Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-06T07:17:18.126Z Has data issue: false hasContentIssue false

31 - Human gammaherpesvirus immune evasion strategies

from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Robert E. Means
Affiliation:
Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
Sabine M. Lang
Affiliation:
Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
Jae U. Jung
Affiliation:
Division of Tumor Virology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The human γ-HVs are able to establish a lifelong, persistent infection that is largely clinically inapparent within the immunocompetent host. However, when these viruses are not kept in check, a variety of lymphoproliferative and neoplastic disorders result that will be detailed elsewhere within this volume. In brief, for HHV-8, also known as Kaposi's sarcoma-associated herpesvirus (KSHV), these neoplasias include Kaposi's sarcoma (KS), multicentric Castleman's disease (MCD) and primary effusion lymphoma (PEL). HHV-4, or Epstein–Barr virus (EBV), has been etiologically associated with infectious mononucleosis, Burkitt's lymphoma, nasopharyngeal carcinoma (NPC), Hodgkin's disease, hemophagocytic lymphohistiocytosis syndrome and some gastric cancers. Through coevolution with their hosts, these viruses have acquired a number of genes that act to set a fine balance between the uncontrolled, virally driven cellular proliferation seen in the immunocompromised host and complete elimination of infected cells by the immune responses. Several of these gene products cause selective suppression of normal immune system functioning and allow for an apathogenic, persistent infection.

Immune system overview

The immune system provides multiple mechanisms of protection from invading pathogens, whether viral, bacterial or parasitic. These immune responses include both broad spectrum, innate responses and highly specific, adaptive responses. Mechanisms of the innate response include the production of viral replication blocking interferons, opsonization and lysis by the complement cascade and natural antibodies, apoptosis, as well as clearance of infection by natural killer (NK) cells, macrophages, neutrophils and T-cells.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 559 - 586
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A. L. and Kenney, S. (2001). Epstein–Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J. Virol., 75(5), 2388–2399.CrossRefGoogle ScholarPubMed
Cabestre, Adrian F., Moreau, P., Riteau, B.et al. (1999). HLA-G expression in human melanoma cells: protection from NK cytolysis. J. Reprod. Immunol., 43(2), 183–193.CrossRefGoogle Scholar
Alles, V. V., Bottazzi, B., Peri, G.et al. (1994). Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes. Blood, 84(10), 3483–3493.Google ScholarPubMed
An, J., Sun, Y., Sun, R., and Rettig, M. B. (2003). Kaposi's sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-kappaB and JNK/AP1 pathways. Oncogene, 22(22), 3371–3385.CrossRefGoogle ScholarPubMed
Anderson, S. K., Ortaldo, J. R., and Vicar, Mc D. W. (2001). The ever-expanding Ly49 gene family: repertoire and signaling. Immunol. Rev., 181, 79–89.CrossRefGoogle ScholarPubMed
Aoki, Y., Jaffe, E. S., Chang, Y.et al. (1999). Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood, 93(12), 4034–4043.Google ScholarPubMed
Barbera, A. J., Chodaparambil, J. V., Kelley-Clarke, B.et al. (2006). Kaposi's sarcoma-associated herpesvirus LANA hitches a ride on the chromosome. Cell Cycle, 5(10), 1048–1052.CrossRefGoogle ScholarPubMed
Beagley, K. W., Eldridge, J. H., Lee, F., et al. (1989). Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J. Exp. Med., 169(6), 2133–2148.CrossRefGoogle ScholarPubMed
Beaulieu, A. D., Paquin, R., and Gosselin, J. (1995). Epstein–Barr virus modulates de novo protein synthesis in human neutrophils. Blood, 86(7), 2789–2798.Google ScholarPubMed
Belanger, C., Gravel, A., Tomoiu, A.et al. (2001). Human herpesvirus 8 viral FLICE-inhibitory protein inhibits Fas- mediated apoptosis through binding and prevention of procaspase-8 maturation. J. Hum. Virol., 4(2), 62–73.Google ScholarPubMed
