Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-05T22:01:13.345Z Has data issue: false hasContentIssue false

23 - Gammaherpesviruses entry and early events during infection

from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Bala Chandran
Affiliation:
Rosalind Franklin University, North Chicago, IL, USA
Lindsey Hutt-Fletcher
Affiliation:
Louisiana State University, Shreveport, LA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

The two human gammaherpesviruses, Epstein–Barr virus (EBV), a gamma 1 lymphocryptovirus and Kaposi's sarcoma associated virus (KSHV), a gamma 2 rhadinovirus, have many features in common. They share an architecture that is typical of all members of the herpesvirus family, they share an ability to establish latency in lymphocytes, and they are both initiators or potentiators of human tumors. For the virologist some of the challenges they present are the same, in particular the relative dearth of fully permissive, easily manipulated cell culture systems for study. In this respect the many years of work on EBV provided an initial roadmap to accelerate study of KSHV. However, the strategies that the viruses use for cell infection and replication provide not only interesting reflections of common ancestry, but also interesting contrasts in adaptation to unique cellular niches in their human hosts.

Target cells for EBV

EBV can infect a variety of cell types under different circumstances, including T-cells, NK -cells, smooth muscle cells and possibly follicular dendritic cells (Rickinson and Kieff, 2001). However, B-lymphocytes and epithelial cells are its two major targets. B-cells are the primary reservoir of virus in persistently infected individuals and it is likely, although not certain, that the first cell infected in vivo is an epithelial cell. There has been some controversy over whether EBV normally infects epithelial cells during the courses of a primary infection or whether the virus infects epithelial cells only in the context of oncogenesis (nasopharyngeal carcinoma) or extreme immune dysfunction (oral hairy leukoplakia).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 360 - 378
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akula, S. M., Pramod, N. P., Wang, F. Z., and Chandran, B. (2001a). Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology, 284(2), 235–249.CrossRefGoogle Scholar
Akula, S. M., Wang, F. Z., Vieira, J., and Chandran, B. (2001b). Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology, 282(2), 245–255.CrossRefGoogle Scholar
Akula, S. M., Pramod, N. P., Wang, F. Z., and Chandran, B. (2002). Integrin a3b1 (CD49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) entry into target cells. Cell, 108, 407–419.CrossRefGoogle Scholar
Akula, S. M., Naranatt, P. P., Walia, N. S., Wang, F. Z., Fegley, B., and Chandran, B. (2003). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J. Virol., 77(14), 7978–7990.CrossRefGoogle ScholarPubMed
Alfieri, C., Birkenbach, M., and Kieff, E. (1991). Early events in Epstein–Barr virus infection of human B lymphocytes. Virology, 181, 595–608.CrossRefGoogle ScholarPubMed
Anagnostopoulos, I., Hummel, M., Kreschel, C., and Stein, H. (1995). Morphology, immunophenotype and distribution of latently and/or productively Epstein–Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual individual infection route of Epstein–Barr virus. Blood, 5, 744–750.Google Scholar
Antman, K. and Chang, Y. (2000). Kaposi's sarcoma. N. Engl. J. Med., 342(14), 1027–1038.CrossRefGoogle ScholarPubMed
Baer, R., Bankier, A. T., Biggin, M. D.et al. (1984). DNA sequence and expression of the B95–8 Epstein–Barr virus genome. Nature, 310, 207–211.CrossRefGoogle ScholarPubMed
Baghian, A., Luftig, M., Black, J. B.et al. (2000). Glycoprotein B of human herpesvirus 8 is a component of the virion in a cleaved form composed of amino- and carboxyl-terminal fragments. Virology, 269(1), 18–25.CrossRefGoogle Scholar
Ballestas, M. E., Chatis, P. A., and Kaye, K. M. (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 282, 641–644.CrossRefGoogle Scholar
Bayliss, G. J. and Wolf, H. (1980). Epstein–Barr virus induced cell fusion. Nature, 287, 164–165.CrossRefGoogle ScholarPubMed
Bechtel, J. T., Liang, Y., Hvidding, J., and Ganem, D. (2003). Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 77(11), 6474–6481.CrossRefGoogle ScholarPubMed
Beisel, C., Tanner, J., Matsuo, T.et al. (1985). Two major outer envelope glycoproteins of Epstein–Barr virus are encoded by the same gene. J. Virol., 54, 665–674.Google ScholarPubMed
Beisser, P. S., Versijl, D., Gruijthuijsen, Y. K.et al. (2005). The Epstein-Barr virus BILF 1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J. Virol., 79, 441–449.CrossRefGoogle Scholar
Birkmann, A., Mahr, K., Ensser, A.et al. (2001). Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J. Virol., 75(23), 11583–11593.CrossRefGoogle ScholarPubMed
Blackbourn, D. J., Lennette, E., Klencke, B.et al. (2000). The restricted cellular host range of human herpesvirus 8. AIDS, 14(9), 1123–1133.CrossRefGoogle ScholarPubMed
Borza, C. and Hutt-Fletcher, L. M. (1998). Epstein–Barr virus recombinant lacking expression of glycoprotein gp150 infects B cells normally but is enhanced for infection of the epithelial line SVKCR 2. J. Virol., 72, 7577–7582.Google Scholar
Borza, C. M. and Hutt-Fletcher, L. M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nature Med., 8, 594–599.CrossRefGoogle Scholar
Borza, C. M., Morgan, A. J., Turk, S. M., and Hutt-Fletcher, L. M. (2004). Use of gHgL for attachment of Epstein–Barr virus to epithelial cells compromises infection. J. Virol., 78, 5007–5014.CrossRefGoogle ScholarPubMed
Calderwood, D. A., Shattil, S. J., and Ginsberg, M. H. (2000). Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem., 275(30), 22607–22610.CrossRefGoogle ScholarPubMed
Chandran, B., Bloomer, C., Chan, S. R., Zhu, L., Goldstein, E., and Horvat, R. (1998). Human herpesvirus-8 ORF K8.1 gene encodes immunogenic glycoproteins generated by spliced transcripts. Virology, 249(1), 140–149.CrossRefGoogle ScholarPubMed
Ciufo, D. M., Cannon, J. S., Poole, L. J.et al. (2001). Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol., 75(12), 5614–5626.CrossRefGoogle ScholarPubMed
Colman, P. M. and Lawrence, M. C. (2003). The structural biology of type 1 viral membrane fusion. Nat. Rev. Mol. Cell Biol., 4, 309–319.CrossRefGoogle Scholar
D'Addario, M. D., Libermann, T. A., Xu, J., Ahmad, A., and Menezes, J. (2001). Epstein–Barr virus and its glycoprotein-350 upregulate IL -6 in human B-lymphocytes via CD 21, involving activation of NF -kB and different signaling pathways. J. Mol. Biol., 308, 501–504.Google Scholar
Dezube, B. J., Zambela, M., Sage, D. R., Wang, J. F., and Fingeroth, J. D. (2002). Characterization of Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 infection of human vascular endothelial cells: early events. Blood, 100(3), 888–896.CrossRefGoogle ScholarPubMed
Dourmishev, L. A., Dourmishev, A. L., Palmeri, D., Schwartz, R. A., and Lukac, D. M. (2003). Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev., 67(2), 175–212.CrossRefGoogle ScholarPubMed
Farina, A., Santarello, R., Gonnella, R.et al. (2000). The BFRF 1 gene of Epstein–Barr virus encodes a novel protein. J. Virol., 74, 3235–3244.CrossRefGoogle Scholar
Farina, A., Cardinale, G., Santarella, R.et al. (2004). Intracellular localization of the Epstein–Barr virus BFRF 1 gene product in lymphoid cell lines and oral hairy leukoplakis lesions. J. Med. Virol., 72, 102–111.CrossRefGoogle Scholar
