Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-13T01:43:33.337Z Has data issue: false hasContentIssue false

24 - Gammaherpesvirus maintenance and replication during latency

from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Paul M. Lieberman
Affiliation:
The Wistar Institute, Philadelphia, PA
Jianhong Hu
Affiliation:
University of Florida, Gainesville, FL
Rolf Renne
Affiliation:
University of Florida, Gainesville, FL
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The human gammaherpesviruses Epstein–Barr Virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are associated with a variety of malignancies involving cells of various lineages.

After primary infection and initial viral propagation in epithelial and lymphoid cells, both viruses establish latency in a subset of CD 19 positive B-cells. In this often lifelong asymptomatic stage, in which EBV genomes are detectable primarily in resting memory B-cells, the number of infected cells is extremely low and virus load is tightly controlled by the host cellular and humoral immune response.

Loss of this balance leads to an increase in viral load, which often precedes the onset of malignant diseases. Both tissue involvement and histopathology are highly variable between EBV - and KSHV -associated malignancies and involve either lymphoid (Burkitt's lymphoma and primary effusion lymphoma), epithelial (nasopharyngeal carcinoma), or endothelial (Kaposi's sarcoma) tissues.

However, common to all gammaherpesvirus-associated tumors is that the majority of tumor cells are latently infected, and harbor extrachromosomal circularized viral genomes called episomes that are replicated and segregated by the host cellular replication machinery indefinitely. This ability to maintain long-term latent infection in quiescent and proliferating cells may be a defining property shared by both the lymphocryptoviruses (LCV, represented by EBV) and the rhadinoviruses (RDV, represented by KSHV).

This chapter aims to summarize our current understanding of the underlying mechanisms by which EBV and KSHV achieve long-term episomal maintenance in latently infected cells, which conceptually can be viewed as a two step process: replication of the viral genome and faithful segregation to daughter cells (Fig. 24.1).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 379 - 402
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A. (1987). Replication of latent Epstein–Barr virus genomes in Raji cells. J. Virol., 61(5): 1743–1746.Google ScholarPubMed
Adams, A. and Lindahl, T. (1975). Epstein–Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc. Natl Acad. Sci. USA, 72(4): 1477–1481.CrossRefGoogle ScholarPubMed
Ahearn, J. M., Hayward, S. D., Hickey, J. C., and Fearon, D. T. (1988). Epstein–Barr virus (EBV) infection of murine L cells expressing recombinant human EBV /C3d receptor. Proc. Natl Acad. Sci. USA, 85(23), 9307–9311.CrossRefGoogle ScholarPubMed
Akula, S. M., Pramod, N. P., Wang, F. Z., and Chandran, B. (2001). Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology, 284(2), 235–249.CrossRefGoogle ScholarPubMed
Akula, S. M., Pramod, N. P., Wang, F. Z.et al. (2002). Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell, 108(3), 407–419.CrossRefGoogle ScholarPubMed
Alazard, N., Gruffat, H., Hiriart, E., Sergeant, A., and Manet, E. (2003). Differential hyperacetylation of histones H3 and H4 upon promoter-specific recruitment of EBNA 2 in Epstein-Barr virus chromatin. J. Virol., 77(14), 8166–8172.CrossRefGoogle ScholarPubMed
Alexander, L., Denekamp, L., Knapp, A., Auerbach, M. R., Damania, B., and Desrosiers, R. C. (2000). The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J. Virol., 74, 3388–3398.CrossRefGoogle ScholarPubMed
Alfieri, C., Birkenbach, M., and Kieff, E. (1991). Early events in Epstein-Barr virus infection of human B lymphocytes. Virology, 181(2), 595–608.CrossRefGoogle ScholarPubMed
Allday, M. J., Kundu, D., Finerty, S., and Griffin, B. E. (1990). CpG methylation of viral DNA in EBV -associated tumours. Int. J. Cancer, 45(6), 1125–1130.CrossRefGoogle ScholarPubMed
Ambinder, R. F., Lambe, B. C., Mann, R. B.et al. (1990). Oligonucleotides for polymerase chain reaction amplification and hybridization detection of Epstein–Barr virus DNA in clinical specimens. Mol. Cell Probes, 4(5), 397–407.CrossRefGoogle ScholarPubMed
Ambinder, R. F., Mullen, M. A., Chang, Y. N., Hayward, G. S., and Hayward, S. D. (1991). Functional domains of Epstein–Barr virus nuclear antigen EBNA -1. J. Virol., 65(3), 1466–1478.Google ScholarPubMed
Ambinder, R. F., Robertson, K. D., and Tao, Q. (1999). DNA methylation and the Epstein–Barr virus. Semin. Cancer Biol., 9(5), 369–375.CrossRefGoogle ScholarPubMed
An, F. Q., Compitello, N., Horwitz, E., Sramkoski, M., Knudsen, E. S., and Renne, R. (2005). The latency-associated nuclear antigen of Kaposi's sarcoma-asociated herpesvirus modulates cellular gene expression and protects lymphoid cells from p16 INK 4A-induced cell cycle arrest. J. Biol. Chem., 280, 3862–3874.CrossRefGoogle Scholar
Andersson-Anvret, M. and Lindahl, T. (1978). Integrated viral DNA sequences in Epstein–Barr virus-converted human lymphoma lines. J. Virol., 25(3), 710–718.Google Scholar
Anvret, M., Karlsson, A., and Bjursell, G. (1984). Evidence for integrated EBV genomes in Raji cellular DNA. Nucl. Acids Res., 12(2), 1149–1161.CrossRefGoogle ScholarPubMed
Atanasiu, C., Deng, Z., Wiedmer, A., Norseen, J., and Lieberman, P. M., (2006). ORC binding to TRF 2 stimulates OriP relplication. EMBO Rep., 7, 716–721.CrossRefGoogle Scholar
Avolio-Hunter, T. M., Lewis, P. N., and Frappier, L. (2001). Epstein–Barr nuclear antigen 1 binds and destabilizes nucleosomes at the viral origin of latent DNA replication. Nucl. Acids Res., 29(17), 3520–3528.CrossRefGoogle Scholar
Ballestas, M. (2001). Kaposi's sarcoma associated herpesvirus latency assoiciated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (tr) sequence and specifically binds DNA. J. Virol., 75, 3250–3258.CrossRefGoogle Scholar
Ballestas, M. E., Chatis, P. A., and Kaye, K. M. (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 284(5414), 641–644.CrossRefGoogle ScholarPubMed
