inc.; 1996:255–90.Google Scholar
Larsen, W. J.Human Embryology. New York: Churchill-Livingstone; 2003Google Scholar
Rodesch, F., Simon, P., Donner, C., Jauniaux, E.Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol. 1992;80:283–5.Google ScholarPubMed
Jauniaux, E., Watson, A. L., Burton, G. J.Evaluation of respiratory gases and acid-base gradients in fetal fluids and uteroplacental tissue between 7 and 16 weeks. Am. J. Obstet. Gynecol. 2001;184:998–1003.CrossRefGoogle Scholar
Jauniaux, E., Watson, A. L., Hempstock, J.et al.Onset of maternal arterial blood flow and placental oxidative stress; a possible factor in human early pregnancy failure. Am. J. Pathol. 2000;157:2111–22.CrossRefGoogle ScholarPubMed
Kurjak, A., Kupesic, S., Hafner, T.et al.Conflicting data on intervillous circulation in early pregnancy. J. Perinat. Med. 1997;25:225–36.Google ScholarPubMed
Bell, S. C.Secretory endometrial/decidual proteins and their function in early pregnancy. J. Reprod. Fertil. 1988;36:109–25.Google ScholarPubMed
Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N., Jauniaux, E.Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 2002;87:2954–9.CrossRefGoogle ScholarPubMed
Boyd, J. D.Glycogen in early human implantation sites. Mem. Soc. Endocrinol. 1959;6:26–34.Google Scholar
Burton, G. J., Hempstock, J., Jauniaux, E.Nutrition of the human fetus during the first trimester – a review. Placenta 2001;22:S70–6.CrossRefGoogle ScholarPubMed
Baetz, A. L., Hubbert, W. T., Graham, C. K.Developmental changes of free amino acids in bovine fetal fluids with gestational age and the interrelationships between the amino acid concentrations in the fluid compartments. J. Reprod. Fertil. 1975;44:437.CrossRefGoogle ScholarPubMed
Stanier, M. W.Transfer of radioactive water, urea and glycine between maternal and foetal body fluids in rabbits and pigs. J. Physiol. 1965;178:127–40.CrossRefGoogle ScholarPubMed
Walker, S. K., Hartwich, K. M., Robinson, J. S., Seamark, R. F. Influences of in vitro culture of embryos on the normality of development. In Lauria, A., Gandolfi, F., eds. Gametes: Development and Function. Serono Symposium; 1998:457–84.Google Scholar
Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E., Abdalla, H. I.Birth weight: nature or nurture?Early Hum. Dev. 1995;42:29–35.CrossRefGoogle ScholarPubMed
Iffy, L., Lavenhar, M. A., Jakobovits, A., Kaminetzky, H. A.The rate of early intrauterine growth in twin gestation. Am. J. Obstet. Gynecol. 1983;146:970–2.CrossRefGoogle ScholarPubMed
Leveno, K. J., Santos-Ramos, R., Duenhoelter, J. H., Reisch, J. S., Whalley, P. J.Sonar cephalometry in twins: a table of biparietal diameters for normal twin fetuses and a comparison with singletons. Am. J. Obstet. Gynecol. 1979;135:727–30.CrossRefGoogle Scholar
Alexander, J. M., Hammond, K. R., Steinkampf, M. P.Multifetal reduction of high-order multiple pregnancy: comparison of obstetrical outcome with nonreduced twin gestations. Fertil. Steril. 1995;64:1201–3.CrossRefGoogle ScholarPubMed
Groutz, A., Yovel, I., Amit, A.et al.Pregnancy outcome after multifetal pregnancy reduction to twins compared with spontaneously conceived twins. Hum. Reprod. 1996;11:1334– 6.CrossRefGoogle ScholarPubMed
Fasouliotis, S. J., Schenker, J. G.Multifetal pregnancy reduction: a review of the world results for the period 1993–1996. Eur. J. Obstet. Gynecol. Reprod. Biol. 1997;75:183–90.CrossRefGoogle ScholarPubMed
Depp, R., Macones, G. A., Rosenn, M. F.et al.Multifetal pregnancy reduction: evaluation of fetal growth in the remaining twins. Am. J. Obstet. Gynecol. 1996;174:1233–8.CrossRefGoogle ScholarPubMed
Yaron, Y., Johnson, K. D., Bryant-Greenwood, P. K.et al.Selective termination and elective reduction in twin pregnancies: 10 years experience at a single centre. Hum. Reprod. 1998;13:2301–4.CrossRefGoogle Scholar
Bertolini, M., Mason, J. B., Beam, S. W.et al.Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 2002;58:973–94.CrossRefGoogle ScholarPubMed
Oliver, M. H., Hawkins, P., Harding, J. E.Periconceptional undernutrition alters growth trajectory, endocrine and metabolic responses to fasting in late gestation fetal sheep. Pediatr. Res. 2005;57:591–8.CrossRefGoogle ScholarPubMed
Bloomfield, F. H., Oliver, M. H., Hawkins, P.et al.A periconceptional nutritional origin for non-infectious preterm birth. Science 2003;300:606.CrossRefGoogle Scholar
Oliver, M. H., Hawkins, P., Breier, B.et al.Maternal undernutrition during the periconceptual period increases plasma taurine levels and insulin response to glucose but not arginine in the late gestational fetal sheep. Endocrinology, 2001;142:4576–9.CrossRefGoogle Scholar
Zijl, P. L., Oliver, M. H., Harding, J. E. Periconceptual undernutrition in sheep leads to longterm changes in maternal amino acid concentrations. Proceedings of the 6th Annual Congress of the Perinatal Society of Australia and New Zealand, Parramatta, NSW. 2002; P190 (Abstr.).Google Scholar
Bloomfield, F. H., Oliver, M. H., Hawkins, P.et al.Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic-pituitary-adrenal axis in late gestation. Endocrinology 2004;145:4278–85.CrossRefGoogle ScholarPubMed
Battaglia, F. C., Meschia, G.Principal substrates of fetal metabolism. Phys. Rev. 1978;58:499–527.Google ScholarPubMed
Rudolph, A. M., Heymann, M. A.Validation of the antipyrine method for measuring fetal umbilical blood flow. Circ. Res. 1967;21:185–90.CrossRefGoogle ScholarPubMed
Crenshaw, C., Huckabee, W. E., Curet, L. B., Mann, L., Barron, D. H.A method for the estimation of the umbilical blood flow in unstressed sheep and goats with some results of its application. Q. J. Exp. Physiol. 1968;53:65–75.CrossRefGoogle ScholarPubMed
Wilkening, R. B., Meschia, G.Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow. Am. J. Physiol. 1983;244:H749–55.Google ScholarPubMed
Wolfe, R. R.Tracers in Metabolic Research. Radioisotope and Stable Isotope / Mass Spectrometry Methods. New York: Alan R. Liss, Inc; 1984.Google ScholarPubMed
Fowden, A. L. Fetal metabolism and energy balance. In Thorburn, G. D., Harding, R., eds. Textbook of Fetal Physiology. Oxford: Oxford University Press; 1994:70–82.Google Scholar
Fisher, D. J., Heymann, M. A., Rudolph, A. M.Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am. J. Physiol. 1980;238:H399–405.Google ScholarPubMed
Owens, J. A., Falconer, J., Robinson, J. S. Effects of maternal hyperoxia on fetal metabolism in experimental intrauterine growth retardation. Proceedings of the Third Congress of the Australian Perinatal Society, Parramatta, NSW. 1985; C2–2 (Abstr.).Google Scholar