Bellows, D. S., Howell, M., Pearson, C., Hazlewood, S. A., and Hardwick, J. M. (2002). Epstein–Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J. Virol., 76(5), 2469–2479.CrossRefGoogle ScholarPubMed
Bickham, K., Munz, C., Tsang, M. L.et al. (2001). EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J. Clin. Invest., 107(1), 121–130.CrossRefGoogle Scholar
Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P., and Salazar-Mather, T. P. (1999). Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol., 17, 189–220.CrossRefGoogle ScholarPubMed
Blake, N., Lee, S., Redchenko, I.et al. (1997). Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly–Ala)-containing protein requires exogenous processing. Immunity, 7(6), 791–802.CrossRefGoogle Scholar
Boehm, U., Klamp, T., Groot, M., and Howard, J. C. (1997). Cellular responses to interferon-gamma. Annu. Rev. Immunol., 15, 749–795.CrossRefGoogle ScholarPubMed
Borriello, F., Lederer, J., Scott, S., and Sharpe, A. H. (1997). MRC OX-2 defines a novel T cell costimulatory pathway. J. Immunol., 158(10), 4548–4554.Google ScholarPubMed
Boshoff, C., Endo, Y., Collins, P. D.et al. (1997). Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science, 278(5336), 290–294.CrossRefGoogle ScholarPubMed
Boyington, J. C., Brooks, A. G., and Sun, P. D. (2001). Structure of killer cell immunoglobulin-like receptors and their recognition of the class I MHC molecules. Immunol. Rev., 181; 66–78.CrossRefGoogle ScholarPubMed
Burger, R., Neipel, F., Fleckenstein, B.et al. (1998). Human herpesvirus type 8 interleukin-6 homologue is functionally active on human myeloma cells. Blood, 91(6), 1858–1863.Google ScholarPubMed
Burshtyn, D. N., Shin, J., Stebbins, C., and Long, E. O. (2000). Adhesion to target cells is disrupted by the killer cell inhibitory receptor. Curr. Biol., 10(13), 777–780.CrossRefGoogle ScholarPubMed
Burysek, L. and Pitha, P. M. (2001). Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J. Virol., 75(5), 2345–2352.CrossRefGoogle ScholarPubMed
Burysek, L., Yeow, W. S., and Pitha, P. M. (1999). Unique properties of a second human herpesvirus 8-encoded interferon regulatory factor (vIRF-2). J. Hum. Virol., 2(1), 19–32.Google Scholar
Chang, Y., Cesarman, E., Pessin, M. S.et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, 266(5192), 1865–1869.CrossRefGoogle ScholarPubMed
Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y., and Moore, P. S. (2002). Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science, 298(5597), 1432–1435.CrossRefGoogle ScholarPubMed
Cheng, E. H., Nicholas, J., Bellows, D. S.et al. (1997). A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl Acad. Sci. USA, 94(2), 690–694.CrossRefGoogle ScholarPubMed
Chung, Y. H., Means, R. E., Choi, J. K., Lee, B. S., and Jung, J. U. (2002). Kaposi's sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production. J. Virol., 76(10), 4688–4698.CrossRefGoogle ScholarPubMed
Cohen, J. I. and Lekstrom, K. (1999). Epstein–Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J. Virol., 73(9), 7627–7632.Google ScholarPubMed
Collins, T., Korman, A. J., Wake, C. T.et al. (1984). Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc. Natl Acad. Sci. USA, 81(15), 4917–4921.CrossRefGoogle ScholarPubMed
Coscoy, L. and Ganem, D. (2000). Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA, 97(14), 8051–8056.CrossRefGoogle ScholarPubMed
Coscoy, L. and Ganem, D. (2001). A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J. Clin. Invest., 107(12), 1599–1606.CrossRefGoogle ScholarPubMed
Coscoy, L., Sanchez, D. J., and Ganem, D. (2001). A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell. Biol., 155(7), 1265–1273.CrossRefGoogle ScholarPubMed
D'Addario, M., Ahmad, A., Xu, J. W., and Menezes, J. (1999). Epstein–Barr virus envelope glycoprotein gp350 induces NF-kappaB activation and IL-1beta synthesis in human monocytes-macrophages involving PKC and PI3-K. FASEB J., 13(15), 2203–2213.CrossRefGoogle ScholarPubMed
D'Addario, M., Ahmad, A., Morgan, A., and Menezes, J. (2000). Binding of the Epstein-Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF-alpha gene expression in monocytic cells via NF-kappaB involving PKC, PI3-K and tyrosine kinases. J. Mol. Biol., 298(5), 765–778.CrossRefGoogle Scholar
D'Souza, B., Rowe, M., and Walls, D. (2000). The bfl-1 gene is transcriptionally upregulated by the Epstein–Barr virus LMP1, and its expression promotes the survival of a Burkitt's lymphoma cell line. J. Virol., 74(14), 6652–6658.CrossRefGoogle ScholarPubMed
Dairaghi, D. J., Fan, R. A., McMaster, B. E., Hanley, M. R., and Schall, T. J. (1999). HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J. Biol. Chem., 274(31), 21569–21574.CrossRefGoogle ScholarPubMed
Waal Malefyt, R., Haanen, J., Spits, H.et al. (1991). Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med., 174(4), 915–924.CrossRefGoogle Scholar
Decaussin, G., Sbih-Lammali, F., Turenne-Tessier, M., Bouguermouh, A., and Ooka, T. (2000). Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res., 60(19), 5584–5588.Google ScholarPubMed
Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C., and Fearon, D. T. (1996). C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science, 271(5247), 348–350.CrossRefGoogle ScholarPubMed
Devergne, O., Hummel, M., Koeppen, H.et al. (1996). A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J. Virol., 70(2), 1143–1153.Google ScholarPubMed
Devergne, O., Birkenbach, M., and Kieff, E. (1997). Epstein–Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc. Natl Acad. Sci USA, 94(22), 12041–12046.CrossRefGoogle Scholar
Devergne, O., McFarland, Cahir E. D., Mosialos, G.et al. (1998). Role of the TRAF binding site and NF-kappaB activation in Epstein–Barr virus latent membrane protein 1-induced cell gene expression. J. Virol., 72(10), 7900–7908.Google ScholarPubMed
Devergne, O., Coulomb-L'Hermine, A., Capel, F., Moussa, M., and Capron, F. (2001). Expression of Epstein-Barr virus-induced gene 3, an interleukin-12 p40-related molecule, throughout human pregnancy: involvement of syncytiotrophoblasts and extravillous trophoblasts. Am. J. Pathol., 159(5), 1763–1776.CrossRefGoogle ScholarPubMed
Diehl, S. and Rincon, M. (2002). The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol., 39(9), 531–536.CrossRefGoogle ScholarPubMed
Dittmer, D. P. (2003). Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res., 63(9), 2010–2015.Google ScholarPubMed
Djerbi, M., Screpanti, V., Catrina, A. I.et al. (1999). The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med., 190(7), 1025–1032.CrossRefGoogle ScholarPubMed
Du, M. Q., Diss, T. C., Liu, H.et al. (2002). KSHV- and EBV-associated germinotropic lymphoproliferative disorder. Blood, 100(9), 3415–3418.CrossRefGoogle ScholarPubMed
Endres, M. J., Garlisi, C. G., Xiao, H., Shan, L., and Hedrick, J. A. (1999). The Kaposi's sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J. Exp. Med., 189(12), 1993–1998.CrossRefGoogle ScholarPubMed
Esteban, M., Garcia, M. A., Domingo-Gil, E.et al. (2003). The latency protein LANA2 from Kaposi's sarcoma-associated herpesvirus inhibits apoptosis induced by dsRNA-activated protein kinase but not RNase L activation. J. Gen. Virol., 84(6), 1463–1470.CrossRefGoogle Scholar
Fakhari, F. D. and Dittmer, D. P. (2002). Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J. Virol., 76(12), 6213–6223.CrossRefGoogle ScholarPubMed
Feistritzer, C., Kaneider, N. C., Sturn, D. H.et al. (2003). Expression and function of the vascular endothelial growth factor receptor FLT1 in human eosinophils. Am. J. Respir. Cell. Mol. Biol.,Google Scholar
Feldman, G. M., Petricoin, E. F., 3rd, David, M., Larner, A. C., and Finbloom, D. S. (1994). Cytokines that associate with the signal transducer gp130 activate the interferon-induced transcription factor p91 by tyrosine phosphorylation. J. Biol. Chem., 269(14), 10747–10752.Google ScholarPubMed
Feng, P., Park, J., Lee, B. S.et al. (2002). Kaposi's sarcoma-associated herpesvirus mitochondrial K7 protein targets a cellular calcium-modulating cyclophilin ligand to modulate intracellular calcium concentration and inhibit apoptosis. J. Virol., 76(22), 11491–11504.CrossRefGoogle ScholarPubMed
Feng, P., Scott, C. W., Cho, N. H.et al. (2004). Kaposi's sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protein to promote protein degradation. Mol. Cell. Biol., 24(9), 3938–3948.CrossRefGoogle ScholarPubMed
Foghsgaard, L. and Jaattela, M. (1997). The ability of BHRF1 to inhibit apoptosis is dependent on stimulus and cell type. J. Virol., 71(10), 7509–7517.Google ScholarPubMed
Foster-Cuevas, M., Wright, G. J., Puklavec, M. J., Brown, M. H., and Barclay, A. N. (2004). Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J. Virol., 78(14), 7667–7676.CrossRefGoogle ScholarPubMed
Foussat, A., Wijdenes, J., Bouchet, L.et al. (1999). Human interleukin-6 is in vivo an autocrine growth factor for human herpesvirus-8-infected malignant B lymphocytes. Eur. Cytokine Netw., 10(4), 501–508.Google ScholarPubMed
Gao, S. J., Boshoff, C., Jayachandra, S.et al. (1997). KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene, 15(16), 1979–1985.CrossRefGoogle ScholarPubMed
Gorczynski, R. M., Chen, Z., Fu, X. M., and Zeng, H. (1998). Increased expression of the novel molecule OX-2 is involved in prolongation of murine renal allograft survival. Transplantation, 65(8), 1106–1114.CrossRefGoogle ScholarPubMed
Gorczynski, R. M., Cattral, M. S., Chen, Z.et al. (1999). An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J. Immunol., 163(3), 1654–1660.Google ScholarPubMed
Gosselin, J., Savard, M., Tardif, M., Flamand, L., and Borgeat, P. (2001). Epstein–Barr virus primes human polymorphonuclear leucocytes for the biosynthesis of leukotriene B4. Clin. Exp. Immunol., 126(3), 494–502.CrossRefGoogle ScholarPubMed
Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R., and Ferguson, T. A. (1995). Fas ligand-induced apoptosis as a mechanism of immune privilege. Science, 270(5239), 1189–1192.CrossRefGoogle ScholarPubMed
Grundhoff, A. and Ganem, D. (2001). Mechanisms governing expression of the v-FLIP gene of Kaposi's sarcoma- associated herpesvirus. J. Virol., 75(4), 1857–1863.CrossRefGoogle ScholarPubMed
Gupta, R., Jung, E., and Brunak, S. (2002). Prediction of N-glycosylation sites in human proteins. In preparation.Google Scholar
Guschin, D., Rogers, N., Briscoe, J.et al. (1995). A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J., 14(7), 1421–1429.Google Scholar
Haller, O. and Kochs, G. (2002). Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic, 3(10), 710–717.CrossRefGoogle ScholarPubMed
Hatfull, G., Bankier, A. T., Barrell, B. G., and Farrell, P. J. (1988). Sequence analysis of Raji Epstein–Barr virus DNA. Virology, 164(2), 334–340.CrossRefGoogle ScholarPubMed
Hayes, D. P., Brink, A. A., Vervoort, M. B.et al. (1999). Expression of Epstein-Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases. Mol. Pathol., 52(2), 97–103.CrossRefGoogle ScholarPubMed
Henderson, S., Rowe, M., Gregory, C.et al. (1991). Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell, 65(7), 1107–1115.CrossRefGoogle ScholarPubMed
Hennessy, K. and Kieff, E. (1983). One of two Epstein–Barr virus nuclear antigens contains a glycine-alanine copolymer domain. Proc. Natl Acad. Sci. USA, 80(18), 5665–5669.CrossRefGoogle ScholarPubMed
Hideshima, T., Chauhan, D., Teoh, G.et al. (2000). Characterization of signaling cascades triggered by human interleukin-6 versus Kaposi's sarcoma-associated herpes virus-encoded viral interleukin 6. Clin. Cancer Res., 6(3), 1180–1189.Google ScholarPubMed
Hsu, D. H., Malefyt, Waal R., Fiorentino, D. F.et al. (1990). Expression of interleukin-10 activity by Epstein–Barr virus protein BCRF1. Science, 250(4982), 830–832.CrossRefGoogle ScholarPubMed
Huang, Q., Petros, A. M., Virgin, H. W., Fesik, S. W., and Olejniczak, E. T. (2003). Solution structure of the BHRF1 protein from Epstein–Barr virus, a homolog of human Bcl-2. J. Mol. Biol., 332(5), 1123–1130.CrossRefGoogle ScholarPubMed
Inagi, R., Okuno, T., Ito, M.et al. (1999). Identification and characterization of human herpesvirus 8 open reading frame K9 viral interferon regulatory factor by a monoclonal antibody. J. Hum. Virol., 2(2), 63–71.Google ScholarPubMed
Inghirami, G., Nakamura, M., Balow, J. E., Notkins, A. L., and Casali, P. (1988). Model for studying virus attachment: identification and quantitation of Epstein–Barr virus-binding cells by using biotinylated virus in flow cytometry. J. Virol., 62(7), 2453–2463.Google ScholarPubMed
Ishido, S., Choi, J. K., Lee, B. S.et al. (2000a). Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity, 13(3), 365–374.CrossRefGoogle Scholar
Ishido, S., Wang, C., Lee, B. S., Cohen, G. B., and Jung, J. U. (2000b). Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol., 74(11), 5300–5309.CrossRefGoogle Scholar
Jenner, R. G., Alba, M. M., Boshoff, C., and Kellam, P. (2001). Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol., 75(2), 891–902.CrossRefGoogle ScholarPubMed
Jones, K. D., Aoki, Y., Chang, Y.et al. (1999). Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi's sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood, 94(8), 2871–2879.Google ScholarPubMed
Kawaguchi, Y., Nakajima, K., Igarashi, M.et al. (2000). Interaction of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J. Virol., 74(21), 10104–10111.CrossRefGoogle ScholarPubMed
Kawanishi, M. (1997). Epstein–Barr virus BHRF1 protein protects intestine 407 epithelial cells from apoptosis induced by tumor necrosis factor alpha and anti-Fas antibody. J. Virol., 71(4), 3319–3322.Google ScholarPubMed
Kawanishi, M., Tada-Oikawa, S., and Kawanishi, S. (2002). Epstein–Barr virus BHRF1 functions downstream of Bid cleavage and upstream of mitochondrial dysfunction to inhibit TRAIL-induced apoptosis in BJAB cells. Biochem. Biophys. Res. Commun., 297(3), 682–687.CrossRefGoogle ScholarPubMed
Kawano, M., Hirano, T., Matsuda, T.et al. (1988). Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature, 332(6159), 83–85.CrossRefGoogle ScholarPubMed
Kenney, S., Holley-Guthrie, E., Mar, E. C., and Smith, M. (1989). The EpsteinBarr virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. J. Virol., 63(9), 3878–3883.Google Scholar
Khanna, R., Burrows, S. R., Moss, D. J., and Silins, S. L. (1996). Peptide transporter (TAP-1 and TAP-2)-independent endogenous processing of EpsteinBarr virus (EBV) latent membrane protein 2A: implications for cytotoxic T-lymphocyte control of EBV-associated malignancies. J. Virol., 70(8), 5357–5362.Google Scholar
Kirchhoff, S., Sebens, T., Baumann, S.et al. (2002). Viral IFN-regulatory factors inhibit activation-induced cell death via two positive regulatory IFN-regulatory factor 1-dependent domains in the CD95 ligand promoter. J. Immunol., 168(3), 1226–1234.CrossRefGoogle ScholarPubMed
Kishimoto, T., Tanaka, T., Yoshida, K., Akira, S., and Taga, T. (1995). Cytokine signal transduction through a homo- or heterodimer of gp130. Ann. NY Acad. Sci., 766: 224–234.CrossRefGoogle ScholarPubMed
Kledal, T. N., Rosenkilde, M. M., Coulin, F.et al. (1997). A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science, 277(5332), 1656–1659.CrossRefGoogle ScholarPubMed
Klein, B., Zhang, X. G., Jourdan, M.et al. (1989). Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood, 73(2), 517–526.Google ScholarPubMed
Klickstein, L. B., Wong, W. W., Smith, J. A.et al. (1987). Human C3b/C4b receptor (CR1). Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristics of C3/C4 binding proteins. J. Exp. Med., 165(4), 1095–1112.CrossRefGoogle ScholarPubMed
Klouche, M., Brockmeyer, N., Knabbe, C., and Rose-John, S. (2002). Human herpesvirus 8-derived viral IL-6 induces PTX3 expression in Kaposi's sarcoma cells. Aids, 16(8), F9–F18.CrossRefGoogle ScholarPubMed
Kochs, G., Janzen, C., Hohenberg, H., and Haller, O. (2002). Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl Acad. Sci. USA, 99(5), 3153–3158.CrossRefGoogle ScholarPubMed
Komatsu, F. and Kajiwara, M. (1998). Relation of natural killer cell line NK-92-mediated cytolysis (NK-92- lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol. Res., 10(10), 483–489.Google ScholarPubMed
Krishnan, H. H., Naranatt, P. P., Smith, M. S.et al. (2004). Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J. Virol., 78(7), 3601–3620.CrossRefGoogle Scholar
Kumar, K. P., McBride, K. M., Weaver, B. K., Dingwall, C., and Reich, N. C. (2000). Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1. Mol. Cell. Biol., 20(11), 4159–4168.CrossRefGoogle ScholarPubMed
LaBonte, M. L., Hershberger, K. L., Korber, B., and Letvin, N. L. (2001). The KIR and CD94/NKG2 families of molecules in the rhesus monkey. Immunol. Rev., 183: 25–40.CrossRefGoogle ScholarPubMed
Larochelle, B., Flamand, L., Gourde, P., Beauchamp, D., and Gosselin, J. (1998). Epstein–Barr virus infects and induces apoptosis in human neutrophils. Blood, 92(1), 291–299.Google ScholarPubMed
Lautscham, G., Rickinson, A., and Blake, N. (2003). TAP-independent antigen presentation on MHC class I molecules: lessons from Epstein–Barr virus. Microbes Infect., 5(4), 291–299.CrossRefGoogle ScholarPubMed
Law, S. K. (1988). C3 receptors on macrophages. J. Cell. Sci. Suppl., 9, 67–97.CrossRefGoogle ScholarPubMed
Gal, F. A., Riteau, B., Sedlik, C.et al. (1999). HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int. Immunol., 11(8), 1351–1356.CrossRefGoogle ScholarPubMed
Lee, S. P., Thomas, W. A., Blake, N. W., and Rickinson, A. B. (1996). Transporter (TAP)-independent processing of a multiple membrane-spanning protein, the Epstein–Barr virus latent membrane protein 2. Eur. J. Immunol., 26(8), 1875–1883.CrossRefGoogle ScholarPubMed
Lee, S. P., Brooks, J. M., Al-Jarrah, H.et al. (2004). CD8 T cell recognition of endogenously expressed epstein-barr virus nuclear antigen 1. J. Exp. Med., 199(10), 1409–1420.CrossRefGoogle ScholarPubMed
Leen, A., Meij, P., Redchenko, I.et al. (2001). Differential immunogenicity of Epstein–Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J. Virol., 75(18), 8649–8659.CrossRefGoogle ScholarPubMed
Leonard, W. J. (2001). Role of Jak kinases and STATs in cytokine signal transduction. Int. J. Hematol., 73(3), 271–277.CrossRefGoogle ScholarPubMed
Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A., and Masucci, M. G. (1997). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA, 94(23), 12616–12621.CrossRefGoogle ScholarPubMed
Li, H. and Nicholas, J. (2002). Identification of amino acid residues of gp130 signal transducer and gp80 alpha receptor subunit that are involved in ligand binding and signaling by human herpesvirus 8-encoded interleukin-6. J. Virol., 76(11), 5627–5636.CrossRefGoogle ScholarPubMed
Li, H., Wang, H. and Nicholas, J. (2001). Detection of direct binding of human herpesvirus 8-encoded interleukin- 6 (vIL-6) to both gp130 and IL-6 receptor (IL-6R) and identification of amino acid residues of vIL-6 important for IL-6R-dependent and – independent signaling. J. Virol., 75(7), 3325–3334.CrossRefGoogle ScholarPubMed
Li, M., Lee, H., Yoon, D. W.et al. (1997). Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J. Virol., 71(3), 1984–1991.Google ScholarPubMed
Li, M., Lee, H., Guo, J.et al. (1998). Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor. J. Virol., 72(7), 5433–5440.Google ScholarPubMed
Li, M., Damania, B., Alvarez, X.et al. (2000). Inhibition of p300 histone acetyltransferase by viral interferon regulatory factor. Mol. Cell. Biol., 20(21), 8254–8263.CrossRefGoogle ScholarPubMed
Lin, R., Genin, P., Mamane, Y.et al. (2001). HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene, 20(7), 800–811.CrossRefGoogle ScholarPubMed
Liu, C., Okruzhnov, Y., Li, H., and Nicholas, J. (2001). Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J. Virol., 75(22), 10933–10940.CrossRefGoogle ScholarPubMed
Liu, Y., Malefyt, Waal R., Briere, F.et al. (1997). The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J. Immunol., 158(2), 604–613.Google ScholarPubMed
Long, E. O., Barber, D. F., Burshtyn, D. N.et al. (2001). Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol. Rev., 181: 223–233.CrossRefGoogle Scholar
Lorenzo, M. E., Jung, J. U., and Ploegh, H. L. (2002). Kaposi's sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J. Virol., 76(11), 5522–5531.CrossRefGoogle ScholarPubMed
Low, W., Harries, M., Ye, H.et al. (2001). Internal ribosome entry site regulates translation of Kaposi's sarcoma-associated herpesvirus FLICE inhibitory protein. J. Virol., 75(6), 2938–2945.CrossRefGoogle ScholarPubMed
Lubyova, B. and Pitha, P. M. (2000). Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol., 74(17), 8194–8201.CrossRefGoogle ScholarPubMed
Lutticken, C., Wegenka, U. M., Yuan, J.et al. (1994). Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science, 263(5143), 89–92.CrossRefGoogle ScholarPubMed
Mantovani, A., Garlanda, C., and Bottazzi, B. (2003). Pentraxin 3, a non-redundant soluble pattern recognition receptor involved in innate immunity. Vaccine, 21 (Suppl. 2), S43–S47.CrossRefGoogle ScholarPubMed
Marshall, N. A., Vickers, M. A., and Barker, R. N. (2003). Regulatory T cells secreting IL-10 dominate the immune response to EBV latent membrane protein 1. J. Immunol., 170(12), 6183–6189.CrossRefGoogle ScholarPubMed
Marshall, W. L., Yim, C., Gustafson, E.et al. (1999). Epstein–Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J. Virol., 73(6), 5181–5185.Google ScholarPubMed
Masy, E., Adriaenssens, E., Montpellier, C.et al. (2002). Human monocytic cell lines transformed in vitro by Epstein–Barr virus display a type II latency and LMP-1-dependent proliferation. J. Virol., 76(13), 6460–6472.CrossRefGoogle ScholarPubMed
Matsuda, G., Nakajima, K., Kawaguchi, Y., Yamanashi, Y., and Hirai, K. (2003). Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) forms complexes with a cellular anti-apoptosis protein Bcl-2 or its EBV counterpart BHRF1 through HS1-associated protein X-1. Microbiol. Immunol., 47(1), 91–99.CrossRefGoogle ScholarPubMed
McColl, S. R., Roberge, C. J., Larochelle, B., and Gosselin, J. (1997). EBV induces the production and release of IL-8 and macrophage inflammatory protein-1 alpha in human neutrophils. J. Immunol., 159(12), 6164–6168.Google ScholarPubMed
McVicar, D. W. and Burshtyn, D. N. (2001). Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. Sci. STKE, 2001(75), RE1.Google ScholarPubMed
Means, R. E., Ishido, S., Alvarez, X., and Jung, J. U. (2002). Multiple endocytic trafficking pathways of MHC class I molecules induced by a Herpesvirus protein. EMBO J., 21(7), 1–12.CrossRefGoogle ScholarPubMed
Medzhitov, R. and Janeway, C. Jr. (2000). Innate immunity. N. Engl. J. Med., 343(5), 338–344.CrossRefGoogle ScholarPubMed
Meij, P., Leen, A., Rickinson, A. B.et al. (2002). Identification and prevalence of CD8(+) T-cell responses directed against Epstein–Barr virus-encoded latent membrane protein 1 and latent membrane protein 2. Int. J. Cancer, 99(1), 93–99.CrossRefGoogle ScholarPubMed
Miyamoto, N. G., Jacobs, B. L., and Samuel, C. E. (1983). Mechanism of interferon action. Effect of double-stranded RNA and the 5′-O-monophosphate form of 2′,5′-oligoadenylate on the inhibition of reovirus mRNA translation in vitro. J. Biol. Chem., 258(24), 15232–15237.Google ScholarPubMed
Molden, J., Chang, Y., You, Y., Moore, P. S., and Goldsmith, M. A. (1997). A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J. Biol. Chem., 272(31), 19625–19631.CrossRefGoogle ScholarPubMed
Moore, M. D., Cannon, M. J., Sewall, A.et al. (1991). Inhibition of Epstein–Barr virus infection in vitro and in vivo by soluble CR2 (CD21) containing two short consensus repeats. J. Virol., 65(7), 3559–3565.Google ScholarPubMed
Moore, P. S., Boshoff, C., Weiss, R. A., and Chang, Y. (1996). Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science, 274(5293), 1739–1744.CrossRefGoogle ScholarPubMed
Morrison, T. E., Mauser, A., Wong, A., Ting, J. P., and Kenney, S. C. (2001). Inhibition of IFN-gamma signaling by an Epstein–Barr virus immediate-early protein. Immunity, 15(5), 787–799.CrossRefGoogle ScholarPubMed
Mullick, J., Bernet, J., Singh, A. K., Lambris, J. D., and Sahu, A. (2003). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) open reading frame 4 protein (kaposica) is a functional homolog of complement control proteins. J. Virol., 77(6), 3878–3881.CrossRefGoogle ScholarPubMed
Munz, C., Bickham, K. L., Subklewe, M.et al. (2000). Human CD4(+) T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J. Exp. Med., 191(10): 1649–1660.CrossRefGoogle ScholarPubMed
Murakami, M., Hibi, M., Nakagawa, N.et al. (1993). IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science, 260(5115), 1808–1810.CrossRefGoogle ScholarPubMed
Muzio, M., Chinnaiyan, A. M., Kischkel, F. C.et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell, 85(6), 817–827.CrossRefGoogle ScholarPubMed
Nakamura, H., Li, M., Zarycki, J., and Jung, J. U. (2001). Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J. Virol., 75(16), 7572–7582.CrossRefGoogle ScholarPubMed
Nakano, K., Isegawa, Y., Zou, P.et al. (2003). Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded vMIP-I and vMIP-II induce signal transduction and chemotaxis in monocytic cells. Arch. Virol., 148(5), 871–890.CrossRefGoogle ScholarPubMed
Nakashima, K. and Taga, T. (1998). gp130 and the IL-6 family of cytokines: signaling mechanisms and thrombopoietic activities. Semin. Hematol., 35(3), 210–221.Google ScholarPubMed
Narazaki, M., Witthuhn, B. A., Yoshida, K.et al. (1994). Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gp130. Proc. Natl Acad. Sci. USA, 91(6), 2285–2289.CrossRefGoogle ScholarPubMed
Nauta, A. J., Bottazzi, B., Mantovani, A.et al. (2003). Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur. J. Immunol., 33(2), 465–473.CrossRefGoogle Scholar
Navarro, F., Llano, M., Bellon, T.et al. (1999). The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. Eur. J. Immunol., 29(1), 277–283.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Neipel, F., Albrecht, J. C., Ensser, A.et al. (1997a). Human herpesvirus 8 encodes a homolog of interleukin-6. J. Virol., 71(1), 839–842.Google Scholar
Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997b). Cell- homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?J. Virol., 71(6), 4182–4187.Google Scholar
Nicholas, J., Ruvolo, V., Zong, J.et al. (1997a). A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins. J. Virol., 71(3), 1963–1974.Google Scholar
Nicholas, J., Ruvolo, V. R., Burns, W. H.et al. (1997b). Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat. Med., 3(3), 287–292.CrossRefGoogle Scholar
Nieuwenhuis, E. E., Neurath, M. F., Corazza, N.et al. (2002). Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-deficient mice. Proc. Natl Acad. Sci. USA, 99(26), 16951–19956.CrossRefGoogle Scholar
Ojala, P. M., Tiainen, M., Salven, P.et al. (1999). Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res., 59(19), 4984–4989.Google ScholarPubMed
Ojala, P. M., Yamamoto, K., Castanos-Velez, E.et al. (2000). The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl- 2. Natl Cell. Biol., 2(11), 819–825.CrossRefGoogle ScholarPubMed
Osborne, J., Moore, P. S., and Chang, Y. (1999). KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum. Immunol., 60(10), 921–927.CrossRefGoogle ScholarPubMed
Packham, G., Economou, A., Rooney, C. M., Rowe, D. T., and Farrell, P. J. (1990). Structure and function of the Epstein-Barr virus BZLF1 protein. J. Virol., 64(5), 2110–2116.Google ScholarPubMed
Paludan, C., Bickham, K., Nikiforow, S.et al. (2002). Epstein–Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt's lymphoma cells. J. Immunol., 169(3), 1593–1603.CrossRefGoogle ScholarPubMed
Papa, S., Gregorini, A., Pascucci, E.et al. (1994). Inhibition of NK binding to K562 cells induced by MAb saturation of adhesion molecules on target membrane. Eur. J. Histochem., 38(Suppl 1), 83–90.Google ScholarPubMed
Parravinci, C., Corbellino, M., Paulli, M.et al. (1997). Expression of a virus-derived cytokine, KSHV vIL-6, in HIV-seronegative Castleman's disease. Am. J. Pathol., 151(6), 1517–1522.Google Scholar
Paulose-Murphy, M., Ha, N. K., Xiang, C.et al. (2001). Transcription program of human herpesvirus 8 (kaposi's sarcoma-associated herpesvirus). J. Virol., 75(10), 4843–4853.CrossRefGoogle Scholar
Pflanz, S., Timans, J. C., Cheung, J.et al. (2002). IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity, 16(6), 779–790.CrossRefGoogle ScholarPubMed
Pober, J. S., Gimbrone, M. A. Jr., Cotran, R. S.et al. (1983). Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J. Exp. Med., 157(4), 1339–1353.CrossRefGoogle ScholarPubMed
Pozharskaya, V. P., Weakland, L. L., Zimring, J. C.et al. (2004). Short duration of elevated vIRF-1 expression during lytic replication of human herpesvirus 8 limits its ability to block antiviral responses induced by alpha interferon in BCBL-1 cells. J. Virol., 78(12), 6621–6635.CrossRefGoogle ScholarPubMed
Prota, A. E., Sage, D. R., Stehle, T., and Fingeroth, J. D. (2002). The crystal structure of human CD21: Implications for Epstein-Barr virus and C3d binding. Proc. Natl Acad. Sci. USA, 99(16), 10641–10646.CrossRefGoogle ScholarPubMed
Rajagopalan, S. and Long, E. O. (1999). A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J. Exp. Med., 189(7), 1093–1100.CrossRefGoogle ScholarPubMed
Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S., and Chang, Y. (2001). Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol., 75(1), 429–498.CrossRefGoogle ScholarPubMed
Robberson, D. L., Thornton, G. B., Marshall, M. V., and Arlinghaus, R. B. (1982). Novel circular forms of mengovirus-specific double-stranded RNA detected by electron microscopy. Virology, 116(2), 454–467.CrossRefGoogle ScholarPubMed
Roberge, C. J., