Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T19:53:47.231Z Has data issue: false hasContentIssue false

34 - Neonatal short bowel syndrome

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Judith Sondheimer
Affiliation:
Division of Gastroenterology, The Children's Hospital, Denver, CO
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Neonatal short bowel syndrome (SBS) is a diagnosis with three major elements. The neonate has a shortened small intestine, either congenital or via surgical resection, has intestinal malabsorption to a degree that standard feeding practices cannot support normal growth, and requires intravenous nutrition (IVN) support for a “significant” period. Some authors state that the diagnostic criterion for neonatal short bowel syndrome is the loss of 50% of the small intestine. Several factors make this definition inappropriate. Intestinal resection in the neonate is usually a surgical emergency. In this setting, measurements of the resected and remaining intestine may not be made or may be inaccurate because of bowel necrosis, edema, and adhesions. Factors other than the length of residual bowel also have an impact on the neonate's subsequent dependence on IVN. The anatomic area of bowel resected, the presence or absence of the ileocecal valve and colon, the viability of the remaining intestine and associated medical and surgical problems all have an impact on intestinal absorptive function that might produce intestinal insufficiency even after a modest resection.

The causes of neonatal short bowel syndrome are fairly predictable but the relative frequency depends upon the patient population of the individual center providing the statistics (Table 34.1). Most series of neonates and infants report four major causes – neonatal necrotizing enterocolitis (NEC), mid-gut volvulus, intestinal atresias, and gastroschisis. In most nurseries, NEC accounts for about 50% of all cases of neonatal SBS, with volvulus, atresia, and gastroschisis accounting together for about 40%.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klish, W. K., Putnam, T. C.The short gut. Am. J. Dis. Child. 1981;135:1056–61.Google ScholarPubMed
Cooper, A., Floyd, T. F., Ross, A. J.et al.Morbidity and mortality of short-bowel syndrome acquired in infancy. J. Pediatr. Surg. 1984;19:711–18.CrossRefGoogle ScholarPubMed
Georgeson, K. E., Breaux, C. W.Outcome and intestinal adaptation in neonatal short bowel syndrome. J. Pediatr. Surg. 1992;27:344.CrossRefGoogle ScholarPubMed
Grosfeld, J. L., Rescorla, F. J., West, K. W.Short bowel syndrome in infancy and childhood. Analysis of survival in 60 patients. J. Surg. 1986;151:41.CrossRefGoogle ScholarPubMed
Coran, A. G., Spivak, D., Teitelbaum, D. H.An analysis of morbidity and mortality of short bowel syndrome in the pediatric age group. Eur. J. Ped. Surg. 1999;9:228–30.CrossRefGoogle Scholar
Kurkchubasche, A. G., Rowe, M. I., Smith, S. D.Adaptation in short bowel syndrome: reassessing old limits. J. Pediatr. Surg. 1993;28:1069.CrossRefGoogle ScholarPubMed
Caniano, D. A., Starr, J., Ginn-Pease, M. E.Extensive short bowel syndrome in neonates: outcome in the 1980's. Surgery 1989;105:119.Google Scholar
Sondheimer, J. M., Cadnapaphornchai, M., Sontag, M.et al.Predicting the duration of dependence on parenteral nutrition after neonatal intestinal resection. J. Pediatr. 1997;132:80–4.CrossRefGoogle Scholar
Schalamon, J., Schober, P. H., Gallippi, P.et al.Congenital short bowel: a case study and review of the literature. Eur. J. Pediatr. Surg. 1999;9:248–250.CrossRefGoogle ScholarPubMed
Erez, I., Reish, O.et al.Congenital short bowel and malrotation: clinical presentation and outcome of 6 affected offspring in 3 related families. Eur. J. Pediatr. Surg. 2001;11:331–4.CrossRefGoogle Scholar