Hay, W. W. Jr, DiGiacomo, J. E., Mezharich, H. K., Hirst, K., Zerbe, G.Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption. Am. J. Physiol. 1989;256:E704–13.Google ScholarPubMed
Lorijn, R. H., Nelson, J. C., Longho, L. D.Induced fetal hyperthyroidism: cardiac output and oxygen consumption. Am. J. Physiol. 1980;239: H302–7.Google ScholarPubMed
Fowden, A. L., Silver, M.The effects of thyroid hormones on oxygen and glucose metabolism in the sheep fetus during late gestation. J. Physiol. 1995;482:202–13.CrossRefGoogle ScholarPubMed
Fowden, A. L., Mapstone, J., Forhead, A. J.Regulation of glucogenesis by thyroid hormones in fetal sheep during late gestation. J. Endocrinol. 2001;170:461–9.CrossRefGoogle ScholarPubMed
Owens, J. A., Falconer, J., Robinson, J. S.Effect of restriction of placental growth on oxygen delivery to and consumption by the pregnant uterus and fetus. J. Dev. Physiol. 1987;9:137– 50.Google ScholarPubMed
Bard, H., Fouron, J.-C., Prosmanne, J., Gagnon, J.Effect of hypoxemia on fetal hemoglobin synthesis during late gestation. Pediatr. Res. 1992;31:483–485.CrossRefGoogle ScholarPubMed
Bocking, A. D., Gagnon, R., White, S. E.Circulatory responses to prolonged hypoxemia in fetal sheep. Am. J. Obstet. Gynecol. 1988;159:1418–24.CrossRefGoogle ScholarPubMed
Itskovitz, J., LaGamma, E. F., Rudolph, A. M.Effects of cord compression on fetal blood flow distribution and O2 delivery. Am. J. Physiol. 1987;252:H100–9.Google ScholarPubMed
Al-Ghazali, W., Chita, S. K., Chapman, M. G., et al.Evidence of a redistribution of cardiac output in asymmetrical growth retardation. Br. J. Obstet. Gynaecol. 1989;96:697–704.CrossRefGoogle ScholarPubMed
Divon, M. Y. Doppler blood flow studies and fetal growth retardation. In Divon, M. Y., ed. Abnormal Fetal Growth. New York: Elsevier; 1991:147–62.Google Scholar
Itzkovitz, J., LaGamma, E. F., Rudolph, A. M.The effect of reducing umbilical blood flow on fetal oxygenation. Am. J. Obstet. Gynecol. 1983;148(7):813–18.CrossRefGoogle Scholar
Gardner, D. S., Giussani, D. A., Fowden, A. L.Hind limb glucose and lactate metabolism during umbilical cord compression and acute hypoxemia in the late gestation ovine fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;284:R954–64.CrossRefGoogle ScholarPubMed
Hay, W. W. Jr, Myers, S. A., Sparks, J. W.et al.Glucose and lactate oxidation rates in the fetal lamb. Proc. Soc. Exp. Biol. Med. 1983;173:553–63.CrossRefGoogle ScholarPubMed
Prior, R. L., Christenson, R. K.Gluconeogenesis from alanine in vivo by the ovine fetus and lamb. Am. J. Physiol. 1977;233:E462–68.Google ScholarPubMed
Gleason, C. A., Rudolph, A. M.Gluconeogenesis by the fetal sheep liver in vivo. J. Dev. Physiol. 1985;7:185–94.Google ScholarPubMed
Teng, C., Battaglia, F. C., Meschia, G., Narkewicz, M. R., Wilkening, R. B.Fetal hepatic and umbilical uptakes of glucogenic substrates during a glucagon-somatostatin infusion. Am. J. Physiol. 2002;282:E542–50.Google ScholarPubMed
Currie, M. J., Bassett, N. S., Gluckman, P. D.Ovine glucose transporter-1 and -3: cDNA partial sequences and developmental gene expression in the placenta. Placenta 1997;18:393–401.CrossRefGoogle ScholarPubMed
Ehrhardt, R. A., Bell, A. W.Developmental increases in glucose transporter concentration in the sheep placenta. Am. J. Physiol. 1997;272:R1132–41.Google Scholar
Zhou, J., Bondy, C.Placental glucose transporter gene expression and metabolism in the rat. J. Clin. Invest. 1993;91:845– 52.CrossRefGoogle ScholarPubMed
Molina, R. D., Meschia, G., Battaglia, F. C., Hay, W. W. Jr.Gestational maturation of placental glucose transfer capacity in sheep. Am. J. Physiol. 1991;261:R697–704.Google Scholar
Marconi, A. M., Paolini, C. L., Buscaglia, M.et al.The impact of gestational age and fetal growth on the maternal-fetal glucose concentration difference. Obstet. Gynecol. 1996;87:937–42.CrossRefGoogle ScholarPubMed
Gu, W., Jones, C. T., Harding, J. E.Metabolism of glucose by fetus and placenta of sheep. The effects of normal fluctuations in uterine blood flow. J. Dev. Physiol. 1987;9:369–89.Google ScholarPubMed
Illsley, N. P.Glucose transporters in the human placenta. Placenta 2000;21:14–22.CrossRefGoogle ScholarPubMed
Shin, B. C., Fujikura, K., Suzuki, T., Tanaka, S., Takata, K.Glucose transporter glucose transporters3 in rat placental barrier: a possible machinery for the transplacental transfer of glucose. Endocrinology 1997;138(9):3997–4004.CrossRefGoogle ScholarPubMed
Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., Hirano, H.Immunolocalization of glucose transporter glucose transporters1 in the rat placental barrier: possible role of glucose transporters1 and the gap junction in the transport of glucose across the placental barrier. Cell Tissue Res 1994;276:411–18.CrossRefGoogle Scholar
Baumann, M. U., Deborde, S., Illsley, N. P.Placental glucose transfer and fetal growth. Endocrine 2002;19:13–22.CrossRefGoogle ScholarPubMed
Jansson, T., Cowley, E. A., Illsley, N. P.Cellular localization of glucose transporter messenger RNA in human placenta. Reprod. Fertil. Dev. 1995;7:1425–30.CrossRefGoogle ScholarPubMed
Jansson, T., Wennergren, M., Illsley, N. P.Glucose transporter expression and distribution in the human placenta throughout gestation and in intrauterine growth retardation. J. Clin. Endocrinol. Metab. 1993;77:1554–62.Google Scholar
Das, U. G., Sadiq, F., Soares, M. J., Hay, W. W. Jr, Devaskar, S. U.Time-dependent physiological regulation of rodent and ovine placental glucose transporter (glucose transporters-1) protein. Am. J. Physiol. 1998;274:R339–47.Google Scholar
Gordon, M. C., Zimmerman, P. D., Landon, M. B., Gabbe, S. G., Kniss, D. A.Insulin and glucose modulate glucose transporter messenger ribonucleic acid expression and glucose uptake in trophoblasts isolated from first-trimester chorionic villi. Am. J. Obstet. Gynecol. 1995;173:1089–97.CrossRefGoogle ScholarPubMed
Hahn, T., Barth, S., Weiss, U., Mosgoeller, W., Desoye, G.Sustained hyperglycemia in vitro down-regulates the glucose transporters1 glucose transporter system of cultured human placental trophoblast: a mechanism to protect fetal development?FASEB J., 1998;12:1221–31.CrossRefGoogle Scholar
Illsley, N. P., Sellers, M. C., Wright, R. L.Glycemic regulation of glucose transporter expression and activity in the human placenta. Placenta 1998;19:517–24.CrossRefGoogle Scholar