Farina, A., Feederle, R., Raffa, S.et al. (2005). BFRF1 of Epstein–Barr virus is essential fro efficient primary envelopment and egress. J. Virol., 79, 3703–3712.CrossRefGoogle Scholar
Feral, C. C., Nishiya, N., Fenczik, C. A., Stuhlmann, H., Slepak, M., and Ginsberg, M. H. (2005). CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl Acad. Sci. USA, 102, 355–360.CrossRefGoogle ScholarPubMed
Fenczik, C. A., Zent, R., Dellos, M.et al. (2001). Distinct domains of CD 98hc regulate integrins and amino acid transport. J. Biol. Chem., 276, 8746–8752.CrossRefGoogle ScholarPubMed
Fingeroth, J. D., Weis, J. J., Tedder, T. F., Strominger, J. L., Biro, P. A., and Fearon, D. T. (1984). Epstein–Barr virus receptor of human B lymphocytes is the C3d complement CR 2. Proc. Natl Acad. Sci.USA, 81, 4510–4516.CrossRefGoogle Scholar
Fingeroth, J. D., Diamond, M. E., Sage, D. R., Hayman, J., and Yates, J. L. (1999). CD-21 dependent infection of an epithelial cell line, 293, by Epstein–Barr virus. J. Virol., 73, 2115–2125.Google Scholar
Frade, R., Barel, M., Ehlin-Henricksson, B., and Klein, G. (1985). gp140 the C3d receptor of human B lymphocytes is also the Epstein–Barr virus receptor. Proc. Natl Acad. Sci.USA, 82, 1490–1493.CrossRefGoogle Scholar
Frangou, P., Buettner, M., and Niedobitek, G. (2005). Epstein–Barr virus (EBV) infection in epithelial cells in vivo; rare detection of EBV replication in tongue mucosa but not in salivary glands. J. Infect. Dis., 191, 238–242.CrossRefGoogle ScholarPubMed
Gan, Y., Chodosh, J., Morgan, A., and Sixbey, J. W. (1997). Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein–Barr virus. J. Virol., 71, 519–526.Google ScholarPubMed
Ganem, D. (1998). Human herpesvirus 8 and its role in the genesis of Kaposi's sarcoma. Curr. Clin. Top. Infect. Dis., 18, 237–251.Google ScholarPubMed
Giancotti, F. G. (2000). Complexity and specificity of integrin signalling. Nat. Cell Biol., 2(1), E13–E14.CrossRefGoogle ScholarPubMed
Giancotti, F. G. and Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.CrossRefGoogle ScholarPubMed
Gong, M. and Kieff, E. (1990). Intracellular trafficking of two major Epstein–Barr virus glycoproteins, gp350/220 and gp110. J. Virol., 64, 1507–1516.Google ScholarPubMed
Gong, M., Ooka, T., Matsuo, T., and Kieff, E. (1987). Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB. J. Virol., 61, 499–508.Google ScholarPubMed
Gonnella, R., Farina, A., Santarella, R.et al. (2005). Characterization and intracellular localization of the Epstein-Barr virus protein BFLF 2: interactions with BFRF 1 and with the nuclear lamina. J. Virol., 49, 3713–3237.CrossRefGoogle Scholar
Gordon, J. S., Walker, L., Guy, G., Brown, G., Rowe, M., and Rickinson, A. (1986). Control of human B-lymphocyte transformation. II. Transforming Epstein-Barr virus exploits three distinct viral signals to undermine three separate control points in B cell growth. Immunology, 58, 591–595.Google ScholarPubMed
Grundhoff, A. and Ganem, D. (2004). Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Invest., 113, 124–136.CrossRefGoogle ScholarPubMed
Haan, K. M. and Longnecker, R. (2000). Coreceptor restriction within the HLA -DQ locus for Epstein-Barr virus infection. Proc. Natl Acad. Sci.USA, 97, 9252–9257.CrossRefGoogle Scholar
Haan, K. M., Lee, S. K., and Longnecker, R. (2001). Different functional domains in the cytoplasmic tail of glycoprotein gB are involved in Epstein–Barr virus induced membrane fusion. Virology, 290, 106–114.CrossRefGoogle ScholarPubMed
Haddad, R. S. and Hutt-Fletcher, L. M. (1989). Depletion of glycoprotein gp85 from virosomes made with Epstein–Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells. J. Virol., 63, 4998–5005.Google ScholarPubMed
Hall, A. and Nobes, C. D. (2000). Rho GTP ases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Phil. Trans. R. Soc. Lond. B Biol. Sci., 355(1399), 965–970.CrossRefGoogle Scholar
Heineman, T., Gong, M., Sample, J., and Kieff, E. (1988). Identification of the Epstein-Barr virus gp85 gene. J. Virol., 62, 1101–1107.Google ScholarPubMed
Huber, M. T. and Compton, T. (1998). The human cytomegalovirus UL 74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J. Virol., 72, 8191–8197.Google Scholar
Hummel, M. and Kieff, E. (1982). Epstein-Barr virus RNA. VIII. Viral RNA in permissively infected B95–8 cells. J. Virol., 43, 262–272.Google ScholarPubMed
Hummel, M., Thorley-Lawson, D., and Kieff, E. (1984). An Epstein-Barr virus DNA fragment encodes messages for the two major envelope glycoproteins (gp350/300 and gp220/200). J. Virol., 49, 413–417.Google Scholar
Hurley, E. A. and Thorley-Lawson, D. A. (1988). B cell activation and the establishment of Epstein–Barr virus latency. J. Exp. Med., 168, 2059–2075.CrossRefGoogle ScholarPubMed
Hutt-Fletcher, L. M. (2002). Epstein–Barr virus glycoproteins and their roles in virus entry and egress. In Structure–function Relationships of Human Pathogenic Viruses, ed. Holzenburg, A. and Bogner, E.. New York: Kluwer Academic/Plenum.CrossRefGoogle Scholar
Imai, S., Nishikawa, J., and Takada, K. (1998). Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J. Virol., 72, 4371–4378.Google ScholarPubMed
Inoue, N., Winter, J., Lal, R. B., Offermann, M. K., and Koyano, S. (2003). Characterization of entry mechanisms of human herpesvirus 8 by using an Rta-dependent reporter cell line. J. Virol., 77, 8143–8152.CrossRefGoogle ScholarPubMed
Jiang, R., Scott, R. S., and Hutt-Fletcher, L. M. (2006). Epstein–Barr virus shed in saliva is high in B cell tropic gp42. J. Virol., 80, 7281–7283.CrossRefGoogle Scholar
Johannsen, E., Luftig, M., Weicksel, S.et al. (2004). Proteins of purified Epstein–Barr virus. Proc. Natl Acade. Sci. USA, 101, 16286–16291.CrossRefGoogle ScholarPubMed
Kaleeba, J. A. R and Berger, E. A. (2006). Kaposi's Sarcoma–associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science, 311, 1921–1924.CrossRefGoogle ScholarPubMed
Kieff, E. and Rickinson, A. B. (2001). Epstein–Barr virus and its replication. In Fields Virology ed. Knipe, D. M., and Howley, P. M., Vol. 2, pp. 2511–2573. 2 vols. Philadelphia: Lippincott Williams and Wilkins.Google Scholar
Klupp, B. and Mettenleiter, T. C. (1991). Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology, 182, 732–741.CrossRefGoogle ScholarPubMed
Koyano, S., Mar, E. C., Stamey, F. R., and Inoue, N. (2003). Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J. Gen. Virol., 84, 1485–1491.CrossRefGoogle Scholar
Krishnan, H. H., Walia, N. S., Streblow, D. N., Naranatt, P. P., and Chandran, B. (2006). Focal adhesion kinase (FAK) is critical for Kaposi's Sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. J. Virol., 80, 1167–1180.CrossRefGoogle ScholarPubMed
Kurilla, M. G., Heineman, T., Davenport, L. C., Kieff, E., and Hutt-Fletcher, L. M. (1995). A novel Epstein–Barr virus glycoprotein gp150 expressed from the BDLF 3 open reading frame. Virology, 209, 108–121.CrossRefGoogle Scholar
Lagunoff, M., Bechtel, J., Venetsanakos, E.et al. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol., 76(5), 2440–2448.CrossRefGoogle ScholarPubMed
Lake, C. M. and Hutt-Fletcher, L. M. (2000). Epstein–Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J. Virol., 74, 11162–11172.CrossRefGoogle ScholarPubMed
Lake, C. M. and Hutt-Fletcher, L. M. (2004). The Epstein–Barr virus BFRF 1 and BFLF 2 proteins interact and coexpression alters their cellular localization. Virology, 320, 99–106.CrossRefGoogle Scholar
Lambris, J. D., Ganu, V. S., Hirani, S., and Muller-Eberhard, H. J. (1985). Mapping of the C3d receptor (CR2) binding site and a neoantigenic site in the C3d domain of the third component of complement. Proc. Natl Acad. Sci. USA, 82, 4235–4239.CrossRefGoogle Scholar
Lee, S. K. and Longnecker, R. (1997). The Epstein–Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J. Virol., 71, 4092–4097.Google ScholarPubMed
Lemon, S. M., Hutt, L. M., Shaw, J. E., Li, J.-L. H., and Pagano, J. S. (1977). Replication of EBV in epithelial cells during infectious mononucleosis. Nature, 268, 268–270.CrossRefGoogle ScholarPubMed
Li, Q. X., Young, L. S., Niedobitek, G.et al. (1992). Epstein–Barr virus infection and replication in a human epithelial system. Nature, 356, 347–350.CrossRefGoogle Scholar
Li, Q. X., Turk, S. M., and Hutt-Fletcher, L. M. (1995). The Epstein–Barr virus (EBV) BZLF 2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J. Virol., 69, 3987–3994.Google Scholar
Li, Q. X., Spriggs, M. K., Kovats, S.et al. (1997). Epstein–Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol., 71(6), 4657–4662.Google ScholarPubMed
Liao, W., Tang, Y., Kuo, Y. L., Liu, B. Y., Xu, C. J., and Giam, C. Z. (2003). Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA -binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J. Virol., 77(17), 9399–9411.CrossRefGoogle ScholarPubMed
Lo, P., Yu, X., Atanasov, I., Chandran, B., and Zhou, Z. H. (2003). Three-dimensional localization of pORF65 in Kaposi's sarcoma-associated herpesvirus capsid. J. Virol., 77(7), 4291–4297.CrossRefGoogle ScholarPubMed
McShane, M. P. and Longnecker, R. (2004). Cell-surface expression of a mutated Epstein–Barr virus glycoprotein B allows fusion independent of other viral glycoproteins. Proc. Natl Acad. Sci. USA, 101, 17474–17479.CrossRefGoogle Scholar
Mackett, M., Conway, M. J., Arrand, J. R., Haddad, R. S., and Hutt-Fletcher, L. M. (1990). Characterization and expression of a glycoprotein encoded by the Epstein–Barr virus BamHI 1 fragment. J. Virol., 64, 2545–2552.Google Scholar
Martin, D. R., Yuryev, A., Kalli, K. R., Fearon, D. T., and Ahearn, J. M. (1991). Determination of the structural basis for selective binding of Epstein-Barr virus to human complement receptor type 2. J. Exp. Med., 174, 1299–1311.CrossRefGoogle ScholarPubMed
Martin, D. R., Marlowe, R. L., and Ahearn, J. M. (1994). Determination of the role for CD 21 during Epstein–Barr virus infection of B lymphoblastoid cells. J. Virol., 68, 4716–4726.Google Scholar
Miller, N. and Hutt-Fletcher, L. M. (1988). A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein–Barr virus. J. Virol., 62, 2366–2372.Google Scholar
Miller, N. and Hutt-Fletcher, L. M. (1992). Epstein–Barr virus enters B cells and epithelial cells by different routes. J. Virol., 66(6), 3409–3414.Google ScholarPubMed
Molesworth, S. J., Lake, C. M., Borza, C. M., Turk, S. M., and Hutt-Fletcher, L. M. (2000). Epstein–Barr virus gH is essential for penetration of B cell but also plays a role in attachment of virus to epithelial cells. J. Virol., 74, 6324–6332.CrossRefGoogle Scholar
Moore, M. D., DiScipio, R. G., Cooper, N. R., and Nemerow, G. R. (1989). Hydrodynamic, electron microscopic and ligand binding analysis of the Epstein–Barr virus/C3dg receptor (CR2). J. Biol. Chem., 34, 20576–20582.Google Scholar
Mori, Y., Akkapaiboon, P., Yang, X., and Yamanishi, K. (2003). The human herpesvirus 6 U100 gene product is the third component of the gH–gL glycoprotein complex on the viral envelope. J. Virol., 77, 2452–2458.CrossRefGoogle ScholarPubMed
Moses, A. V., Fish, K. N., Ruhl, R.et al. (1999). Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol., 73(8), 6892–6902.Google ScholarPubMed