Kern, I. B., Leece, A., Bohane, T.Congenital short gut, malrotation and dysmotility of the small bowel. J. Pediatr. Gastroenterol. Nutr. 1990;11:411–5.CrossRefGoogle ScholarPubMed
Finaly, R., Cohen, Z., Mares, A. J.Near total intestinal aganglionosis with extreme short-bowel syndrome – a difficult surgical dilemma. Eur. J. Ped. Surg. 1999;9:253–5.CrossRefGoogle ScholarPubMed
Touloukian, R. J., Walker-Smith, G. J. K.Normal intestinal length in preterm infants. J. Pediatr. Surg. 1983;18:720–3.CrossRefGoogle ScholarPubMed
Siebert, J. R.Small intestinal length in infants and children. Am. J. Dis. Child. 1980;134:593–5.Google ScholarPubMed
Urban, E., Weser, E. Intestinal adaptation to bowel resection. In Stollerman, G. H., ed. Advances in Internal Medicine, Vol 26. Chicago, IL: Year Book Medical Publishers;1980:265–91.Google Scholar
Jeppessen, P. B., Mortensen, P. B.Colonic digestion and absorption of energy from carbohydrates and medium chain fat in small bowel failure. J. Parenter. Enteral Nutr. 1999;23:S101–5.CrossRefGoogle Scholar
Nordgaard, I.What's new in the role of the colon as a digestive organ in patients with short bowel syndrome. Nutrition 1998;14:468–9.Google ScholarPubMed
Nordgaard, I.The colon as a digestive organ. The importance of colonic support for energy absorption as small bowel failure proceeds. Dan. Med. Bull. 1998;45:135–56.Google ScholarPubMed
Daview, B. W., Abel, G., Puntis, J. W.et al.Limited ileal resection in infancy: the long term consequences. J. Ped. Surg. 1999;34:583–7.CrossRefGoogle Scholar
Valman, H. B., Roberts, P. D.Vitamin B12 absorption after resection of ileum in childhood. Arch. Dis. Child. 1974;49:171–3.CrossRefGoogle ScholarPubMed
Sondheimer, J. M., Asturias, E., Cadnapapornchai, M.Infection and cholestasis in neonates with intestinal resection and long term parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 1998;27:131–7.CrossRefGoogle Scholar
Nightengale, J. M.Management of patients with short bowel. Nutrition 1999;15:633–7.CrossRefGoogle Scholar
Valman, H. B., Oberholzer, V. G., Palmer, T.Hyperoxaluria after resection of ileum in childhood. Arch. Dis. Child. 1974;49:171–3.CrossRefGoogle ScholarPubMed
Nightengale, J. M., Lennard-Jones, J. E., Gertner, D. J.et al.Colon preservation reduces the need for parenteral therapy, increases the incidence of renal stones, but does not change the high prevelance of gall stones in patients with a short gut. Gut 1992;33:1493–7.CrossRefGoogle Scholar
Jeppessen, P. B., Mortensen, P. B.Enhancing bowel adaptation in short bowel syndrome. Curr. Gastroenterol. Rep. 2002;4:338–47.CrossRefGoogle Scholar
Vanderhoof, J. A.Invited review: Short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 1992;14:359.CrossRefGoogle Scholar
Williamson, R. C. N.Intestinal adaptation: Part I. Structural function and cytokinetic changes. Part 2: Mechanisms of control. N. Engl. J. Med. 1978;298:1393–402, 1444–50.CrossRefGoogle Scholar
Johnson, L. R., Copeland, E. M., Dudrick, S. J.et al.Structural and hormonal alterations in the gastrointestinal tract of parenterally fed rats. Gastroenterology 1975;68:1177–83.Google ScholarPubMed
Hughes, C. A., Dowling, R. H.Speed of onset of adaptive mucosal hypoplasia and hypofunction in the intestine of parenterally fed rats. Clin. Sci. 1980;59:317–27.CrossRefGoogle ScholarPubMed
Stern, L. E., Falcone, R. A., Kemp, C. J.et al.Effect of massive small bowel resection on Bas/Bcl-w ratio and enterocyte apoptosis. J. Gastroint. Surg. 2000;4:93–100.CrossRefGoogle Scholar
Altmann, G. G.Influence of bile acid and pancreatic secretion on the size of the intestinal villi in the rat. Am. J. Anat. 1971;132:167–78.CrossRefGoogle Scholar