Reid, G. J., Lane, R. H., Flozak, A. S., Simmons, R. A.Placental expression of glucose transporter proteins 1 and 3 in growth-restricted fetal rats. Am. J. Obstet. Gynecol. 1999;180:1017–23.CrossRefGoogle ScholarPubMed
Lesage, J., Hahn, D., Leonhardt, M.et al.Maternal undernutrition during late gestation-induced intrauterine growth restriction in the rat is associated with impaired placental glucose transporters3 expression, but does not correlate with endogenous corticosterone levels. J. Endocrinol. 2002;174:37–43.CrossRefGoogle Scholar
Gaither, K., Quraishi, A. N., Illsley, N. P.Diabetes alters the expression and activity of the human placental glucose transporters1 glucose transporter. J. Clin. Endocrinol. Metab. 1999;84:695–701.Google Scholar
Jansson, T., Wennergren, M., Powell, T. L.Placental glucose transport and glucose transporters 1 expression in insulin-dependent diabetes. Am. J. Obstet. Gynecol. 1999;180:163–8.CrossRefGoogle ScholarPubMed
Fladeby, C., Skar, R., Serck-Hanssen, G.Distinct regulation of glucose transport and GLUT1/GLUT3 transporters by glucose deprivation and IGF-I in chromaffin cells. Biochim. Biophys. Acta. 2003;1593:201–8.CrossRefGoogle ScholarPubMed
Maher, F., Harrison, L. C.Stabilization of glucose transporter mRNA by insulin/IGF-I and glucose deprivation. Biochem. Biophys. Res. Comm. 1990;171:210–5.CrossRefGoogle Scholar
Wilson, C. M., Mitsumoto, Y., Maher, F., Klip, A.Regulation of cell surface glucose transporters1, glucose transporters3 and glucose transporters4 by insulin and IGF-1 in L6 myotubes. FEBS Lett. 1995;368:19–22.CrossRefGoogle Scholar
Simmons, R. A., Flozak, A. S., Ogata, E. S.The effect of insulin and insulin-like growth factor-I on glucose transport in normal and small for gestational age fetal rats. Endocrinology 1993;133:1361–8.CrossRefGoogle ScholarPubMed
Harding, J. E., Charlton, V. E., Evans, P. C.Effects of beta-hydroxybutyrate infusion on hind limb metabolism in fetal sheep. Am. J. Obstet. Gynecol. 1992;166:671–6.CrossRefGoogle ScholarPubMed
Sparks, J. W., Hay, W. W., Meschia, G., Battaglia, F. C.Partition of maternal nutrients to the placenta and fetus in the sheep. Eur. J. Obstet. Gynaecol. 1983;14:331–40.CrossRefGoogle ScholarPubMed
Battaglia, F. C., Meschia, G.An Introduction to Fetal Physiology. Orlando: Academic Press; 1986.Google Scholar
McGowan, J. E., Aldoretta, P. W., Hay, W. W. Jr.Contribution of fructose and lactate produced in placenta to calculation of fetal glucose oxidation rate. Am. J. Physiol. 1995;269:E834–9.Google ScholarPubMed
Carter, B. S., Moores, R. R. Jr, Teng, C., Meschia, G., Battaglia, F. C.Main routes of plasma lactate carbon disposal in the midgestation fetal lamb. Biol. Neonate 1995;67:295–300.CrossRefGoogle ScholarPubMed
Harding, J. E., Johnston, B. M.Nutrition and fetal growth. Reprod. Fertil. Dev., 1995;7:539–47.CrossRefGoogle ScholarPubMed
Torre, Alonso S. R., Serrano, M. A., Alvarado, F., Medina, J. M.Carrier-mediated L-lactate transport in brush-border membrane vesicles from rat placenta during late gestation. Biochem. J. 1991;278 (Pt 2):535–41.CrossRefGoogle Scholar
Torre, Alonso S. R., Serrano, M. A., Caropaton, T., Medina, J. M.Proton gradient-dependent active transport of L-lactate in basal plasma membrane vesicles isolated from syncytiotrophoblast human placenta. Biochem. Soc. Trans. 1991;19: 409S.CrossRefGoogle Scholar
Inuyama, M., Ushigome, F., Emoto, A.et al.Characteristics of L-lactic acid transport in basal membrane vesicles of human placental syncytiotrophoblast. Am. J. Physiol. Cell Physiol. 2002;283:C822–30.CrossRefGoogle ScholarPubMed
Meschia, G., Battaglia, F. C., Hay, W. W., Sparks, J. W.Utilization of substrates by the ovine placenta in vivo. Fed. Proc. 1980;39:245–9.Google ScholarPubMed
Holzman, I. R., Lemons, J. A., Meschia, G., Battaglia, F. C.Uterine uptake of amino acids and glutamine-glutamate balance across the placenta of the pregnant ewe. J. Dev. Physiol. 1979;1:137–49.Google ScholarPubMed
Lemons, J. A., Adcock, E. W. I., Jones, M. D. Jret al.Umbilical uptake of amino acids in the unstressed fetal lamb. J. Clin. Invest. 1976;58:1428–34.CrossRefGoogle ScholarPubMed
Holzman, I. R., Lemons, J. A., Meschia, G., Battaglia, F. C.Ammonia production by the pregnant uterus. Proc. Soc. Exp. Biol. Med. 1977;156:27–30.CrossRefGoogle ScholarPubMed
Gresham, E. L., James, E. J., Battaglia, F. C., Makowski, E. L., Meschia, G.Production and excretion of urea by the fetal lamb. Pediatrics 1972;50:372–9.Google ScholarPubMed
Jozwik, M., Teng, C., Meschia, G., Battaglia, F. C.Contribution of branched-chain amino acids to uteroplacental ammonia production in sheep. Biol. Reprod. 1999;61:792–6.CrossRefGoogle Scholar
Goodwin, G. W., Gibboney, W., Paxton, R., Harris, R. A., Lemons, J. A.Activities of branched-chain amino acid transferase and branched-chain 2-oxo acid dehydrogenase complex in tissues of maternal and fetal sheep. Biochem. J. 1987;242:305–8.CrossRefGoogle ScholarPubMed
Liechty, E. A., Kelley, J., Lemons, J. A.Effect of fasting on uteroplacental amino acid metabolism in the pregnant sheep. Biol. Neonate 1991;60:207–14.CrossRefGoogle ScholarPubMed
Jaroszewicz, L., Józwik, M., Jaroszewicz, K.The activity of aminotransferases in human placenta in early pregnancy. Biochem. Med. Metab. Biol. 1971;5:436–9.CrossRefGoogle Scholar
Smeaton, T. C., Owens, J. A., Kind, K. L., Robinson, J. S.The placenta releases branched-chain keto acids into the umbilical and uterine circulations in the pregnant sheep. J. Dev. Physiol. 1989;12:95–9.Google ScholarPubMed
Loy, G. L., Quick, A. N., Hay, W. W. Jret al.Fetoplacental deamination and decarboxylation of leucine. Am. J. Physiol. 1990;259:E492–7.Google ScholarPubMed
Owens, J. A, Owens, P. C., Robinson, J. S. Experimental fetal growth retardation: metabolic and endocrine aspects. In: Gluckman, P. D., Johnston, B. M., Nathanielsz, P. W., eds. Advances in Fetal Physiology: Reviews in Honour of G. C. Liggins. Ithaca: Perinatology Press; 1989:263–86.Google Scholar
Regnault, T. R., Vrijer, B., Battaglia, F. C.Transport and metabolism of amino acids in placenta. Endocrine 2002;19:23–41.CrossRefGoogle ScholarPubMed
Moe, A. J.Placental amino acid transport. Am. J. Physiol. 1995;268:C1321–31.CrossRefGoogle ScholarPubMed
Yudilevich, D., Sweiry, J.Transport of amino acids in the placenta. Biochim. Biophys. Acta. 1985;822:169–201.CrossRefGoogle ScholarPubMed
Harrington, B., Glazier, J., D'Souza, S., Sibley, C.System A amino acid transporter activity in human placental microvillous membrane vesicles in relation to various anthropometric measurements in appropriate and small for gestational age babies. Pediatr. Res. 1999;45(6):810–814.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Matthews, N., Glazier, J.et al.Neutral amino acid uptake by the microvillous plasma membrane of the human placenta is inversely related to fetal size at birth in normal pregnancy. J. Clin. Endocrinol. Metab. 1998;83:3320–6.Google ScholarPubMed
Glazier, J. D., Cetin, I., Perugino, G.et al.Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restriction. Pediatr. Res. 1997;42(4):514–19.CrossRefGoogle ScholarPubMed
Dicke, J., Henderson, G.Placental amino acid uptake in normal and complicated pregnancies. Am. J. Med. Sci. 1988;295:223–7.CrossRefGoogle ScholarPubMed
Mahendran, D., Donnai, P., Glazier, J. D.et al.Amino acid (System A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr. Res. 1993;34:661–5.CrossRefGoogle ScholarPubMed
Jansson, T., Persson, E.Placental transfer of glucose and amino acids in intrauterine growth retardation: studies with substrate analogs in the awake guinea pig. Pediatr. Res. 1990;28:203–8.CrossRefGoogle ScholarPubMed
Jansson, T., Ylven, K., Wennergren, M., Powell, T. L.Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta 2002;23:392–9.CrossRefGoogle ScholarPubMed
Nelson, D. M., Smith, S. D., Furesz, T. C.et al.Hypoxia reduces expression and function of system A amino acid transporters in cultured term human trophoblasts. Am. J. Physiol. Cell. Physiol. 2003;284:C310–15.CrossRefGoogle ScholarPubMed
Radaelli, T., Cetin, I., Ayuk, P. T.et al.Cationic amino acid transporter activity in the syncytiotrophoblast microvillous plasma membrane and oxygenation of the uteroplacental unit. Placenta 2002;23:S69–74.CrossRefGoogle ScholarPubMed
Ross, J. C., Fennessey, P. V., Wilkening, R. B., Battaglia, F. C., Meschia, G.Placental transport and fetal utilization of leucine in a model of fetal growth retardation. Am. J. Physiol. 1996;270:E491–503.Google Scholar
Constância, M., Hemberger, M., Hughes, J.et al.Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002;417:945–8.CrossRefGoogle ScholarPubMed
Moores, R. R. Jr, Rietberg, C. C., Battaglia, F. C., Fennessey, P. V., Meschia, G.Metabolism and transport of maternal serine by the ovine placenta: glycine production and absence of serine transport into the fetus. Pediatr. Res. 1993;53:590–4.CrossRefGoogle Scholar
Cetin, I., Fennessey, P., Sparks, J. W., Meschia, G., Battaglia, F. C.Fetal serine fluxes across fetal liver, hindlimb and placenta in late gestation. Am. J. Physiol. 1992;263:E786–93.Google ScholarPubMed
Moores, R. R. Jr, Vaughn, P. R., Battaglia, F. C.et al.Glutamate metabolism in the fetus and placenta of late-gestation sheep. Am. J. Physiol. 1994;267:R89–96.Google ScholarPubMed
Chung, M., Teng, C., Timmerman, M., Meschia, G., Battaglia, F. C.Production and utilization of amino acids by ovine placenta in vivo. Am. J. Physiol. 1998;274:E13–22.Google ScholarPubMed
Widdowson, E. M. Growth and composition of the fetus and newborn. In: Assali, N. S., ed. The Biology of Gestation. New York: Academic Press; 1968:1–49.Google Scholar
Van Aerde, J. E., Feldman, M., Clandinin, M. T. Accretion of lipid in the fetus and newborn. In Polin, R. A., Fox, W. W., eds. Fetal and Neonatal Physiology. Philadelphia: W. B. Saunders Co.; 1998:458–77.Google Scholar
Dunlop, M., Court, J. M.Lipogenesis in developing human adipose tissue. Early Hum. Dev. 1978;2:123–30.CrossRefGoogle ScholarPubMed
Innis, S. M.Essential fatty acids in growth and development. Prog. Lipid Res. 1991;30:39–103.CrossRefGoogle ScholarPubMed
Kuhn, D. C., Crawford, M.Placental essential fatty acid transport and prostaglandin synthesis. Prog. Lipid. Res. 1986;25:345–53.CrossRefGoogle ScholarPubMed
Campbell, F. M., Bush, P. G., Veerkamp, J. H., Dutta-Roy, A. K.Detection and cellular localization of plasma membrane-associated and cytoplasmic fatty acid-binding proteins in human placenta. Placenta 1998;19:409–15.CrossRefGoogle ScholarPubMed
Campbell, F. M., Gordon, M. J., Dutta-Roy, A. K.Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids. Life. Sci. 1998;63:235–40.CrossRefGoogle ScholarPubMed
Lafond, J., Moukdar, F., Rioux, A.et al.Implication of adenosine triphosphate and sodium in arachidonic acid incorporation by placental syncytiotrophoblast brush border and basal plasma membranes in the human. Placenta 2000;21:661–9.CrossRefGoogle ScholarPubMed
Herrera, E., Bonet, B., Lasunción, M. A. Maternal-fetal transfer of lipid metabolites. In: Polin, R. A., Fox, W. W., eds. Fetal and Neonatal Physiology. Philadelphia: W. B. Saunders Co.; 1998:447–58.Google Scholar
Albrecht, E. D., Babischkin, J. S., Koos, R. D., Pepe, G. J.Developmental increase in low density lipoprotein receptor messenger ribonucleic acid levels in placental syncytiotrophoblasts during baboon pregnancy. Endocrinology 1995;136:5540–6.CrossRefGoogle ScholarPubMed
Overbergh, L., Lorent, K., Torrekens, S., Leuven, F., Berghe, H.Expression of mouse alpha-macroglobulins, lipoprotein receptor-related protein, LDL receptor, apolipoprotein E, and lipoprotein lipase in pregnancy. J. Lipid Res. 1995;36:1774–86.Google ScholarPubMed
Torre, Alonso S. R., Serrano, M. A., Medina, J. M.Carrier-mediated beta-D-hydroxybutyrate transport in brush-border membrane vesicles from rat placenta. Pediatr. Res. 1992;32:317–23.CrossRefGoogle Scholar
Ravel, D., Chambaz, J., Pepin, D., Manier, M. C., Bereziat, G.Essential fatty acid interconversion during gestation in the rat. Biochim. Biophys. Acta. 1985;833:161–4.CrossRefGoogle ScholarPubMed
Thulin, A. J., Allee, G. L., Harmon, D. L., Davis, D. L.Utero-placental transfer of octanoic, palmitic and linoleic acids during late gestation in gilts. J. Anim. Sci. 1989;67:738–45.CrossRefGoogle ScholarPubMed
Elphick, M. C., Hull, D., Pipkin, F. B.The transfer of fatty acids across the sheep placenta. J. Dev. Physiol. 1979;1:31–45.Google ScholarPubMed
Shand, J. H., Noble, R. C.The metabolism of 18:0 and 18:2(n-6) by the ovine placenta at 120 and 150 days of gestation. Lipids 1981;16:68–71.CrossRefGoogle Scholar
Shand, J. H., Noble, R. C.Delta 9- and delta 6-desaturase activities of the ovine placenta and their role in the supply of fatty acids to the fetus. Biol. Neonate 1979;36:298–304.CrossRefGoogle ScholarPubMed
Fowden, A. L.The role of insulin in fetal growth. Early Hum. Dev. 1992;29(1–3):177–81.CrossRefGoogle ScholarPubMed
Bassett, J. M., Thorburn, G. D.The regulation of insulin secretion by the ovine fetus in utero. J. Endocrinol. 1971;50:59–74.CrossRefGoogle Scholar
Bassett, J. M., Madill, D.The influence of maternal nutrition on plasma hormone and metabolite concentrations of foetal lambs. J. Endocrinol. 1974;61:465–77.CrossRefGoogle ScholarPubMed
Kervran, A., Randon, J.Development of insulin release by fetal rat pancreas in vitro: effects of glucose, amino acids, and theophylline. Diabetes 1980;29(9):673–8.CrossRefGoogle ScholarPubMed
Kervran, A., Randon, J., Girard, J. R.Dynamics of glucose-induced plasma insulin increase in the rat fetus at different stages of gestation. Effects of maternal hypothermia and fetal decapitation. Biol. Neonate 1979;35(5–6):242–8.CrossRefGoogle ScholarPubMed
Fowden, A. L., Hughes, P., Comline, R. S.The effects of insulin on the growth rate of the sheep fetus during late gestation. Q. J. Exp. Physiol. 1989;74(5):703–14.CrossRefGoogle ScholarPubMed
Liu, J.-P., Baker, J., Perkins, A. S., Robinson, E. J., Efstratiadis, A.Mice carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I) and type 1 IGF receptor (IGF1r). Cell 1993;75:59–72.Google Scholar
Gluckman, P. D., Brinsmead, M. W.Somatomedin in cord blood: relationship to gestational age and birth size. J. Clin. Endocrinol. Metab. 1976;43:1378–81.CrossRefGoogle ScholarPubMed
Verhaeghe, J., Bree, R., Herck, E.et al.C-peptide, insulin-like growth factors I and II, and insulin-like growth factor binding protein-1 in umbilical cord serum: correlations with birth weight. Am. J. Obstet. Gynecol. 1993;169:89–97.CrossRefGoogle ScholarPubMed
Bennett, A., Wilson, D. M., Liu, F.et al.Levels of insulin-like growth factors I and II in human cord blood. J. Clin. Endocrinol. Metab. 1983;57:609–12.CrossRefGoogle ScholarPubMed
Lassarre, C., Hardouin, S., Daffos, F.et al.Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr. Res. 1991;29:219–25.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Johnson-Barrett, J. J., Butler, J. D., Edgar, B. W., Gunn, T. R.Studies of insulin-like growth factor-I and -II by specific radioligand assays in umbilical cord blood. Clin. Endocrinol. 1983;19:405–13.CrossRefGoogle ScholarPubMed
Leger, J., Noel, M., Limal, J. M., Czernichow, P.Growth factors and intrauterine growth retardation. II. Serum growth hormone, insulin-like growth factor (IGF) I, and IGF-binding protein 3 levels in children with intrauterine growth retardation compared with normal control subjects: prospective study from birth to two years of age. Pediatr. Res. 1996;40(1):101–7.CrossRefGoogle Scholar
Guidice, L. C., Zegher, F., Gargosky, S. E.et al.Insulin-like growth factors and their binding proteins in the term and preterm human fetus and neonate with normal and extremes of intrauterine growth. J. Clin. Endocrinol. Metab. 1995;80:1548–55.Google Scholar
Woods, K. A., Camacho-Hubner, C., Savage, M. O., Clark, A. J.Intrauterine growth and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 1996;335:1363–7.CrossRefGoogle ScholarPubMed
Tamura, T., Tohma, T., Ohta, T.et al.Ring chromosome 15 involving deletion of the insulin-like growth factor 1 receptor gene in a patient with features of Silver–Russell syndrome. Clin. Dysmorphol. 1993;2:106–13.CrossRefGoogle Scholar
Gallaher, B. W., Breier, B. H., Oliver, M. H., Harding, J. E., Gluckman, P. D.Ontogenic differences in the nutritional regulation of circulating IGF binding proteins in sheep plasma. Acta. Endocrinol. 1992;126:49–54.Google ScholarPubMed
Gallaher, B. W., Oliver, M. H., Eichhorn, K.et al.Circulating insulin-like growth factor I/mannose-6-phosphate receptor and insulin-like growth factor binding proteins in fetal sheep plasma are regulated by glucose and insulin. Eur. J. Endocrinol. 1994;131(4):398–404.CrossRefGoogle ScholarPubMed
Oliver, M. H., Harding, J. E., Breier, B. H., Evans, P. C., Gluckman, P. D.Glucose but not amino acids regulates plasma insulin-like growth factor (IGF)-I concentrations in fetal sheep. Pediatr. Res. 1993;34:62–5.CrossRefGoogle Scholar
Oliver, M. H., Harding, J. E., Breier, B. H., Gluckman, P. D.Fetal insulin-like growth factor (IGF)-I and IGF-II are regulated differently by glucose or insulin in the sheep fetus. Reprod. Fertil. Dev. 1996;8(1):167–72.CrossRefGoogle ScholarPubMed
Boyne, M. S., Thame, M., Bennett, F. I.et al.The relationship among circulating insulin-like growth factor (IGF)-I, IGF-binding proteins-1 and -2, and birth anthropometry: a prospective study. J. Clin. Endocrinol. Metab. 2003;88:1687–91.CrossRefGoogle ScholarPubMed
Nagako, S., Funakoshi, T., Ueda, Y., Maruo, T.Regulation of circulating levels of IGF-I in pregnant rats: changes in nitrogen balance correspond with changes in serum IGF-I concentrations. J. Endocrinol. 1999;163:373–7.CrossRefGoogle Scholar
Harding, J. E., Liu, L., Evans, P. C.Circulating IGF-I influences nutrient partitioning between fetus and placenta in sheep. Growth. Regul. 1994;4(Suppl 1):73 (Abstr.).Google Scholar
Jensen, E. C., Harding, J. E., Bauer, M. K., Gluckman, P. D.Metabolic effects of IGF-I in the growth retarded fetal sheep. J. Endocrinol. 1999;161:485–94.CrossRefGoogle ScholarPubMed
Shen, W., Wisniowski, P., Ahmed, L.et al.Protein anabolic effects of insulin and IGF-I in the ovine fetus. Am. J. Physiol. Endocrinol. Metab. 2003;284:E748–56.CrossRefGoogle ScholarPubMed
Jensen, E. C., Zijl, P., Evans, P. C., Harding, J. E.The effect of IGF-I on serine metabolism in fetal sheep. J. Endocrinol. 2000;165:261–9.CrossRefGoogle ScholarPubMed
Bloomfield, F. H., Zijl, P. L., Bauer, M. K., Harding, J. E.A chronic low dose infusion of IGF-I alters placental function but does not affect fetal growth. Reprod. Fertil. Dev. 2002;14:393–400.CrossRefGoogle Scholar
Sohlstrom, A., Fernberg, P., Owens, J. A., Owens, P. C.Maternal nutrition affects the ability of treatment with IGF-I and IGF- II to increase growth of the placenta and fetus, in guinea pigs. Growth Horm. IGF Res. 2001;11:392–8.CrossRefGoogle ScholarPubMed
Baker, J., Liu, J.-P., Robinson, E. J., Efstratiadis, A.Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:79–82.CrossRefGoogle ScholarPubMed
Ohlsson, R., Holmgren, L., Glaser, A., Szpecht, A., Pfeifer-Ohlsson, S.Insulin-like growth factor 2 and short-range stimulatory loops in control of human placental growth. EMBO J, 1989;8(7):1993–9.Google ScholarPubMed
Brice, A. L., Cheetham, J. E., Bolton, N., Hill, N. C. W., Schofield, P. N.Temporal changes in the expression of the insulin-like growth factor II gene associated with tissue maturation in the human fetus. Development 1989;106:543–54.Google ScholarPubMed
Ohlsson, R., Larsson, E., Nilsson, O., Wahlstrom, T., Sundstrom, P.Blastocyst implantation precedes induction of insulin-like growth factor II gene expression in human trophoblasts. Development 1989;106(3):555–9.Google ScholarPubMed
Reik, W., Constância, M., Fowden, A.et al.Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J. Physiol. 2003;547:35–44.CrossRefGoogle ScholarPubMed
Reik, W., Walter, J.Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2001;2:21–32.CrossRefGoogle ScholarPubMed
Tycko, B., Morison, I. M.Physiological functions of imprinted genes. J. Cell. Physiol. 2002;192:245–58.CrossRefGoogle ScholarPubMed
Li, L., Keverne, E. B., Aparicio, S. A.et al.Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 1999;284:330–3.CrossRefGoogle ScholarPubMed
Bauer, M. K., Breier, B. H., Harding, J. E., Veldhuis, J. D., Gluckman, P. D.The fetal somatotrophic axis during long term maternal undernutrition in sheep: evidence for nutritional regulation in utero. Endocrinology 1995;136(3):1250–7.CrossRefGoogle Scholar
Klempt, M., Bingham, B., Breier, B. J., Baumbach, W. R., Gluckman, P. D.Tissue distribution and ontogeny of growth hormone receptor messenger ribonucleic acid and ligand binding to hepatic tissue in the midgestation sheep fetus. Endocrinology 1993;132:1071–7.CrossRefGoogle ScholarPubMed
Edmondson, S. R., Werther, G. A., Russell, A.et al.Localization of growth hormone receptor/binding protein messenger ribonucleic acid (mRNA) during rat fetal development: relationship to insulin-like growth factor-I mRNA. Endocrinology 1995;136:4602–9.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Gunn, A. J., Wray, A.et al.Congenital idiopathic growth hormone deficiency is associated with prenatal and early postnatal growth failure. J. Pediatr. 1992;121:920–3.CrossRefGoogle ScholarPubMed
Mesiano, S., Young, I. R., Baxter, R. C.et al.Effect of hypophysectomy with and without thyroxine replacement on growth and circulating concentrations of insulin-like growth factors I and II in the fetal lamb. Endocrinology 1987;120:1821–30.CrossRefGoogle ScholarPubMed
Mesiano, S., Young, I. R., Hay, A. W., Browne, C. A., Thorburn, G. D.Hypophysectomy of the fetal lamb leads to a fall in the plasma concentration of insulin like growth factor I (IGF-I) but not IGF-II. Endocrinology 1989;124:1485–91.CrossRefGoogle Scholar
Bauer, M. K., Breier, B. H., Bloomfield, F. H.et al.Chronic pulsatile infusion of growth hormone to growth-restricted fetal sheep increases circulating fetal insulin-like growth factor-I levels but not fetal growth. J. Endocrinol. 2003;177:83–92.CrossRefGoogle Scholar
Fowden, A. L.Endocrine regulation of fetal growth. Reprod. Fertil. Dev. 1995;7:351–63.CrossRefGoogle ScholarPubMed
Thorpe-Beeston, J. G., Nicolaides, K. H.Fetal thyroid function. Fetal. Diagn. Ther. 1993;8:60–72.CrossRefGoogle ScholarPubMed
Sagawa, N., Yura, S., Itoh, H.et al.Possible role of placental leptin in pregnancy: a review. Endocrine 2002;19:65–71.CrossRefGoogle ScholarPubMed
Zhao, J., Kunz, T. H., Tumba, N.et al.Comparative Analysis of Expression and Secretion of Placental Leptin in Mammals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285:R438–46.CrossRefGoogle ScholarPubMed
Masuzaki, H., Ogawa, Y., Sagawa, N.et al.Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat. Med. 1997;3:1029–33.CrossRefGoogle ScholarPubMed
Gualillo, O., Caminos, J., Blanco, M.et al.Ghrelin, a novel placental-derived hormone. Endocrinology 2001;142:788– 94.CrossRefGoogle ScholarPubMed
Thomas, L., Wallace, J. M., Aitken, R. P.et al.Circulating leptin during ovine pregnancy in relation to maternal nutrition, body composition and pregnancy outcome. J. Endocrinol. 2001;169:465–76.CrossRefGoogle ScholarPubMed
Wang, J., Liu, R., Liu, L.et al.The effect of leptin on Lep expression is tissue-specific and nutritionally regulated. Nat. Med. 1999;5:895–9.CrossRefGoogle ScholarPubMed
Devaskar, S. U., Anthony, R., Hay, W. Jr.Ontogeny and insulin regulation of fetal ovine white adipose tissue leptin expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;282:R431–8.CrossRefGoogle ScholarPubMed
Bell, A. W., Kennaugh, J. M., Battaglia, F. C., Makowski, E. L., Meschia, G.Metabolic and circulatory studies of fetal lambs at mid gestation. Am. J. Physiol. 1986;250:E538–44.Google Scholar
Lemons, J. A., Reyman, D., Schreiner, R. L.Fetal and maternal amino acid concentrations during fasting in the ewe. J. Ped. Gastroenterol. Nutr. 1984;3:249–55.CrossRefGoogle ScholarPubMed
Liechty, E. A., Lemons, J. A.Changes in ovine fetal hindlimb amino acid metabolism during maternal fasting. Am. J. Physiol. 1984;246:E430–5.Google ScholarPubMed
Schreiner, R. L., Lemons, J. A., Gresham, E. L.Metabolic and hormonal response to chronic maternal fasting in the ewe. Ann. Nutr. Metab. 1981;25:38–47.CrossRefGoogle ScholarPubMed
Mellor, D. J., Matheson, I. C.Daily changes in the curved crown-rump length of individual sheep fetuses during the last 60 days of pregnancy and effects of different levels of maternal nutrition. Q. J. Exp. Physiol. 1979;64:119–31.CrossRefGoogle ScholarPubMed
Mellor, D. J., Murray, L.Effects on the rate of increase in fetal girth of refeeding ewes after short periods of severe undernutrition during late pregnancy. Res. Vet. Sci. 1982;32:377–82.Google ScholarPubMed
Harding, J. E.Prior growth rate determines the fetal growth response to acute maternal undernutrition in fetal sheep of late gestation. Prenat. Neonat. Med. 1997;2:300–9.Google Scholar
Harding, J. E.Periconceptual nutrition determines the fetal growth response to acute maternal undernutrition in fetal sheep of late gestation. Prenat. Neonat. Med. 1997;2:310–19.Google Scholar
Oliver, M. H., Hawkins, P., Harding, J. E.Periconceptional undernutrition alters growth trajectory, endocrine and metabolic responses to fasting in late gestation fetal sheep. Pediatr. Res. 2005;57:591–8.CrossRefGoogle ScholarPubMed
Harding, J. E.The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiol. 2001;30:15–23.CrossRefGoogle ScholarPubMed
Brace, R. A.Amniotic fluid volume and its relation to fetal fluid balance: a review of experimental data. Semin. Perinatol. 1986; 10:130–12.Google Scholar
Brace, R. A. Fetal fluid balance. In Thorburn, G. D., Harding, R., eds. Textbook of Fetal Physiology. Oxford: Oxford University Press; 1994:205–18.