Mullen, M. M., Haan, K. M., Longnecker, R., and Jardetzky, T. S. (2002). Structure of the Epstein–Barr virus gp42 protein bound to the MHC class II receptor HLA -DR1. Mol. Cell, 9, 375–385.CrossRefGoogle ScholarPubMed
Naranatt, P. P., Akula, S. M., and Chandran, B. (2002). Characterization of gamma2-human herpesvirus-8 glycoproteins gH and gL. Arch. Virol., 147(7), 1349–1370.CrossRefGoogle ScholarPubMed
Naranatt, P. P., Akula, S. M., Zien, C. A., Krishnan, H. H., and Chandran, B. (2003). Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J. Virol., 77(2), 1524–1539.CrossRefGoogle ScholarPubMed
Naranatt, P. P., Krishnan, H. H., Smith, M. S., and Chandran, B. (2005). Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) modulates the microtubule dynamics via RhoA-GTP-Diaphenous-2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J. Virol., 79, 1191–1206.CrossRefGoogle Scholar
Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997). Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?J. Virol., 71(6), 4187–4192.Google ScholarPubMed
Nemerow, G. R. and Cooper, N. R. (1984). Early events in the infection of human B lymphocytes by Epstein-Barr virus. Virology, 132, 186–198.CrossRefGoogle Scholar
Nemerow, G. R., Wolfert, R., McNaughton, M., and Cooper, N. R. (1985). Identification and characterization of the Epstein–Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J. Virol., 55, 347–351.Google Scholar
Nemerow, G. R., Houghton, R. A., Moore, M. D., and Cooper, N. R. (1989). Identification of the epitope in the major envelope proteins of Epstein-Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell, 56, 369–377.CrossRefGoogle Scholar
Niedobitek, G., Hamilton-Dutoit, S., Herbst, H.et al. (1989). Identification of Epstein–Barr virus-infected cells in tonsils of acute infectious mononucleosis by in situ hybridization. Hum. Pathol., 20, 796–799.CrossRefGoogle ScholarPubMed
Nolan, L. A. and Morgan, A. J. (1995). The Epstein–Barr virus open reading frame BDLF 3 codes for a 100–150 kDa glycoprotein. J. Gen. Virol., 76, 1381–1392.CrossRefGoogle Scholar
Oba, D. E. and Hutt-Fletcher, L. M. (1988). Induction of antibodies to the Epstein–Barr virus glycoprotein gp85 with a synthetic peptide corresponding to a sequence in the BXLF 2 open reading frame. J. Virol., 62, 1108–1114.Google Scholar
Oda, T., Imai, S., Chiba, S., and Takada, K. (2000). Epstein–Barr virus lacking glycoprotein gp85 cannot infect B cells and epithelial cells. Virology, 276, 52–58.CrossRefGoogle ScholarPubMed
Omerovic, J., Lev, L., and Longnecker, R. (2005). The amino terminus of Epstein–Barr virus glycoprotein gH is important for fusion with B cells and epithelial cells. J. Virol., 79, 12408–12415.CrossRefGoogle Scholar
Paulsen, S. J., Rosenkilde, M. M., Eugen-Olsen, J., and Kledal, T. N. (2005). Epstein–Barr virus-encoded BILF 1 is a constitutively active G protein-coupled receptor. J. Virol., 79, 536–546.CrossRefGoogle Scholar
Pegtel, D. M., Middledorp, J., and Thorley-Lawson, D. A. (2004). Epstein–Barr virus infection in ex-vivo tonsil epithelial cultures of asymptomatic carriers. J. Virol., 78, 12613–12624.CrossRefGoogle ScholarPubMed
Pertel, P. E. (2002). Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J. Virol., 76, 4390–4400.CrossRefGoogle Scholar
Rappocciolo, G., Jenkins, F. L., Hensler, H. R.et al. (2006). DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J. Immunol., 176, 1741–1749.CrossRefGoogle ScholarPubMed
Renne, R., Blackbourn, D., Whitby, D., Levy, J., and Ganem, D. (1998). Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 72(6), 5182–5188.Google ScholarPubMed
Ressing, M. E., Leeuwen, D., Verreck, F. A. W.et al. (2005). Epstein–Barr virus gp42 is postranslationally modified to produce s-gp42 that mediates class II immune evasion. J. Virol., 79, 841–852.CrossRefGoogle Scholar