Barbera, A. J., Chodaparambil, J. V., Kelley-Clarke, B.et al. (2006). The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science, 311, 856–861.CrossRefGoogle ScholarPubMed
Bashaw, J. M. and Yates, J. L. (2001). OriP of Epstein–Barr virus requires exact spacing of two bound dimers of EBNA 1 which bend DNA. J. Virol., 75, 10603–10611.CrossRefGoogle ScholarPubMed
Bell, S. P. and Dutta, A. (2002). DNA replication in eukaryotic cells. Annu. Rev. Biochem., 71, 333–374.CrossRefGoogle ScholarPubMed
Ben-Sasson, S. A. and Klein, G. (1981). Activation of the Epstein–Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Int. J. Cancer, 28, 131–135.CrossRefGoogle Scholar
Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209–213.CrossRefGoogle ScholarPubMed
Blake, N., Lee, S., Redchenko, I.et al. (1997). Human CD 8+ T cell responses to EBV EBNA 1: HLA class I presentation of the (Gly–Ala)-containing protein requires exogenous processing. Immunity, 7(6), 791–802.CrossRefGoogle Scholar
Bochkarev, A., Barwell, J. A., Pfuetzner, R. A., Furey, W. J., Edwards, A. M., and Frappier, L. (1995). Crystal structure of the DNA binding domain of the Epstein-Barr virus origin binding protein EBNA -1. Cell, 83, 39–46.CrossRefGoogle ScholarPubMed
Bochkarev, A., Pfuetzner, R. A., Bochkareva, E., Frappier, L., and Edwards, A. M. (1996). Crystal structure of the DNA -binding domain of the Epstein–Barr virus origin-binding protein, EBNA 1, bound to DNA. Cell, 84, 791–800.CrossRefGoogle Scholar
Bochkarev, A., Bochkareva, E., Frappier, L., and Edwards, A. M. (1998). The 2.2 A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA 1. J. Mol. Biol., 284(5), 1273–1278.CrossRefGoogle Scholar
Boshoff, C. and Weiss, R. (2002). AIDS-related malignancies. Nature Reviews. Cancer, 2(5), 373–382.CrossRefGoogle ScholarPubMed
Burd, C. G. and Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA -binding proteins. Science, 265(5172), 615–621.CrossRefGoogle ScholarPubMed
Cai, X., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B., and Cullen, B. R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA, 102, 5570–5575.CrossRefGoogle ScholarPubMed
Cannon, J. S., Ciufo, D., Hawkins, A. L.et al. (2000). A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi's sarcoma herpesvirus-containing supernatant. J. Virol., 74, 10187–10193.CrossRefGoogle ScholarPubMed
Ceccarelli, D. F. and Frappier, L. (2000). Functional analyses of the EBNA 1 origin DNA binding protein of Epstein–Barr virus. J. Virol., 74, 4939–4948.CrossRefGoogle Scholar
Cesarman, E., Moore, P. S., Rao, P. H., Inghirami, G., Knowles, D. M., and Chang, Y. (1995). In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC -2) containing Kaposi's sarcoma-associated herpesvirus (KSHV) DNA sequences. Blood, 86, 2708–2714.Google ScholarPubMed
Chang, Y., Cheng, S. D., and Tsai, C. H. (2002). Chromosomal integration of Epstein–Barr virus genomes in nasopharyngeal carcinoma cells. Head Neck, 24(2), 143–150.CrossRefGoogle ScholarPubMed
Chang, Y. E., Cesarman, E., Pessin, M. S.et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS -associated kaposis sarcoma. Science, 266(5192), 1865–1869.CrossRefGoogle Scholar
Chaudhuri, B., Xu, H., Todorov, I., Dutta, A., and Yates, T. L. (2001). Human DNA replication initiation factors, ORC and MCM, associate with OriP of Epstein–Barr virus. Proc. Natl Acad. Sci. USA, 98, 10085–10089.CrossRefGoogle ScholarPubMed
Chen, J., Ueda, K., Sakakibara, S.et al. (2001). Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc. Natl Acad. Sci. USA, 98, 4119–4124.CrossRefGoogle ScholarPubMed
Chen, M. R., Middeldorp, J. M., and Hayward, S. D. (1993). Separation of the complex DNA binding domain of EBNA -1 into DNA recognition and dimerization subdomains of novel structure. J. Virol., 67(8), 4875–4885.Google ScholarPubMed
Chen, M. R., Zong, J., and Hayward, S. D. (1994). Delineation of a 16 amino acid sequence that forms a core DNA recognition motif in the Epstein–Barr virus EBNA -1 protein. Virology, 205(2), 486–495.CrossRefGoogle ScholarPubMed
Chen, M. R., Yang, J. F., Wu, C. W., Middeldorp, J. M., and Chen, J. Y. (1998). Physical association between the EBV protein EBNA -1 and P32/TAP/hyaluronectin. J. Biomed. Sci., 5(3), 173–179.CrossRefGoogle ScholarPubMed
Cheung, R. K., Miyazaki, I., and Dosch, H. M. (1993). Unexpected patterns of Epstein–Barr virus gene expression during early stages of B cell transformation. Int. Immunol., 5(7), 707–716.CrossRefGoogle ScholarPubMed
Chittenden, T., Lupton, S., and Levine, A. J. (1989). Functional limits of OriP, the Epstein–Barr virus plasmid origin of replication. J. Virol., 63, 3016–3025.Google ScholarPubMed
Collins, C. M., Medveczky, M. M., Lund, T., and Medveczky, P. E. (2002). The terminal repeats and latency-associated nuclear antigen of herpesvirus saimiri are essential for episomal persistence of the viral genome. J. Gen. Virol., 83(9), 2269–2278.CrossRefGoogle ScholarPubMed
Cotter, M. A., 2nd and Robertson, E. S. (1999). The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells [In Process Citation]. Virology, 264(2), 254–264.CrossRefGoogle Scholar
Cotter, M. A., 2nd, Subramanian, C., and Robertson, E. S. (2001). The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology, 291(2), 241–259.CrossRefGoogle ScholarPubMed
Cruickshank, J., Shire, K., Davidson, A. R., Edwards, A. M., and Frappier, L. (2000). Two domains of the epstein-barr virus origin DNA -binding protein, EBNA 1, orchestrate sequence-specific DNA binding. J. Biol. Chem., 275(29), 22273–22277.CrossRefGoogle Scholar
Deng, Z., Lezina, L., Chen, C., Shtivelband, S., So, W., and Lieberman, P. M. (2002). Telomeric proteins regulate maintenance of Epstein–Barr Virus origin of plasmid replication. Mol. Cell, 9, 493–503.CrossRefGoogle ScholarPubMed
Deng, Z., Atanasiu, C., Burg, J. S., Broccoli, D., and Lieberman, P. M. (2003). Telomere repeat binding factors TRF 1, TRF 2, and hRAP1 modulate replication of Epstein–Barr virus OriP. J. Virol., 77(22), 11992–12001.CrossRefGoogle Scholar
Desaintes, C. and Demeret, C. (1996). Control of papillomavirus DNA replication and transcription. Semin. Cancer Biol., 7(6), 339–347.CrossRefGoogle ScholarPubMed
Dhar, S. K., Yoshida, K., Machida, Y.et al. (2001). Replication from OriP of Epstein–Barr virus requires human ORC and is inhibited by geminin. Cell, 106, 287–296.CrossRefGoogle ScholarPubMed
Diala, E. S. and Hoffman, R. M. (1983). Epstein–Barr HR -1 virion DNA is very highly methylated. J. Virol., 45(1), 482–483.Google Scholar
Dictor, M., Rambech, E., Way, D., Witte, M., and Bendsoe, N. (1996). Human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) DNA in Kaposi's sarcoma lesions, AIDS Kaposi's sarcoma cell lines, endothelial Kaposi's sarcoma simulators, and the skin of immunosuppressed patients. Am. J. Pathol., 148, 2009–2016.Google ScholarPubMed
Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J. Virol., 72(10), 8309–8315.Google ScholarPubMed
Dupin, N., Fisher, C., Kellam, P.et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA, 96(8), 4546–4551.CrossRefGoogle ScholarPubMed
Dyson, P. J. and Farrell, P. J. (1985). Chromatin structure of Esptein-Barr virus. J. Gen. Virol., 66, 1931–1940.CrossRefGoogle Scholar
Edwards, A. M., Bochkarev, A., and Frappier, L. (1998). Origin DNA -binding proteins. Curr. Opin. Struct. Biol., 8(1), 49–53.CrossRefGoogle ScholarPubMed
Ernberg, I., Falk, K., Mirarovits, J.et al. (1989). The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein–Barr virus. J. Gen. Virol., 70(11), 2989–3002.CrossRefGoogle ScholarPubMed
Everett, R. D., Meredith, M., and Orr, A. (1999). The ability of herpes simplex virus type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication. J. Virol., 73(1), 417–426.Google Scholar
Falk, K. and Ernberg, I. (1993). An origin of DNA replication (OriP) in highly methylated episomal Epstein–Barr virus DNA localizes to a 4.5-kb unmethylated region. Virology, 195(2), 608–615.CrossRefGoogle ScholarPubMed
Falk, K. I., Szekely, L., Aleman, A., and Ernberg, I. (1998). Specific methylation patterns in two control regions of Epstein–Barr virus latency: the LMP -1-coding upstream regulatory region and an origin of DNA replication (OriP). J. Virol., 72(4), 2969–2974.Google Scholar
Fischer, N., Kremmer, E., Lavtshcam, G., Mueller-Lantzsch, N., and Grasser, F. A. (1997). α2. J. Biol. Chem., 272, 3999–4005.CrossRefGoogle ScholarPubMed
Frappier, L., Goldsmith, K., and Bendell, L. (1994). Stabilization of the EBNA 1 protein on the Epstein–Barr virus latent origin of DNA replication by a DNA looping mechanism. J. Biol. Chem., 269(2), 1057–1062.Google Scholar
Friborg, J., Kong, W., Hottiger, M. O., and Nabel, G. J. (2000). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature, 402(6764), 889–894.CrossRefGoogle Scholar
Fridell, R. A., Harding, L. S., Bogerd, H. P., and Cullen, B. R. (1995). Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology, 209(2), 347–357.CrossRefGoogle ScholarPubMed
Fujimuro, M. and Hayward, S. D. (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J. Virol., 77(14), 8019–8030.CrossRefGoogle ScholarPubMed
Fujimuro, M., Wu, F. Y., Rhys, Ap C.et al. (2003). A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat. Med., 9(3), 300–306.CrossRefGoogle ScholarPubMed
Gahn, T. A. and Schildkraut, C. L. (1989). The Epstein–Barr virus origin of plasmid replication, OriP, contains both the initiation and termination sites of DNA replication. Cell, 58, 527–535.CrossRefGoogle ScholarPubMed
Gahn, T. A. and Sugden, B. (1995). An EBNA -1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Esptein-Barr virus LMP Gene. J. Virol., 69, 2633–2636.Google Scholar
Ganem, D. (1997). KSHV and Kaposi'2 sarcoma. The end of the beginning?Cell, 91, 157–160.CrossRefGoogle ScholarPubMed
Gao, S. J., Kingsley, L., Li, M.et al. (1996). KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma [see comments]. Nat. Med., 2(8), 925–928.CrossRefGoogle Scholar
Gao, S. J., Zhang, Y. J., Deng, J. H., Rabkin, C. S., Flore, O., and Henson, H. B. (1999). Molecular polymorphism of Kaposi's sarcoma-associated herpesvirus (Human herpesvirus 8) latent nuclear antigen: evidence for a large repertoire of viral genotypes and dual infection with different viral genotypes [In Process Citation]. J. Infect. Dis., 180(5), 1466–1476.CrossRefGoogle Scholar
Garber, A. C., Shu, M. A., Hu, J., and Renne, R. (2001). DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J. Virol., 75(17), 7882–7892.CrossRefGoogle ScholarPubMed
Garber, A. C., Hu, J., and Renne, R. (2002). Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J. Biol. Chem., 277(30), 27401–27411.CrossRefGoogle ScholarPubMed
Gardella, T., Medveczky, P., Saironji, T., and Mulder, C. (1984). Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J. Virol., 50(1), 248–254.Google ScholarPubMed
Gilbert, D. M. (2001). Making sense of eukaryotic DNA replication origins. Science, 294(5540), 96–100.CrossRefGoogle ScholarPubMed
Goldsmith, K., Bendell, L., and Frappier, L. (1993). Identification of EBNA 1 amino acid sequences required for the interaction of the functional elements of the Epstein–Barr virus latent origin of DNA replication. J. Virol., 67(6), 3418–3426.Google Scholar
Grossman, S. R. and Laimins, L. A. (1996). EBNA1 and E2: a new paradigm for origin-binding proteins?Trends Microbiol., 4(3), 87–89.CrossRefGoogle ScholarPubMed
Gruffat, H., Manet, E., and Sargeant, A. (2002). MEF2-mediated recruitment of class III HDAC at the EBV immediate early gene BZLF 1 links latency and chromatin remodeling. EMBO Rep., 3(2), 141–146.CrossRefGoogle Scholar
Grundhoff, A. and Ganem, D. (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesesvirus permits replication of terminal repeat-containing plasmids. J. Virol., 77(4), 2779–2783.CrossRefGoogle ScholarPubMed
Grundhoff, A., and Ganem, D. (2004). Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Invest., 113, 124–136.CrossRefGoogle ScholarPubMed
Hall, K. T., Giles, M. S., Calderwood, M. A., Goodwin, D. J., Mathews, D. A., and Witehouse, A. (2002). The Herpesvirus Saimiri open reading frame 73 gene product interacts with the cellular protein p32. J. Virol., 76(22), 11612–11622.CrossRefGoogle ScholarPubMed
Harrison, S., Fisenne, K., and Hearing, J. (1994). Sequence requirements of the Epstein–Barr virus latent origin of DNA replication. J. Virol., 68(3), 1913–1925.Google ScholarPubMed
Hearing, J., Mulhaupt, Y., and Harper, S. (1992). Interaction of Epstein–Barr virus nuclear antigen 1 with the viral latent origin of replication. J. Virol., 66, 694–705.Google ScholarPubMed
Hebner, C., Lasanen, J., Battle, S., and Aiyar, A. (2003). The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein–Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance. Virology, 311(2), 263–274.CrossRefGoogle ScholarPubMed
Herndier, B. and Ganem, D. (2001). The biology of Kaposi's sarcoma. Cancer Treat. Res., 104, 89–126.CrossRefGoogle ScholarPubMed
Hirai, K. and Shirakata, M. (2001). OriP Minichromosome. In Epstein–Barr Virus and Human Cancer, ed. Takada, K.. Heidelberg, Springer, 258.CrossRefGoogle Scholar
Holowaty, M. N., Zeghouf, M., Wu, H.et al. (2003). Protein profiling with Epstein–Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP /USP7. J. Biol. Chem., 278(32), 29987–29994.CrossRefGoogle ScholarPubMed
Hsieh, C. L. (1999). Evidence that protein binding specifies sites of DNA demethylation. Mol. Cell Biol., 19(1), 46–56.CrossRefGoogle ScholarPubMed
Hsieh, D. J., Camiolo, S. M., and Yates, J. L. (1993). Constitutive binding of EBNA 1 protein to the Epstein–Barr virus replication origin, OriP, with distortion of DNA structure during latent infection. EMBO J., 12(13), 4933–4944.Google Scholar
Hsieh, J. J., Zhou, S., Chen, L., Young, D. B., and Hayward, S. D. (1999). CIR, a corepressor linking the DNA binding factor CBF 1 to the histone deacetylase complex. Proc. Natl Acad. Sci. USA, 96(1), 23–28.CrossRefGoogle Scholar
Hu, J. and Renne, R. (2005). Characterization of the minimal replicator of Kaposi's sarcoma-associated herpesvirus latent origin. J. Virol., 79, 2637–2642.CrossRefGoogle ScholarPubMed
Hu, L. F., Minarovits, J., Cao, S. L.et al. (1991). Variable expression of latent membrane protein in nasopharyngeal carcinoma can be related to methylation status of the Epstein–Barr virus BNLF -1 5′-flanking region. J. Virol., 65(3), 1558–1567.Google ScholarPubMed
Hu, J., Garber, A. C., and Renne, R. (2002). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J. Virol., 76(22), 11677–11687.CrossRefGoogle ScholarPubMed
Huber, M. D., Dworet, J. H., Shire, K., Frappier, L., and McAlean, M. A. (2000). The budding yeast homolog of the human EBNA 1-binding protein 2 (Ebp2p) is an essential nucleolar protein required for pre-rRNA processing. J. Biol. Chem., 275, 28764–28770.CrossRefGoogle Scholar
Humme, S., Reisbach, G., Feederle, R.et al. (2003). The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc. Natl Acad. Sci. USA, 100(19), 10989–10994.CrossRefGoogle ScholarPubMed
Hung, S. C., Kang, M. S., and Kieff, E. (2001). Maintenance of Epstein–Barr virus (EBV) OriP-based episomes requires EBV -encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc. Natl. Acad. Sci. USA, 98, 1865–1870.CrossRefGoogle ScholarPubMed
Hurley, E. A. and Thorley-Lawson, D. A. (1988). B cell activation and the establishment of Epstein–Barr virus latency. J. Exp. Med., 168(6), 2059–2075.CrossRefGoogle ScholarPubMed
Hyun, T. S., Subramanian, C., Cotter, M. A., 2nd, Thomas, R. A., and Robertson, E. S. (2001). Latency-associated nuclear antigen encoded by Kaposi's sarcoma-associated herpesvirus interacts with Tat and activates the long terminal repeat of human immunodeficiency virus type 1 in human cells. J. Virol., 75(18), 8761–8771.CrossRefGoogle Scholar
Ito, S., Ikeda, M., Kato, N.et al. (2000). Epstein–Barr virus nuclear antigen-1 binds to nuclear transporter karyopherin alpha1/NPI-1 in addition to karyopherin alpha2/Rch1. Virology, 266(1), 110–119.CrossRefGoogle ScholarPubMed
Ito, S. and Yanagi, K. (2003). Epstein–Barr virus (EBV) nuclear antigen 1 colocalizes with cellular replication foci in the absence of EBV plasmids. J. Virol., 77(6), 3824–3831.CrossRefGoogle ScholarPubMed
Jankelevich, S., Kolman, J. L., Bodnar, J. W., and Miller, G. (1992). A nuclear matrix attachment region organizes the Epstein–Barr viral plasmid in Raji cells into a single DNA domain. EMBO J., 11(3), 1165–1176.Google ScholarPubMed
Jenkins, P. J., Binne, U. K., and Farrel, P. J. (2000). Histone acetylation and reactivation of Epstein–Barr virus from latency. J. Virol., 74, 710–720.CrossRefGoogle ScholarPubMed
Jeong, J., Papin, J., and Dittmer, D. (2001). Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters. J. Virol., 75(4), 1798–1807.CrossRefGoogle ScholarPubMed
Jones, P. L. and Wolffe, A. P. (1999). Relationships between chromatin organization and DNA methylation in determining gene expression. Semin. Cancer Biol., 9(5), 339–347.CrossRefGoogle ScholarPubMed
Kanda, T., Otter, M., and Wahl, G. M. (2001). Coupling of mitotic chromosome tethering and replication competence in epstein-barr virus-based plasmids. Mol. Cell. Biol., 21, 3576–3588.CrossRefGoogle ScholarPubMed
Kapoor, P., Shire, K., and Frappier, L. (2001). Reconstitution of Epstein-Barr virus-based plasmid partitioning in budding yeast. EMBO J., 15, 222–230.CrossRefGoogle Scholar
Kedes, D. H., Operskalski, E., Busch, M., Kohn, R., Flood, J., and Ganem, D. (1996). The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus), distribution of infection in KS risk groups and evidence for sexual transmission [see comments] [published erratum appears in Nat. Med. 1996 Sep;2(9),1041]. Nat. Med., 2(8), 918–924.CrossRefGoogle Scholar
Kedes, D. H., Lagunoff, M., Renne, R., and Ganem, D. (1997). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J. Clin. Invest., 100(10), 2606–2610.CrossRefGoogle ScholarPubMed
Kellam, P., Boshoff, C., Whitby, D., Matthews, S., Weiss, R. A., and Talbot, S. J. (1997). Identification of a major latent nuclear antigen, LNA -1, in the human herpesvirus 8 genome. J. Hum. Virol., 1(1), 19–29.Google Scholar
Kennedy, G. and Sugden, B. (2003). EBNA-1, a bifunctional transcriptional activator. Mol. Cell. Biol., 23(19), 6901–6908.CrossRefGoogle ScholarPubMed
Kennedy, G., Komano, J., and Sugden, B. (2003). Epstein–Barr virus provides a survival factor to Burkitt's lymphomas. Proc. Natl Acad. Sci. USA, 4.Google Scholar
Kim, A. L., Maher, M., Hayman, J. B.et al. (1997). An imperfect correlation between the DNA replication activity of Epstein–Barr virus nuclear antigen 1 (EBNA1) and the binding to the nuclear import receptor, Rch1/importin alpha. Virology, 239, 340–351.CrossRefGoogle ScholarPubMed
Kintner, C. R. and Sugden, B. (1979). The structure of the termini of the DNA of Epstein–Barr virus. Cell, 17(3), 661–671.CrossRefGoogle ScholarPubMed
Kirchmaier, A. L. and Sugden, B. (1998). Rep∗: a viral element that can partially replace the origin of plasmid DNA synthesis of Epstein–Barr virus. J. Virol., 72(6), 4657–4666.Google ScholarPubMed
Knight, J. S., Cotter, 2nd, M. A., and Robertson, E. S. (2001). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus transactivates the telomerase reverse transcriptase promoter. J. Biol. Chem., 276(25), 22971–22978.CrossRefGoogle ScholarPubMed
Koliais, S. I. (1979). Mode of integration of Epstein–Barr virus genome into host DNA in Burkitt lymphoma cells. J. Gen. Virol., 44(2), 573–576.CrossRefGoogle ScholarPubMed
Koons, M. D., Scoy, S. V., and Hearing, J. (2001). OriP, is composed of multiple functional elements. J. Virol., 75, 10582–10592.CrossRefGoogle ScholarPubMed
Kripalani-Joshi, S. and Law, H. Y. (1994). Identification of integrated Epstein–Barr virus in nasopharyngeal carcinoma using pulse field gel electrophoresis. Int. J. Cancer, 56(2), 187–192.CrossRefGoogle Scholar
Krishnan, H. H., Naranatt, P. P., Smith, M. S., Zeng, L., Bloomer, C., and , Chandran B. (2004). Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J. Virol., 78, 3601–3620.CrossRefGoogle Scholar
Krithivas, A., Young, D. B.et al. (2000). Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein–Barr virus gene expression in dually infected PEL cells. J. Virol., 74(20), 9637–9645.CrossRefGoogle ScholarPubMed
Krithivas, A., Fujimoro, M.et al. (2002). Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J. Virol., 76(22), 11596–11604.CrossRefGoogle ScholarPubMed
Krysan, P. J. and Calos, M. P. (1991). Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol. Cell. Biol., 11(3), 1464–1472.CrossRefGoogle ScholarPubMed
Krysan, P. J., Haase, S. B., and Calos, M. D. (1989). Isolation of human sequences that replicate autonomously in human cells. Mol. Cell. Biol., 9, 1026–1033.CrossRefGoogle ScholarPubMed
Lagunoff, M. and Ganem, D. (1997). The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. Virology, 236(1), 147–154.CrossRefGoogle ScholarPubMed
Lagunoff, M., Bechtel, J., Venetsanakos, E.et al. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol., 76, 2440–2448.CrossRefGoogle ScholarPubMed
Lan, K., Kuppers, D. A., Verma, S. C., and Robertson, E. S., (2004). Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a protential mechanism for virus-mediated control of latency. J. Virol., 78, 6585–6594.CrossRefGoogle Scholar
Laux, G., Economou, A., and Farrell, P. J. (1989). The terminal protein gene 2 of Epstein–Barr virus is transcribed from a bidirectional latent promoter region. J. Gen. Virol., 70(11), 3079–3084.CrossRefGoogle ScholarPubMed
Lawrence, J. B., Villnave, C. A., and Singer, R. H. (1988). Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell, 52(1), 51–61.Google Scholar
Lee, M. A., Diamond, M. E., and Yates, J. L. (1999). Genetic evidence that EBNA -1 is needed for efficient, stable latent infection by Epstein–Barr virus. J. Virol., 73, 2974–2982.Google ScholarPubMed
Leight, E. R. and Sugden, B. (2000). EBNA-1: a protein pivotal to latent infection by Epstein–Barr virus. Rev. Med. Virol., 10(2), 83–100.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Leonchiks, A., Stavropoulou, V., Sharipo, A., and Massucci, G. (2002). Inhibition of ubiquitin-dependent proteolysis by a synthetic glycine-alanine repeat peptide that mimics an inhibitory viral sequence. FEBS Lett., 522(1–3), 93–98.CrossRefGoogle ScholarPubMed
Levitskaya, J., Coram, M., Levitsky, V.et al. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature, 375(6533), 685–688.CrossRefGoogle ScholarPubMed
Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A., and Masucci, M. G. (1997). Inhibition of ubiquitin/proteasome-dependent degradation by the Gly-Ala repeat domain of Epstein–Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA, 94, 12616–12621.CrossRefGoogle ScholarPubMed
Li, Q. X., Young, L. S., Niedobitek, G.et al. (1992). Epstein–Barr virus infection and replication in a human epithelial cell system. Nature, 356(6367), 347–350.CrossRefGoogle Scholar
Lim, C., Sohn, H., Gwack, Y., and Choe, J. (2000). Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) binds ATF 4/CREB2 and inhibits its transcriptional activation activity. J. Gen. Virol., 81(11), 2645–2652.CrossRefGoogle ScholarPubMed
Lim, C., Sohn, H., Lee, D., Gwack, Y., and Choe, J. (2002). Functional dissection of LANA 1 of Kaposi's sarcoma-associated herpesvirus involved in latent DNA replication and transcription of terminal repeats of the viral geneome. J. Virol., 76, 10320–10331.CrossRefGoogle Scholar
Lin, I. G., Tomzynski, T. J., Ou, Q., and Hsieh, C. L. (2000). Modulation of DNA binding protein affinity directly affects target site demethylation. Mol. Cell. Biol., 20(7), 2343–2349.CrossRefGoogle ScholarPubMed
Lindahl, T., Adams, A., Andersson-Anvret, M., and Falk, L. (1978). Integration of Epstein–Barr virus DNA. IARC Sci. Publ. (24, 1), 113–123.Google ScholarPubMed
Little, R. D. and Schildkraut, C. L. (1995). Initiation of latent DNA replication in the Epstein–Barr virus genome can occur at sites other than the genetically defined origin. Mol. Cell. Biol., 15, 2893–2903.CrossRefGoogle Scholar
Liu, S., Liu, P., Borras, A., Chatila, T., and Speck, S. H. (1997). Cyclosporin A-sensitive induction of the Epstein–Barr virus lytic switch is mediated via a novel pathway involving a MEF 2 family member. EMBO J., 16, 143–153.CrossRefGoogle Scholar
Lu, F., Zhou, J., Wiedmer, A., Madden, K., Yuan, Y., and Lieberman, P. M. (2003). Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF 50 promoter correlates with reactivation from latency. J. Virol., 77(21), 11425–11435.CrossRefGoogle Scholar
Lu, F., Day, L., Gao, S. J., and Lieberman, P. M. (2006). Acetylation of the latency-associated nuclear antigen regulates repression of Kaposi's sarcoma-associated herpesvirus lytic transcription. J. Virol., 80, 5273–5282.CrossRefGoogle ScholarPubMed
Lupton, S. and Levine, A. (1985). Mapping genetic elements of Epstein–Barr virus that facilitate extrachromasomal persistence of Epstein–Barr virus-derived plasmids in human cells. Mol. Cell. Biol., 5, 2533–2542.CrossRefGoogle Scholar
Mackey, D. and Sugden, B. (1999). The linking regions of EBNA 1 are essential for its support of replication and transcription. Mol. Cell. Biol., 19, 3349–3359.CrossRefGoogle Scholar
Mackey, D., Middleton, T., and Sugden, B. (1995). Multiple regions within EBNA 1 can link DNA s. J. Virol., 69, 6199–6208.Google Scholar
Marechal, V., Dehee, A., Chikhi-Brachet, R., Piolot, T., and Coppey-Moisan, M. (1999). Mapping EBNA -1 domains involved in binding to metaphase chromosomes. J., Virol., 73, 4385–4392.Google ScholarPubMed
Masucci, M. G., Contreras-Salazar, B., Ragnar, E.et al. (1989). 5-Azacytidine up regulates the expression of Epstein–Barr virus nuclear antigen 2 (EBNA-2) through EBNA -6 and latent membrane protein in the Burkitt's lymphoma line real. J. Virol., 63(7), 3135–3141.Google Scholar
Matthews, D. A. and Russell, W. C. (1998). Adenovirus core protein V interacts with p32–a protein which is associated with both the mitochondria and the nucleus. J. Gen. Virol., 79(7), 1677–1685.CrossRefGoogle ScholarPubMed
Mattsson, K., Kiss, C., Platt, G. M.et al. (2002). Latent nuclear antigen of Kaposi's sarcoma herpesvirus/human herpesvirus-8 induces and relocates RING 3 to nuclear heterochromatin regions. J. Gen. Virol., 83(1), 179–188.CrossRefGoogle Scholar
Middleton, T. and Sugden, B. (1992). EBNA1 can link the enhancer element to the initiator element of the Epstein–Barr virus plasmid origin of DNA replication. J. Virol., 66(1), 489–495.Google ScholarPubMed
Miller, C. L., Lee, J. H., Kieff, E., and Longnecker, R. (1994). An integral membrane protein (LMP2) blocks reactivation of Epstein–Barr virus from latency following surface immunoglobulin crosslinking. Proc. Natl Acad. Sci. USA, 91(2), 772–776.CrossRefGoogle ScholarPubMed
Minarovits, J., Hu, L. F., Minarorits-Kormata, S., Klein, G., and Ernberg, I. (1994). Sequence-specific methylation inhibits the activity of the Epstein–Barr virus LMP 1 and BCR 2 enhancer-promoter regions. Virology, 200(2), 661–667.CrossRefGoogle Scholar
Muta, T., Kang, D., Kitajima, S., Fujiwara, T., and Hamasaki, N. (1997). p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J. Biol. Chem., 272(39), 24363–24370.CrossRefGoogle ScholarPubMed
Naranatt, P. P., Krishnan, H. H., Srojanovsky, S. R., Bloomer, C., Mathur, S., and Chandran, B. (2004). Host gene induction and transcriptional reprogramming in Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res., 64(1), 72–84.CrossRefGoogle Scholar
Niller, H. H., Glaser, G., Knuchel, R., and Wolf, H. (1995). Nucleoprotein complexes and DNA 5-ends at OriP of Epstein–Barr virus. J. Biol. Chem., 270, 12864–12868.CrossRefGoogle ScholarPubMed
Nilsson, T., Zetterberg, H., Wang, J. C., and Rymo, L. (2001). Promoter-proximal regulatory elements involved in OriP-EBNA1-independent and -dependent activation of the Epstein–Barr virus C promoter in B-lymphoid cell lines. J. Virol., 75(13), 5796–5811.CrossRefGoogle ScholarPubMed
Nonoyama, M. and Tanaka, A. (1975). Plasmid DNA as a possible state of Epstein–Barr virus genomes in nonproductive cells. Cold Spring Harb. Symp. Quant. Biol., 39(2), 807–810.CrossRefGoogle ScholarPubMed
Norio, P. and Schildkraut, C. L. (2001). Visualization of DNA replication on individual Epstein–Barr virus episomes. Science, 294(5550), 2361–2364.CrossRefGoogle ScholarPubMed
Norio, P., Schildkraut, C. L., and Yates, J. L. (2000). Initiation of DNA replication within OriP is dispensable for stable replication of the latent Epstein-Barr virus chromosome after infection of established cell lines. J. Virol., 74, 8563–8574.CrossRefGoogle ScholarPubMed
Ohshima, K., Suzumiya, J., Kanda, M., Kato, A., and Kikuchi, M. (1998). Integrated and episomal forms of Epstein–Barr virus (EBV) in EBV associated disease. Cancer Lett., 122(1–2), 43–50.CrossRefGoogle Scholar
Pfeffer, S., Sewer, A., Lagos-Quintana, M.et al. (2005). Identification of microRNAs of the herpesvirus family. Nat. Methods, 2, 269–276.CrossRefGoogle ScholarPubMed
Piolot, T., Tramier, M., Coppey, M., Nicolas, J. C., and Marechal, V. (2001). Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J. Virol., 75(8), 3948–3959.CrossRefGoogle ScholarPubMed
Platt, G. M., Simpson, G. R., Mittnacht, S., and Schule, T. F. (1999). Latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with RING 3, a homolog of the drosophila female sterile homeotic (fsh) gene [In Process Citation]. J. Virol., 73(12), 9789–9795.Google Scholar
Popescu, N. C., Chen, M. C., Simpson, S., Solinas, S., , and D.Paolo, J. A. (1993). A Burkitt lymphoma cell line with integrated Epstein–Barr virus at a stable chromosome modification site. Virology, 195(1), 248–251.CrossRefGoogle Scholar
Puglielli, M. T., Woisetschlaeger, M., and Speck, S. H. (1996). OriP is essential for EBNA gene promoter activity in Epstein-Barr virus immortalized lymphoblastoid cell lines. J. Virol., 70, 5758–5768.Google ScholarPubMed
Radkov, S. A., Kellam, P., and Boshoff, C. (2000). The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat. Med., 6(10), 1121–1127.CrossRefGoogle ScholarPubMed
Rainbow, L., Platt, G. M., Simpson, G. R.et al. (1997). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J. Virol., 71(8), 5915–5921.Google ScholarPubMed
Rawlins, D. R., Milman, G., Hayward, S. D., and Hayward, G. S. (1985). Sequence-specific DNA binding of the Epstein–Barr virus nuclear antigen (EBNA-1) to clustered sites in the plamid maintenance region. Cell, 42, 859–868.CrossRefGoogle Scholar
Reisman, D. and Sugden, B. (1986). Trans-activation of an Epstein–Barr viral transcriptional enhancer by the Epstein–Barr viral nuclear antigen 1. Mol. Cell. Biol., 5, 3838–3846.CrossRefGoogle Scholar
Reisman, D., Yates, J., and Sugden, B. (1985). A putative origin of replication of plasmids derived from Epstein–Barr virus is composed of two cis-acting components. Mol. Cell. Biol., 5, 1822–1832.CrossRefGoogle ScholarPubMed
Renne, R., Lagunoff, M., Zhong, W., and Ganem, D. (1996a). The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J. Virol., 70(11), 8151–8154.Google Scholar
Renne, R., Zhong, W., Herndier, B.et al. (1996b). Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat. Med., 2, 342–346.CrossRefGoogle Scholar
Renne, R., Barry, C., Dittmer, D., Compitello, N., Brown, P., and Ganem, D. (2001). Modulation of cellular and viral transcription by the latency-associated nuclears antigen (LANA/ORF73) of KSHV. J. Virol., 75, 458–468.CrossRefGoogle Scholar
Rivailler, P., Cho, Y. G., and Wang, F. (2002). Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J. Virol., 76(23), 12055–12068.CrossRefGoogle ScholarPubMed
Robertson, K. D. (2000). The role of DNA methylation in modulating Epstein–Barr virus gene expression. Curr. Top. Microbiol. Immunol., 249, 21–34.Google ScholarPubMed
Robertson, K. D. and Ambinder, R. F. (1997). Methylation of the Epstein–Barr virus genome in normal lymphocytes. Blood, 90(11), 4480–4484.Google ScholarPubMed
Robertson, K. D., Manns, A., Swinnen, L. J., Zong, J. C., Gulley, M. L., and Ambinder, R. F. (1996). CpG methylation of the major Epstein–Barr virus latency promoter in Burkitt's lymphoma and Hodgkin's disease. Blood, 88(8), 3129–3136.Google ScholarPubMed
Russo, J. J., Bohenzky, R. A., Chien, M. C.et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93, 14862–14867.CrossRefGoogle Scholar
Sadler, R., Wu, L., Forghani, B.et al. (1999). A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J. Virol., 73(7), 5722–5730.Google ScholarPubMed
Sadler, R. H. and Raab-Traub, N. (1995). Structural analyses of the Epstein–Barr virus BamHI A transcripts. J. Virol., 69(2), 1132–1141.Google ScholarPubMed
Saemundsen, A. K., Kallin, B., and Klein, G. (1980). Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein–Barr virus. Virology, 107, 557–561.CrossRefGoogle ScholarPubMed
Saemundsen, A. K., Perlmann, C., and Klein, G. (1983). Intracellular Epstein–Barr virus DNA is methylated in and around the EcoRI-J fragment in both producer and nonproducer cell lines. Virology, 126(2), 701–706.CrossRefGoogle ScholarPubMed
Salamon, D., Takacs, M., Myohanen, S., Marcsek, Z., Berencsi, G., and Minarovits, J. (2000). De novo DNA methylation at nonrandom founder sites 5′ from an unmethylated minimal origin of DNA replication in latent Epstein–Barr virus genomes. Biol. Chem., 381(2), 95–105.CrossRefGoogle ScholarPubMed
Salamon, D., Takacs, M., Vjvari, D.et al. (2001). Protein–DNA binding and CpG methylation at nucleotide resolution of latency-associated promoters Qp, Cp, and LMP 1p of Epstein–Barr virus. J. Virol., 75(6), 2584–2596.CrossRefGoogle Scholar
Samols, M. A., Hu, J., Skalsky, R. L., and Renne, R. (2005). Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol., 79, 9301–9305.CrossRefGoogle ScholarPubMed
Saridakis, V., Sheng, Y., Sarkari, F.et al. (2005). Structure of the p53 binding domain of HAUSP /USP7 bound to Epstein–Barr nuclear antigen 1 implications for EBV -mediated immortalization. Mol. Cell., 18, 25–36.CrossRefGoogle ScholarPubMed
Schaefer, B. C., Strominger, J. L., and Speck, S. H. (1997). Host-cell-determined methylation of specific Epstein–Barr virus promoters regulates the choice between distinct viral latency programs. Mol. Cell. Biol., 17(1), 364–377.CrossRefGoogle ScholarPubMed
Schepers, A., Ritzi, M., Bousset, K.et al. (2001). Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein–Barr virus. EMBO J., 20, 4588–4602.CrossRefGoogle ScholarPubMed
Schulz, T. F. (1998). Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8). J. Gen. Virol., 79(7), 1573–1591.CrossRefGoogle Scholar
Schwam, D. R., Luciano, R. L., Mahajan, S. S., Wong, L., and Wilson, A. C. (2000). Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J. Virol., 74(18), 8532–8540.CrossRefGoogle ScholarPubMed
Searles, R. P., Bergquam, E. P., Axthelm, M. K., and Wong, S. W. (1999). Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 73, 3040–3053.Google ScholarPubMed
Sears, J., Kolman, J., Wahl, G. M., and Aiyar, A. (2003). Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of OriP plasmids but is insufficient for transcription activation by EBNA 1. J. Virol., in press.CrossRefGoogle Scholar
Sears, J., Ujihara, M., Wong, S., Ott, C., Middeldorp, J., and Aiyar, A. (2004). The amino terminus of Epstein–Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J. Virol., 78, 11487–11505.CrossRefGoogle ScholarPubMed
Sexton, C. J. and Pagano, J. S. (1989). Analysis of the Epstein–Barr virus origin of plasmid replication (OriP) reveals an area of nucleosome sparing that spans the 3′ dyad. J. Virol., 63(12), 5505–5508.Google ScholarPubMed
Shaw, J. E., Levinger, L. F., and Carter, C. W. (1979). Nucleosomal structure of Epstein–Barr virus DNA in transformed cell lines. J. Virol., 29, 657–665.Google ScholarPubMed
Shinohara, H., Fukushi, M., Higuchi, M.et al. (2002). Chromosome binding site of latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus is essential for persistent episome maintenance and is functionally replaced by histone H1. J. Virol., 76(24), 12917–12924.CrossRefGoogle ScholarPubMed
Shirakata, M., Imadome, K. I., and Hirai, K. (1999). Requirement of replication licensing for the dyad symmetry element-dependent replication of the Epstein–Barr virus OriP minichromosome. Virology, 263(1), 42–54.CrossRefGoogle ScholarPubMed
Shire, K., Ceccarelli, D. F., Avolio-Hunter, T. M., and Frappier, L. (1999). EBP2, a human protein that interacts with sequences of the Epstein–Barr virus nuclear antigen 1 important for plasmid maintenance. J. Virol., 73, 2587–2595.Google ScholarPubMed
Snudden, D. K., Hearing, J., Smith, P. R., Grasser, F. A., and Griffin, B. E. (1994). EBNA-1, the major nuclear antigen of Epstein–Barr virus, resembles “RGG” RNA binding proteins. EMBO J., 13(20), 4840–4847.Google ScholarPubMed
Speck, S. H., Chatila, T., and Flemington, E. (1997). Reactivation of Epstein–Barr virus: regulation and function of the BZLF 1 gene. Trends Microbiol, 5, 399–405.CrossRefGoogle Scholar
Stedman, W., Deng, Z., Lu, F., and Lieberman, P. M. (2004). ORC, MCM, and histone hyperacetylation at the Kaposi's sarcoma-associated herpesvirus latent replication origin. J. Virol., 78(22), 12566–12575.CrossRefGoogle ScholarPubMed
Su, W., Middleton, T., Sugden, B., and Echols, H. (1991). DNA looping between the origin of replication of Epstein–Barr virus and its enhancer site: stabilization of an origin complex with Epstein–Barr nuclear antigen 1. Proc. Natl Acad. Sci. USA, 88, 10870–10874.CrossRefGoogle ScholarPubMed
Sugden, B. and Leight, E. R. (2001). EBV's plasmid replicon: an enigma in cis and trans. Curr. Top. Microbiol. Immunol., 258, 3–11.Google ScholarPubMed
Sugden, B. and Warren, N. (1989). A promoter of Esptein-Barr virus that can function during latent infection can be transactivated by EBNA -1, a viral protein required for viral DNA replication during latent infection. J. Virol., 63, 2644–2649.Google Scholar
Summers, H., Fleming, A., and Frappier, L. (1997). Requirements for Epstein-Barr nuclear antigen 1 (EBNA1)-induced permanganate sensitivity of the epstein–barr virus latent origin of DNA replication. J. Biol. Chem., 272(42), 26434–26440.CrossRefGoogle ScholarPubMed
Sung, N. S., Wilson, J., Davenport, M., Sista, N. D., and Pagano, J. S. (1994). Reciprocal regulation of the Epstein–Barr virus BamHI-F promoter by EBNA -1 and an E2F transcription factor. Mol. Cell. Biol., 14(11), 7144–7152.CrossRefGoogle ScholarPubMed
Szekely, L., Kiss, C., Mattson, K.et al. (1999). Human herpesvirus-8-encoded LNA -1 accumulates in heterochromatin-associated nuclear bodies. J. Gen. Virol., 80(11), 2889–2900.CrossRefGoogle ScholarPubMed
Talbot, S. J., Weiss, R. A., Kellam, P., and Boshoff, C. (1999). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology, 257(1), 84–94.CrossRefGoogle Scholar
Tokai, N., Fujimoto-Nishiyama, A., Toyoshima, Y.et al. (1996). Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J., 15(3), 457–467.Google ScholarPubMed
Scoy, S., Watakabe, I., Krainer, A. R., and Hearing, J. (2000). Human p32: A coactivator for Epstein–Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology, 275, 145–157.CrossRefGoogle ScholarPubMed
Viejo-Borbolla, A., Kati, E., Sheldon, J. A.et al. (2003). A domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated Herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J. Virol., 77(12), 7093–7100.CrossRefGoogle Scholar
Vogel, M., Wittmann, K., Endl, E.et al. (1998). Plasmid maintenance assay based on green fluorescent protein and FACS of mammalian cells. BioTechniques, 24, 540–544.Google ScholarPubMed
Wang, Y., Finan, J. E., Middledorp, J. M., and Hayward, S. D. (1997). P32/TAP, a cellular protein that interacts with EBNA -1 of Epstein–Barr virus. Virology, 236, 18–29.CrossRefGoogle ScholarPubMed
Watanabe, T., Sugaya, M., Atkins, A. M.et al. (2003). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells. J. Virol., 77(11), 6188–6196.CrossRefGoogle ScholarPubMed
Wen, L. T., Lai, P. K., Bradley, G., Tanaka, A., and Nonoyama, M. (1990). Interaction of Epstein–Barr viral (EBV) origin of replication (OriP) with EBNA -1 and cellular anti-EBNA-1 proteins. Virology, 178(1), 293–296.CrossRefGoogle ScholarPubMed
Wensing, B., Stuher, A., Jenkins, P., Hollyoake, M., Karstegl, C. E., and Farrell, P. J. (2001). Variant chromatin structure of the OriP region of Epstein–Barr virus and regulation of EBER 1 expression by upstream sequences and OriP. J. Virol., 75, 6235–6241.CrossRefGoogle ScholarPubMed
Wu, H., Ceccarelli, D. F., and Frappier, L. (2000). The DNA segregation mechanism of Epstein–Barr virus nuclear antigen 1. EMBO Rep., 1, 140–144.CrossRefGoogle ScholarPubMed
Wu, H., Kapoor, P., and Frappier, L. (2002). Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein–Barr nuclear antigen 1. J. Virol., 76(5), 2480–2490.CrossRefGoogle ScholarPubMed
Wuu, K. D., Chen, Y. J., and Wuu, S. W. (1996). Frequency and distribution of chromosomal integration sites of the Epstein–Barr virus genome. J. Formos. Med. Assoc., 95(12), 911–916.Google ScholarPubMed
Wysokenski, D. A. and Yates, J. L. (1989). Multiple EBNA 1-binding sites are required to form an EBNA 1-dependent enhancer and to activate a minimal replicative origin within OriP of Epstein–Barr virus. J. Virol., 63(6), 2657–2666.Google Scholar
Yates, J. and Camiolo, S. M. (1988). Dissection of DNA replication and enhancer activation funcitons of Epstein–Barr virus nuclear antigen 1. Cancer Cells, 6, 197–205.Google Scholar
Yates, J. L., and Guan, N. (1991). Epstein–Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J. Virol., 65(1), 483–488.Google Scholar
Yates, J. L., Warren, N., Reisman, P., and Sugden, B. (1984). cis-acting element from Epstein–Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl Acad. Sci. USA, 81, 3806–3810.CrossRefGoogle ScholarPubMed
Yates, J. L., Warren, N., and Sugden, B. (1985). Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature, 313, 812–815.CrossRefGoogle ScholarPubMed
Yates, J. L., Camiolo, S. M., and Bashaw, J. D. (2000). The minimal replicator of Epstein–Barr virus OriP. J. Virol., 74, 4512–4522.CrossRefGoogle ScholarPubMed
Yin, Y., Manoury, B., and Fahraeus, R. (2003). Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-endoded EBNA 1. Science, 301, 1334–1335.CrossRefGoogle Scholar
Yu, L., Zhang, Z., Lowenstein, P. M.et al. (1995). Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. J. Virol., 69(5), 3007–3016.Google ScholarPubMed
Zaldumbide, A., Ossevoort, M., Wiertz, E. J., and Hoeben, R. C. (2006). In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma Herpes virus. Mol Immunol., in press.
Zhang, D., Frappier, L., Gibbs, E., Hurwitz, J., and O'Donnell, M. (1998). Human RPA (hSSB) interacts with EBNA 1, the latent origin binding protein of Epstein–Barr virus. Nucl. Acids Res., 26, 631–637.CrossRefGoogle Scholar
Zhang, S. and Nonoyama, M. (1994). The cellular proteins that bind specifically to the Epstein–Barr virus origin of plasmid DNA replication belong to a gene family. Proc. Natl Acad. Sci. USA, 91(7), 2843–2847.CrossRefGoogle ScholarPubMed
Zhong, W., Wang, H., Herndier, B., and Ganem, D. (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA, 93(13), 6641–6646.CrossRefGoogle ScholarPubMed
Zimmermann, J. and Hammerschmidt, W. (1995). Structure and role of the terminal repeats of Epstein–Barr virus in processing and packaging of virion DNA. J. Virol., 69(5), 3147–3155.Google ScholarPubMed
Zhou, J., Chau, C. M., Deng, Z.et al. (2005). Cell cycle regulation of chromatin at an origin of DNA replication. Embo J., 24, 1406–1417.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×