Harding, R., Bocking, A. D., Sigger, J. N., Wickham, P. J. D.Composition and volume of fluid swallowed by fetal sheep. Q. J. Exp. Physiol. 1984;69:487–95.CrossRefGoogle ScholarPubMed
Daneshmand, S. S., Cheung, C. Y., Brace, R. A.Regulation of amniotic fluid volume by intramembranous absorption in sheep: Role of passive permeability and vascular endothelial growth factor. Am. J. Obstet. Gynecol. 2003;188:786–93.CrossRefGoogle ScholarPubMed
Gilbert, W. M., Brace, R. A.The missing link in amniotic fluid volume regulation: intramembranous absorption. Obstet. Gynecol. 1989;74:748–54.Google ScholarPubMed
Bloomfield, F. H., Zijl, P. L., Bauer, M. K., Harding, J. E.Effects of intrauterine growth restriction and intra-amniotic insulin-like growth factor-I treatment on blood and amniotic fluid concentrations and on fetal gut uptake of amino acids in late gestation ovine fetuses. J. Pediatr. Gastroenterol. Nutr. 2002;35:287–97.CrossRefGoogle Scholar
Wu, G., Bazer, F. W., Tou, W.Developmental changes of free amino acid concentrations in fetal fluids of pigs. J. Nutr. 1995;125:2859–68.Google ScholarPubMed
A'Zary, E., Saifer, A., Schneck, L.The free amino acids in maternal and fetal extracellular fluids collected during early pregnancy. Am. J. Obstet. Gynecol. 1973;116:854–66.CrossRefGoogle Scholar
Levy, H. L., Montag, P. P.Free amino acids in human amniotic fluid. A quantitative study by ion-exchange chromatography. Pediatr. Res. 1969;3:113–20.CrossRefGoogle ScholarPubMed
Mesavage, W. C., Suchy, S. F., Weiner, D. L.et al.Amino acids in amniotic fluid in the second trimester of gestation. Pediatr. Res. 1985;19:1021–24.CrossRefGoogle ScholarPubMed
Pitkin, R. M., Reynolds, W. A.Fetal ingestion and metabolism of amniotic fluid protein. Am. J. Obstet. Gynecol. 1975;123(4):356–61.CrossRefGoogle ScholarPubMed
Pritchard, J. A.Deglutition by normal and anencephalic fetuses. Obstet. Gynecol. 1965;25:289–97.Google ScholarPubMed
Gitlin, D., Kumate, J., Morales, C., Noriega, L., Arévalo, N.The turnover of amniotic fluid protein in the human conceptus. Am. J. Obstet. Gynecol. 1972;113(5):632–45.CrossRefGoogle ScholarPubMed
Tomoda, S., Brace, R. A., Longo, L. D.Amniotic fluid volume and fetal swallowing rate in sheep. Am. J. Physiol. 1985;249:R133–8.Google Scholar
Abbas, T. M., Tovey, J. E.Proteins of the liquor amnii. Br. Med. J. 1960;2:476–9.CrossRefGoogle Scholar
Johnson, A. M., Umansky, I., Alper, C. A., Everett, C., Greenspan, G.Amniotic fluid proteins: maternal and fetal contributions. J. Pediatr. 1974;84:588–93.CrossRefGoogle ScholarPubMed
Jones, C. A., Warner, J. A., Warner, J. O.Fetal swallowing of IgE. Lancet 1998;351:1859.CrossRefGoogle ScholarPubMed
Trahair, J. F., Harding, R. Development of the gastrointestinal tract. In: Thorburn, G. D., Harding, R., eds. Textbook of Fetal Physiology. Oxford: Oxford University Press; 1994:219–35.Google Scholar
Trahair, J. F., Sangild, P. T.Systemic and luminal influences on the perinatal development of the gut. Equine. Vet. J. 1997;Suppl. 24:40–50.Google Scholar
Bloomfield, F. H., Bauer, M. K., Zijl, P. L., Gluckman, P. D., Harding, J. E.Amniotic IGF-I supplements improve gut growth but reduce circulating IGF-I in growth-restricted fetal sheep. Am. J. Physiol. Endocrinol. Metab. 2002;282:E259–69.CrossRefGoogle ScholarPubMed
Phillips, J. D., Fonkalsrud, E. W., Mirzayan, A.et al.Uptake and distribution of continuously infused intraamniotic nutrients in fetal rabbits. J. Pediatr. Surg. 1991;24(4):374–80.CrossRefGoogle Scholar
Wu, G.Urea synthesis in enterocytes of developing pigs. Biochem. J. 1995;312:717–23.CrossRefGoogle ScholarPubMed
Dahlqvist, A., Lindberg, T.Development of the intestinal disaccharidase and alkaline phosphatase activities in the human fetus. Clin. Sci. 1966;30:517–28.Google Scholar
Antonowicz, I., Chang, S. K., Grand, R. J.Development and distribution of lysosomal enzymes and disaccharidases in human fetal intestine. Gastroenterology 1974;67:51–8.Google ScholarPubMed
Trahair, J. F., Harding, R. Development of structure and function of the alimentary tract in fetal sheep. In Nathanielsz, P. W., ed. Animal Models in Fetal Medicine. New York: Perinatology Press; 1987:1–36.Google Scholar
Antonowicz, A., Milunsky, A., Lebenthal, E., Schwachman, H.Disaccharidase and lysosomal enzyme activities in amniotic fluid, intestinal mucosa and meconium. Biol. Neonate 1977;32:280–9.CrossRefGoogle ScholarPubMed
Sangild, P. T., Elnif, J.Intestinal hydrolytic activity in young mink (Mustela vison) develops slowly postnatally and exhibits late sensitivity to glucocorticoids. J. Nutr. 1996;126:2061–8.CrossRefGoogle ScholarPubMed
Sangild, P. T., Sjöström, H., Norén, O., Fowden, A. L., Silver, M.The prenatal development and glucocorticoid control of brush-border hydrolases in the pig small intestine. Pediatr. Res. 1995;37:207–12.CrossRefGoogle ScholarPubMed
Charlton, V., Rudolph, A. M.Digestion and absorption of carbohydrates by the fetal lamb in utero. Pediatr. Res. 1979;13:1018–23.Google Scholar
Iioka, H., Moriyama, I. S., Hino, K., Itani, Y., Ichijo, M.Absorption of D-glucose by the small intestine of the human fetus. Nippon Sanka Fujinka Gakkai Zasshi 1987;39:347–51.Google ScholarPubMed
Charlton, V., Reis, B.Response of the chronically catheterized fetal lamb to intestinal administration of amino acids. Clin. Res. 1980;28:121A (Abstr.).Google Scholar
Charlton, V. E., Reis, B. L.Effects of gastric nutritional supplementation on fetal umbilical uptake of nutrients. Am. J. Physiol. 1981;241:E178–85.Google ScholarPubMed
Mulvihill, S. J., Albert, A., Synn, A., Fonkalsrud, E. W.In utero supplemental fetal feeding in an animal model: effects on fetal growth and development. Surgery 1985;98(3):500–5.Google Scholar
Harrison, M. R., Villa, R. L.Trans-amniotic fetal feeding I. Development of an animal model: continuous amniotic infusion in rabbits. J. Pediatr. Surg. 1982;17(4):376–80.CrossRefGoogle ScholarPubMed
Xing, A., Wan, B., Zeng, W.Biochemical effects of maternal intravenous and intra-amniotic infusion of amino-acids on fetal blood. Hua Xi Yi Ke Da Xue Xue Bao 1994;25:98–102.Google ScholarPubMed
Massobrio, M., Margaria, E., Campogrande, M., Badini Confalonieri, F., Bocci, A. Treatment of severe feto-placental insufficiency by means of intraamniotic injection of amino acids. In Salvadori, B., ed. Therapy of Feto-Placental Insufficiency. Berlin: Springer-Verlag; 1975:296–301.CrossRefGoogle ScholarPubMed
Renaud, R., Kirschtetter, L., Köhl, C. et al. Amino-acid intra-amniotic injections. In Persianinov, L. S., Chervakova, T. V., Presl, J., eds. Recent Progress in Obstetrics and Gynaecology. Amsterdam: Excerpta Medica; 1974:234–56.Google Scholar
Renaud, R., Vincendon, G., Koehl, C.et al.Fetal malnutrition. Preliminary results of intra-amniotic perfusions and injections of amino acids. J. Gynecol. Obstet. Biol. Reprod. (Paris). 1972;1:596–7.Google ScholarPubMed
Saling, E., Dudenhausen, W., Kynast, G. Basic investigations about intra-amniotic compensatory nutrition of the malnourished fetus. In Persianinov, L. S., Chervakova, T. V., Presl, J., eds. Recent Progress in Obstetrics and Gynaecology. Amsterdam: Excerpta Medica; 1974:227–33.Google Scholar
Saling, E., Kynast, G.A new way for the paraplacental supply of substances to the fetus. J. Perinatol. Med. Suppl. 1981;1:144– 6.CrossRefGoogle Scholar
Noccioli, B., Pampaloni, F., Fiorini, P.et al.Esophageal atresia with distal tracheo-esophageal fistula. Evolution of the treatment in the period of 1955–2000 at the Anna Meyer Children's Hospital of Florence. Minerva. Pediatr., 2002;54:131–8.Google Scholar
Sparey, C., Jawaheer, G., Barrett, A. M., Robson, S. C.Esophageal atresia in the Northern Region Congenital Anomaly Survey, 1985–1997: prenatal diagnosis and outcome. Am. J. Obstet. Gynecol. 2000;182:427–31.CrossRefGoogle ScholarPubMed
Martinez-Frias, M. L., Castilla, E. E., Bermejo, E., Prieto, L., Orioli, I. M.Isolated small intestinal atresias in Latin America and Spain: epidemiological analysis. Am. J. Med. Genet. 2000;93:355–9.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Abramovich, D. R.Interrelation of fetus and amniotic fluid. Obstet. Gynecol. Ann. 1981;10:27–43.Google ScholarPubMed
Cozzi, F., Wilkinson, A. W.Intrauterine growth rate in relation to anorectal and oesophageal anomalies. Arch. Dis. Child. 1969;44(233):59–62.CrossRefGoogle ScholarPubMed
Blakelock, R., Upadhyay, V., Kimble, R.et al.Is a normally functioning gastrointestinal tract necessary for normal growth in late gestation?Pediatr. Surg. Int. 1998;13(1):17–20.CrossRefGoogle ScholarPubMed
Surana, R. P. P.Small intestinal atresia: effect on fetal nutrition. J. Pediatr. Surg. 1994;29:1250–2.CrossRefGoogle ScholarPubMed
Surana, R., Puri, P.Small intestinal atresia: effect on fetal nutrition. J. Pediatr. Surg. 1994;29:1250–2.CrossRefGoogle ScholarPubMed
Blakelock, R. T., Upadhyay, V., Pease, P. W., Harding, J. E.Are babies with gastroschisis small for gestational age?Pediatr. Surg. Int. 1997;12:580–2.CrossRefGoogle ScholarPubMed
Raynor, B. D., Richards, D.Growth retardation in fetuses with gastroschisis. J. Ultrasound. Med. 1997;16:13–16.CrossRefGoogle ScholarPubMed
Weaver, L. T., Gonnella, P. A., Israel, E. J., Walker, W. A.Uptake and transport of epidermal growth factor by the small intestinal epithelium of the fetal rat. Gastroenterology 1990;98:828–37.CrossRefGoogle ScholarPubMed
Bala, R. M., Wright, C., Bardai, A., Smith, G. R.Somatomedin Bioactivity in serum and amniotic fluid during pregnancy. J. Clin. Endocrinol. Metab. 1978;46(4):649–52.CrossRefGoogle ScholarPubMed
Merimee, T. J., Grant, M., Tyson, J. E.Insulin-like growth factors in amniotic fluid. J. Clin. Endocrinol. Metab. 1984;59(4):752–5.CrossRefGoogle ScholarPubMed
Wathen, N. C., Egembah, S., Campbell, D. J., Farkas, A., Chard, T.Levels of insulin-like growth factor-binding protein-I increase rapidly in amniotic fluid from 11 to 16 weeks of pregnancy. J. Endocrinol. 1993;137:R1–4.CrossRefGoogle Scholar
Kniss, D. A., Zimmerman, P. D., Su, H.-C.et al.Expression of functional insulin-like growth factor-I receptors by human amnion cells. Am. J. Obstet. Gynecol. 1993;169(3):632–40.CrossRefGoogle ScholarPubMed
Han, V. K. M., Lund, P. K., Lee, D. C., D'Ercole, A. J.Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterisation, and tissue distribution. J. Clin. Endocrinol. Metab. 1988;66:422–9.CrossRefGoogle Scholar
Weaver, L. T., Walker, A. W.Epidermal growth factor and the developing human gut. Gastroenterology 1988;94:845–7.CrossRefGoogle ScholarPubMed
Read, L. C., Howarth, G. S., Lemmey, A. B.et al.The gastrointestinal tract: a most sensitive target for IGF-I. Proc. Nutr. Soc. NZ. 1992;17:136–42.Google Scholar
Simmons, J. G., Hoyt, E. C., Westwick, J. K.et al.Insulin-like growth factor-I and epidermal growth factor interact to regulate growth and gene expression in IEC-6 intestinal epithelial cells. Mol. Endocrinol. 1995;9:1157–65.Google ScholarPubMed
Trahair, J. F., Harding, R.Restitution of swallowing in the fetal sheep restores intestinal growth after midgestation esophageal ligation. J. Ped. Gastroenterol. Nutr. 1995;20:156–61.CrossRefGoogle Scholar
Kimble, R. M., Breier, B. H., Gluckman, P. D., Harding, J. E.Enteral IGF-I enhances fetal growth and gastrointestinal development in oesophageal ligated fetal sheep. J. Endocrinol. 1999;162:227–35.CrossRefGoogle ScholarPubMed
Bloomfield, F. H., Breier, B. H., Harding, J. E.The fate of 125I-IGF-I administered into the amniotic fluid of late gestation sheep. Pediatr. Res. 2002;51:361–9.CrossRefGoogle Scholar
Shaikh, S., Bloomfield, F. H., Bauer, M. K., Phua, H. H., Gilmour, R. S., Harding, J. E.Amniotic IGF-I supplementation of growth-restricted fetal sheep alters IGF-I and IGF receptor type 1 mRNA levels in placenta and fetal tissues. J. Endocrinol. 2005;186(1):145–55.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fetal nutrition
    • By F. H. Bloomfield, Liggins Institute, University of Auckland, Auckland, New Zealand, Jane E. Harding, Liggins Institute, University of Auckland, Auckland, New Zealand
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fetal nutrition
    • By F. H. Bloomfield, Liggins Institute, University of Auckland, Auckland, New Zealand, Jane E. Harding, Liggins Institute, University of Auckland, Auckland, New Zealand
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fetal nutrition
    • By F. H. Bloomfield, Liggins Institute, University of Auckland, Auckland, New Zealand, Jane E. Harding, Liggins Institute, University of Auckland, Auckland, New Zealand
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.002
Available formats
×