Hughes, C. A., Bates, T., Dowling, R. H.Cholecystokinin and secretin prevent the intestinal mucosal hypoplasia of total parenteral nutrition in the dog. Gastroenterology 1978;75:34–41.Google ScholarPubMed
Feldman, E. J., Dowling, R. H., McNaughton, R. J.Effects of oral vs intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology 1976;70:712–9.Google Scholar
Adrian, T. E., Thompson, J. S., Quigley, E. M.Time course of adaptive regulatory peptide changes after massive small bowel resection in the dog. Dig. Dis. Sci. 1996;41:1194–203.CrossRefGoogle ScholarPubMed
Bloom, S. R., Polak, J. M.The hormonal pattern of intestinal adaptation. A major role for enteroglucagon. Scan. J. Gastroenterol. 1982;17:91–103.Google Scholar
Sagor, G. R., Almukhtar, M. Y. T., Ghatei, M. A.et al.The effect of altered luminal nutrition on cellular proliferation and plasma concentrations of enteroglucagon and gastrin after small bowel resection in the rat. Br. J. Surg. 1982;69:14–18.CrossRefGoogle ScholarPubMed
Holst, J. J., Sorensen, T. I. A., Andersen, A. N.et al.Plasma enteroglucagon after jejunoileal bypass with 3:1 or 1:3 jejunoileal ratio. Scand. J. Gastroenterol. 1979;14:205.CrossRefGoogle ScholarPubMed
Fuller, P. J., Beveridge, D. J., Taylor, R. G.Ileal proglucagon gene expression in the rat: Characterization in intestinal adaptation using in situ hybridization. Gastroenterology 1993;104:459–64.CrossRefGoogle ScholarPubMed
Gregor, M., Stallmach, A., Menge, H.et al.The role of gut glucagon-like immunoreactants in the control of gastrointestinal epithelial cell renewal. Digestion 1990;46 (Suppl.):59–66.CrossRefGoogle ScholarPubMed
Vanderhoof, J. A.Short bowel syndrome in children and small intestinal transplantation. Ped. Clin. N. Am. 1996;43:533.CrossRefGoogle ScholarPubMed
Nightengale, J. M., Kamm, M. A., Sjip, J. R.et al.Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the colonic brake to gastric emptying. Gut 1996;39:267–72.CrossRefGoogle Scholar
Litvak, D. A., Iseki, H., Evers, B. M.et al.Characterization of two novel proabsorptive peptide YY analogues, BIM-4373D and BIM-43004C. Dig. Dis. Sci. 1999;44:643–8.CrossRefGoogle Scholar
Bohane, T. D., Haka-Iksa, K., Biggar, W. D.et al.A clinical study of young infants after small intestinal resection. J. Pediatr. 1979;94:522–8.CrossRefGoogle ScholarPubMed
Morin, C. L., Ling, V.Effects of pentagastrin on the rat small intestine after resection. Gastroenterology 1978;75:224.Google ScholarPubMed
Thompson, J. S., Harty, R. F.Post resection hypergastrinemia correlates with malabsorption but not adaptation. J. Invest. Surg. 1994;7:469–76.CrossRefGoogle Scholar
Shulman, D. I., Ju, C. S., Duckett, G.et al.Effects of short term growth hormone therapy in rats undergoing 75% small intestinal resection. J. Pediatr. Gastroenterol. Nutr. 1992;14:3–11.CrossRefGoogle ScholarPubMed
Velasco, B., Lassaletta, L., Gracia, R.et al.Intestinal lengthening and growth hormone in extreme short-bowel syndrome: a case report. J. Pediatr. Surg. 1999;34:1423–4.CrossRefGoogle ScholarPubMed
Waitzberg, D. L., Cukier, C., Mucerrino, D. R.et al.Small bowel adaptation with growth hormone and glutamine after massive resection of rat's small bowel. Nutr. Hospitalaria 1999;14:81–90.Google Scholar
Ling, L. I., Irving, M.The effectiveness of growth hormone, glutamine and low fat diet containing high carbohydrate on the enhancement of the function of remnant intestine among patients with short bowel syndrome: a review of published trials. Clin. Nutr. 2001;20:199–204.CrossRefGoogle Scholar
Scolapio, J. S., Camillari, M., Fleming, C. R.et al.Effect of growth hormone, glutamine and diet on adaptation in short bowel syndrome: a randomized, controlled study. Gastroenterology 1997;113:1074–81.CrossRefGoogle ScholarPubMed
Barksdale, E. M. Jr., Koehler, A. N., Yaworski, J. A.et al.IGF-1 and IGF-3 indices of intestinal failure in children. J. Pediatr. Surg. 1999;34:655–61.CrossRefGoogle Scholar
Vanderhoof, J. A., McCusker, R. H., Clark, R.et al.Truncated and native insulin like growth factor-1 enhance mucosal adaptation after jejunoileal resection. Gastroenterology 1992;102:1949–56.CrossRefGoogle ScholarPubMed
Lund, P. K.Molecular basis of intestinal adaptation: the role of the insulin like growth factor system. Ann. N. Y. Acad. Sci. 1998;859:18–36.CrossRefGoogle ScholarPubMed
Jeppessen, P. B., Hartmann, B., Thulesen, J.et al.Glucagon-like peptide, released from ileum in response to meals is reduced in short bowel syndrome. Gut 1999;45:478–9.Google Scholar
Litvak, D., Hellmick, M. R., Evers, B. M.et al.Glucagon-like peptide 2 is a potent growth factor for small intestine and colon. J. Gastrointest. Surg. 1998;2:146–50.CrossRefGoogle ScholarPubMed
Thompson, J. S.Epidermal growth factor and the short bowel syndrome. J. Parenter. Enteral Nutr. 1999;23:S113–16.CrossRefGoogle ScholarPubMed
Feldman, E. J., Aures, D., Grossman, M. I.Epidermal growth factor stimulates ornithine decarboxylase activity in the digestive tract of the mouse. Proc. Soc. Exp. Biol. Med. 1978;159:400–2.CrossRefGoogle ScholarPubMed
O'Loughlin, E. O., Winter, M., Shin, A.et al.Structural and functional adaptation following jejunal resection in rabbits: effect of epidermal growth factor. Gastroenterology 1994;107:87–93.CrossRefGoogle ScholarPubMed
Johnson, W. F., DiPalma, C. R., Ziegler, T. R.et al.Keratinocyte growth factor enhances early gut adaptation in a rat model of short bowel syndrome. Vet. Surg. 2000;29:17–27.CrossRefGoogle Scholar
Liu, Q., Su, X. X., Shindel, Z. X.The trophic effects of IL-11 in rats with experimental short bowel syndrome. J. Pediatr. Surg. 1996;31:1047–51.CrossRefGoogle ScholarPubMed
Kollman, K. A., Lien, E. L., Vanderhoof, J. A.Dietary lipids influence intestinal adaptation after massive small bowel resection. J. Pediatr. Gastroenterol. Nutr. 1999;28:41–5.CrossRefGoogle Scholar
Vanderhoof, J. A., Park, J. H. Y., Herrington, M. K.The effects of dietary menhaden oil on mucosal adaptation after small bowel resection in rats. Gastroenterology 1994;106:94–9.CrossRefGoogle ScholarPubMed
Alavi, K., Kato, Y., Yu, D.et al.Enteral glutamine does not enhance the effects of hepatocyte growth factor in short bowel syndrome. J. Pediatr. Surg. 1998;33:1666–9.CrossRefGoogle Scholar
Wiren, M. E., Permert, J., Skullman, S. P.et al.No difference in mucosal adaptive growth one week after intestinal resection in rats given enteral glutamine or deprived of glutamine. Eur. J. Surg. 1996;162:489–98.Google ScholarPubMed
Wiren, M., Adrian, T. E., Amelo, U.et al.Early gastrointestinal regulatory peptide response to intestinal resection in the rat is stimulated by enteral glutamine supplementation. Dig. Surg. 1999;16:197–203.CrossRefGoogle ScholarPubMed
Yang, H., Larsson, J., Permert, J.et al.No effect of bolus glutamine supplementation on the post resectional adaptation of small bowel mucosa in rats receiving chow ad libitum. Dig. Surg. 2000;17:256–60.CrossRefGoogle Scholar
Roth, J. A., Frankel, W. L., Zhang, W.et al.Pectin improves colonic function in rat short bowel syndrome. J. Surg. Res. 1995;58:240–6.CrossRefGoogle ScholarPubMed
Tappenden, K. A., Thompson, A. B., Wild, G. E.et al.Short chain fatty acid supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats. Gastroenterology 1997;112:792–802.CrossRefGoogle ScholarPubMed