Rickinson, A. B. and Kieff, E. (2001). Epstein–Barr virus. In fields virology ed. Knipe, D. M., and Howley, P. M., Vol. 2, pp. 2575–2627. 2 vols. Philadelphia: Lippincott, Williams and Wilkins.Google Scholar
Rivailler, P., Jiang, H., Cho, Y.-G., Quink, C., and Wang, F. (2002). Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein–Barr virus animal model. J. Virol., 76, 421–426.CrossRefGoogle ScholarPubMed
Russo, J. J., Bohenzky, R. A., Chien, M. C.et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci.USA, 93, 14862–14867.CrossRefGoogle Scholar
Sarid, R., Olsen, S. J., and Moore, P. S. (1999). Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv. Virus Res., 52, 139–232.CrossRefGoogle ScholarPubMed
Sastry, S. K. and Burridge, K. (2000). Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res., 261(1), 25–36.CrossRefGoogle ScholarPubMed
Schulz, T. F., Sheldon, J., and Greensill, J. (2002). Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8). Virus Res., 82(1–2), 115–126.CrossRefGoogle Scholar
Shannon-Rowe, C. D., Neuhierl, B., Baldwin, G., Rickinson, A. B., and Delecluse, H. -J. (2006). Resting B cells as a transfer vehicle for Epstein–Barr virus infection of epithelial cells. Proc. Natl Acad. Sci. USA, 103, 7065–7070.CrossRefGoogle Scholar
Sieczkarski, S. B. and Whittaker, G. R. (2002). Dissecting virus entry via endocytosis. J. Gen. Virol., 83(7), 1535–1545.CrossRefGoogle ScholarPubMed
Sinclair, A. J. and Farrell, P. J. (1995). Host cell requirements for efficient infection of quiescent primary B lymphocytes by Epstein–Barr virus. J. Virol., 69, 5461–5468.Google ScholarPubMed
Sixbey, J. W. and Yao, Q.-Y. (1992). Immunoglobulin A-induced shift of Epstein–Barr virus tissue tropism. Science, 255, 1578–1580.CrossRefGoogle ScholarPubMed
Sixbey, J. W., Nedrud, J. G., Raab-Traub, N., Hanes, R. A., and Pagano, J. S. (1984). Epstein–Barr virus replication in oropharyngeal epithelial cells. N. Engl. J. Med., 310, 1225–1230.CrossRefGoogle ScholarPubMed
Spriggs, M. K., Armitage, R. J., Comeau, M. R.et al. (1996). The extracellular domain of the Epstein–Barr virus BZLF 2 protein binds the HLA -DR beta chain and inhibits antigen presentation. J. Virol., 70, 5557–5563.Google Scholar
Sugano, N., Chen, W., Roberts, M. L., and Cooper, N. R. (1997). Epstein–Barr virus binding to CD 21 activates the initial viral promoter via NF kB induction. J. Exp. Med., 186, 731–737.CrossRefGoogle Scholar
Sun, R., Spain, T. A., Lin, S.-F., and Miller, G. (1997). Sp1 binds to the precise locus of end processing within the terminal repeats of Epstein–Barr virus DNA. J. Virol., 71, 6136–6143.Google ScholarPubMed
Tanner, J., Weis, J., Fearon, D., Whang, Y., and Kieff, E. (1987). Epstein–Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping and endocytosis. Cell, 50, 203–213.CrossRefGoogle Scholar
Tanner, J., Whang, Y., Sample, J., Sears, A., and Keiff, E. (1988). Soluble gp350/220 and deletion mutant glycoproteins block Epstein–Barr virus adsorption to lymphocytes. J. Virol., 62, 4452–4464.Google Scholar
Tanner, J. E. and Tosato, G. (1992). Regulation of B-cell growth and immunoglobulin gene transcription by interleukin-6. Blood, 79, 452–459.Google ScholarPubMed
Telford, E. A., Watson, M. S., Aird, H. C., Perry, J., and Davison, A. J. (1995). The DNA sequence of equine herpesvirus 2. J. Mol. Biol., 249, 520–528.CrossRefGoogle ScholarPubMed
Tomescu, C., Law, W. K., and Kedes, D. H. (2003). Surface downregulation of major histocompatibility complex class I, PE -CAM, and ICAM -1 following de novo infection of endothelial cells with Kaposi's sarcoma-associated herpesvirus. J. Virol., 77(17), 9669–9684.CrossRefGoogle Scholar
Trus, B. L., Heymann, J. B., Nealon, K.et al. (2001). Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J. Virol., 75(6), 2879–2890.CrossRefGoogle Scholar
Tugizov, S. M., Berline, J. W., and Palefsky, J. M. (2003). Epstein–Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nature Med., 9, 307–314.CrossRefGoogle ScholarPubMed
Turk, S. M., Jiang, R., Chesnokova, L. S., and Hutt-Fletcher, L. M. (2006). Antibodies to gp350/220 enhance the ability of Epstein–Barr virus to infect epithelial cells. J. Virol., 80, 9628–9633.CrossRefGoogle ScholarPubMed
Venables, P. J. W., Teo, C. G., Baboonian, C., Griffin, B. E., and Hughes, R. A. (1989). Persistence of Epstein–Barr virus in salivary gland biopsies from healthy individuals and patients with Sjogren's syndrome. Clin. Exp. Immunol., 75, 359–364.Google ScholarPubMed
Vieira, J., O'Hearn, P., Kimball, L., Chandran, B., and Corey, L. (2001). Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J. Virol., 75(3), 1378–1386.CrossRefGoogle ScholarPubMed
Virgin, H. W. I., Latreille, P., Wamsley, P.et al. (1997). Complete sequence and analysis of murine gammaherpesvirus 68. J. Virol., 71, 5894–5904.Google ScholarPubMed
Virji, M. (1996). Microbial utilization of human signalling molecules. Microbiology, 142(12), 3319–3336.CrossRefGoogle ScholarPubMed
Wang, F. Z., Akula, S. M., Pramod, N. P., Zeng, L., and Chandran, B. (2001). Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J. Virol., 75(16), 7517–7527.CrossRefGoogle ScholarPubMed
Wang, F. Z., Akula, S. M., Sharma-Walia, N., Zeng, L., and Chandran, B. (2003). Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J. Virol., 77(5), 3131–3147.CrossRefGoogle ScholarPubMed
Wang, X. and Hutt-Fletcher, L. M. (1998). Epstein–Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. J. Virol., 72, 158–163.Google Scholar
Wang, X., Kenyon, W. J., Li, Q. X., Mullberg, J., and Hutt-Fletcher, L. M. (1998). Epstein–Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J. Virol., 72, 5552–5558.Google ScholarPubMed
Weisman, H. F., Bartow, T., Leppo, M. K.et al. (1990). Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science, 249, 146–151.CrossRefGoogle ScholarPubMed
Whittaker, G. R. (2003). Virus nuclear import. Adv. Drug Deliv. Rev., 55(6), 733–747.CrossRefGoogle ScholarPubMed
Wu, L., Lo, P., Yu, X., Stoops, J. K., Forghani, B., and Zhou, Z. H. (2000). Three-dimensional structure of the human herpesvirus 8 capsid. J. Virol., 74, 9646–9654.CrossRefGoogle ScholarPubMed
Wu, L., Borza, C. M., and Hutt-Fletcher, L. M. (2005). Mutations of Epstein–Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. J. Virol., 79, 10923–10930.CrossRefGoogle ScholarPubMed
Yaswen, L. R., Stephens, E. B., Davenport, L. C., and Hutt-Fletcher, L. M. (1993). Epstein-Barr virus glycoprotein gp85 associates with the BKRF 2 gene product and is incompletely processed as a recombinant protein. Virology, 195, 387–396.CrossRefGoogle Scholar
Young, L. S., Dawson, C. W., Brown, K. W., and Rickinson, A. B. (1989). Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes. Int. J. Cancer, 43, 786–794.Google Scholar
Zhu, F. X. and Yuan, Y. (2003). The ORF 45 protein of Kaposi's sarcoma-associated herpesvirus is associated with purified virions. J. Virol., 77(7), 4221–4230.CrossRefGoogle Scholar
Zhu, L., Puri, V., and Chandran, B. (1999). Characterization of human herpesvirus-8 K8.1A/B glycoproteins by monoclonal antibodies. Virology, 262(1), 237–249.CrossRefGoogle ScholarPubMed
Zhu, L., Wang, R., Sweat, A., Goldstein, E., Horvat, R., and Chandran, B. (1999). Comparison of human sera reactivities in immunoblots with recombinant human herpesvirus (HHV)-8 proteins associated with the latent (ORF73) and lytic (ORFs 65, K8.1A, and K8.1B) replicative cycles and in immunofluorescence assays with HHV -8-infected BCBL -1 cells. Virology, 256(2), 381–392.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×