Tappenden, K. A., Thompson, A. B., Wild, G. E.et al.Short chain fatty acids increase proglucagon and ornithine decarboxylase mRNA after intestinal resection in the rat. J. Parenter. Enteral Nutr. 1996;20:357–62.CrossRefGoogle Scholar
Kawaguchi, A. L., Dunn, J. C., Lam, M.et al.Glucose uptake in dilated small intestine. J. Pediatr. Surg. 1998;33:1670–3.CrossRefGoogle ScholarPubMed
Ovesen, L., Chu, R., Howard, L.The influence of dietary fat on jejunostomy output in patients with severe short bowel syndrome. Am. J. Clin. Nutr. 1983;38:270–7.CrossRefGoogle ScholarPubMed
Sandstrom, B., Davidsson, L., Bosaeus, I., et al.Selenium status and absorption of zinc (65Zn), selenium (75 Se) and manganese (54Mn) in patients with short bowel syndrome. Eur. J. Clin. Nutr. 1990;44:697–703.Google Scholar
Ladefoged, K.Intestinal and renal loss of infused minerals in patients with severe short bowel syndrome. Am. J. Clin Nutr. 1982;36:59–67.CrossRefGoogle ScholarPubMed
Parker, P., Stroop, S., Greene, H.A controlled comparison of continuous versus intermittent feeding in the treatment of infants with intestinal disease. J. Pediatr. 1981;99:360–4.CrossRefGoogle ScholarPubMed
Jeppessen, P. B., Hay, C. E., Mortensen, P. B.Differences in essential fatty acid requirements by enteral and parenteral routes of administration in patients with fat malabsorption. Am. J. Clin. Nutr. 1999;70:78–84.CrossRefGoogle Scholar
Heyman, M., Grasset, E., Ducroc, R.et al.Antigen absorption by the jejunal epithelium of children with cows milk allergy. Ped. Res. 1988;24:197–202.CrossRefGoogle Scholar
D'Antiga, L., Dhawan, A., Davenport, M.et al.Intestinal absorption and permeability in paediatric short bowel syndrome: a pilot study. J. Pediatr. Gastroenterol. Nutr. 1999;29:588–93.CrossRefGoogle ScholarPubMed
Burrin, D. G., Stoll, B.Key nutrients and growth factors for the neonatal gastrointestinal tract. Clin. Perinatol. 2002;29:65–96.CrossRefGoogle ScholarPubMed
Levy, E., Firleux, P., Sandrucci, S.et al.Continuous enteral nutrition during the early adaptive stage of the short bowel syndrome. Br. J. Surg. 1988;75:549–53.CrossRefGoogle ScholarPubMed
Engles, L. G. J., Hamer, C. J. A., Tongeren, J. H. M.Iron, zinc and copper balance in short bowel patients on oral nutrition. Am. J. Clin. Nutr. 1984;40:1038–41.CrossRefGoogle Scholar
Latimer, J. S., McClain, C. J., Sharp, H. L.Clinical zinc deficiency during zinc-supplemented parenteral nutrition. J. Pediatr. 1980;97:434–7.CrossRefGoogle ScholarPubMed
Linscheid, T. R., Tarnowski, K. J., Rasnake, L. K.et al.Behavioral therapy for food refusal in a child with short bowel syndrome. J. Pediatr. Psychol. 1987;12:451–9.CrossRefGoogle Scholar
Scheel, P. J. Jr, Whelton, A., Rossiter, K.et al.Cholestyramine induced hyperchloremic metabolic acidosis. J. Clin. Pharm. 1992;32:536–8.CrossRefGoogle ScholarPubMed
Jeppessen, P. B., Staun, M., Tjellesen, L.et al.Effect of intravenous ranitidine and omeprazole on intestinal absorption of water, sodium and macronutrients in patients with intestinal resection. Gut 1998;43:763–9.CrossRefGoogle Scholar
Lichtman, S. N., Keku, J., Clark, R. L.et al.Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology 1991;13:766–72.CrossRefGoogle ScholarPubMed
Hardt, P. D., Helfrich, C., Klauke, T.et al.Liquid pancreatic enzyme therapy for a patient with short bowel syndrome and chronic pancreatitis in a complicated case of Crohn's disease. Eur. J. Med. Res. 1999;4:345–6.Google Scholar
Gruy-Kapral, C., Little, K. H., Fordtran, J. S., et al.Conjugated bile acid replacement therapy for short bowel syndrome. Gastroenterology 1999;116:15–21.CrossRefGoogle ScholarPubMed
Heydorn, S., Jeppessen, P. B., Mortensen, P. B.Bile acid replacement therapy with cholylsarcosine for short bowel syndrome. Scand. J. Gastroenterol. 1999;34:818–23.Google ScholarPubMed
Ohlbaum, P., Galperine, R. I., Demarquez, J.et al.Use of a long acting somatostatin analogue (SMS201–995) in controlling a significant ileal output in a 5 year old child. J. Pediatr. Gastroenterol. Nutr. 1987;6:466–70.CrossRefGoogle Scholar
Taylor, S. F., Sondheimer, J. M., Sokol, R. J.et al.Noninfectious colitis associated with short gut syndrome in infants. J. Pediatr. 1991;119:24–8.CrossRefGoogle ScholarPubMed
Vanderhoof, J. A., Young, R. J., Murray, N.et al.Treatment strategies for small bowel bacterial overgrowth in short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 1998;27:155–60.CrossRefGoogle ScholarPubMed
Sondheimer, J. M., Fidanza, S., Setchell, K. D. R.Intestinal function in short bowel syndrome (short bowel syndrome): effect of Lactobacillus casei GG. J. Pediatr. Gastroenterol. Nutr. 1999;29:495. (Abstr.).CrossRefGoogle Scholar
Bongaerts, G., Bakkeren, J., Severijnen, R.Lacobacilli and acidosis in children with short small bowel. J. Pediatr. Gastroenterol. Nutr. 2000;30:288–93.CrossRefGoogle Scholar
Lessin, M. S., Schwartz, D. L., Wesselhoeft, C. W. Jr.Multiple spontaneous small bowel anastomoses in premature infants with multi segmental necrotizing enterocolitis. J. Pediatr. Surg. 2000;35:170–2.CrossRefGoogle Scholar
Sapin, E., Carricaburu, E., Boissieu, D.et al.Conservative intestinal surgery to avoid short bowel syndrome in multiple intestinal atresias and necrotizing enterocolitis: 6 cases treated by multiple anastomoses and Santulli type enterostomy. Eur. J. Ped. Surg. 1999;9:24–8.CrossRefGoogle ScholarPubMed
Waang, K. L., Heller, K.Surgical techniques in short bowel syndrome. Prog. Ped. Surg. 1990;25:81.Google Scholar
Warner, B., Chaet, M. S.Nontransplant surgical options for management of the short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 1993;17:1.CrossRefGoogle ScholarPubMed
Thompson, J. S., Langnas, A. N., Pinch, L. W.et al.Surgical approach to short bowel syndrome. Experience in a population of 160 patients. Ann. Surg. 1995;222:600–5.CrossRefGoogle Scholar
Al-Harbi, K., Walton, J. M., Gardner, V.et al.Mucous fistula refeeding in neonates with short-bowel syndrome. J. Pediatr. Surg. 1999;34:1100–3.CrossRefGoogle ScholarPubMed
Simmons, M., Georgeson, K. E.The effect of gestational age at birth on morbidity in patients with gastroschisis. J. Pediatr. Surg. 1996;31:1060–2.CrossRefGoogle ScholarPubMed
Dykes, E. H.Prenatal diagnosis and management of abdominal wall defects. Semin. Ped. Surg. 1996;5:90–4.Google ScholarPubMed
Garcia, S. B., Kawasaky, M. C., Silva, J. C.et al.Intrinsic myenteric denervation: a new model to increase the intestinal absorptive surface in short-bowel syndrome. J. Surg. Res. 1999;85:200–3.CrossRefGoogle ScholarPubMed
Bianchi, A.Experience with longitudinal intestinal lengthening and tailoring. Eur. J. Surg. 1999;9:256–9.CrossRefGoogle ScholarPubMed
Waag, K. L., Hosie, S., Wersel, L.What do children look like after longitudinal intestinal lengthening?Eur. J. Surg. 1999;9:260–2.CrossRefGoogle ScholarPubMed
Jan, D., Michel, J. L., Goulet, O.et al.Up-to-date evaluation of small bowel transplantation in children with intestinal failure. J. Pediatr. Surg. 1999;34:841–3.CrossRefGoogle Scholar
Vanderhoof, J. A.Short bowel syndrome in children and small intestinal transplantation. Ped. Clin. N. Am. 1996;43:533.CrossRefGoogle ScholarPubMed
Gotrand, F., Michaud, L., Bonnevalle, M.et al.Favorable nutritional outcome after isolated liver transplant for liver failure in a child with short bowel syndrome. Transplant 1999;67:632–4.CrossRefGoogle Scholar
Kelly, D.Transplantation: new beginnings, new horizons. J. Pediatr. Gastroenterol. Nutr. 2002;34:S51–3.CrossRefGoogle ScholarPubMed
Park, B. K.Intestinal transplantation in pediatric patients. Prog. Trans. 2002;12:97–113.CrossRefGoogle ScholarPubMed
Sokal, E. M., Cleghorn, G., Goulet, O.et al.Liver and intestinal transplantation in children: working group report of the First World Congress of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2002;35:S159–72.CrossRefGoogle Scholar
Wilmore, D. W.Factors correlating with a successful outcome following extensive intestinal resection in newborn infants. J. Pediatr. 1972;80:88.CrossRefGoogle ScholarPubMed
Galea, M. H., Holliday, H., Carachi, R.et al.Short bowel syndrome; a collective review. J. Pediatr. Surg. 1992;27:592.CrossRefGoogle ScholarPubMed
Mayr, J. M., Schober, P. G. H., Werssensteiner, U.et al.Morbidity and mortality of the short bowel syndrome. Eur. J. Ped. Surg. 1999;9:231–3.CrossRefGoogle ScholarPubMed
Iacono, G., Carroccio, A., Montalto, G.et al.Extreme short bowel syndrome: a case for reviewing the guidelines for predicting survival. J. Pediatr. Gastroenterol. Nutr. 1993;16:216.CrossRefGoogle ScholarPubMed
Andorsky, D. J., Lund, D. P., Lillehei, C. W.et al.Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J. Pediatr. 2001;139:5–7.CrossRefGoogle ScholarPubMed
Kaufman, S. S., Loseke, C. A., Lupo, J. V.et al.Influence of bacterial overgrowth and intestinal inflammation on duration of parenteral nutrition in children with short bowel syndrome. J. Pediatr. 1997;131:356–61.CrossRefGoogle ScholarPubMed
Day, A. S., Abbot, G. D.D-lactic acidosis in short bowel syndrome. N. Zealand Med. J. 1999;112:277–8.Google ScholarPubMed
Sondheimer, J. M., Sokol, R. J., Narkewicz, M. R.et al.Anastomotic ulceration: a late complication of ileocolonic anastomosis. J. Pediatr. 1995;127:225–30.CrossRefGoogle ScholarPubMed
Suita, S., Masumoto, K., Yamanouchi, T.et al.Complications in neonates with short bowel syndrome and long term parenteral nutrition. J. Parenter. Enteral Nutr. 1999;23:S106–9.CrossRefGoogle ScholarPubMed
Sokol, R. J.Total parenteral nutrition related liver disease. Acta Paed. Sin. 1997;328:418–28.Google Scholar
Meehan, J. J., Georgeson, K. E.Prevention of liver failure in parenteral nutrition-dependent children with short bowel syndrome. J. Pediatr. Surg. 1997;32:473–5.CrossRefGoogle ScholarPubMed
Teitelbaum, D. H., Han-Markey, T., Drongowski, R. A.et al.Use of cholecystokinin to prevent the development of parenteral nutrition associated cholestasis. J. Parenter. Enteral Nutr. 1997;21:100–3.CrossRefGoogle ScholarPubMed
Rintala, R. J., Lindahl, H. G., Pohjavuori, M.Total parenteral nutrition associated cholestasis in surgical neonates may be reversed by intravenous cholecystokinin: a preliminary report. J. Pediatr. Surg. 1995;31:827–30.CrossRefGoogle Scholar
Brown, M. R., Thunberg, B. J., Golub, L.et al.Decreased cholestasis with enteral instead of intravenous protein in the very low birth weight infant. J. Pediatr. Gastroenterol. Nutr. 1989;9:21–7.CrossRefGoogle ScholarPubMed
Lichtman, S. L., Wang, J., Schwab, J.et al.Comparison of peptidoglycan polysaccharide and lipopolysaccharide stimulation of Kupffer cells to produce tumor necrosis factor and IL-1. Hepatology 1994;19:1013–22.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Neonatal short bowel syndrome
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.035
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Neonatal short bowel syndrome
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.035
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Neonatal short bowel syndrome
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.035
Available formats
×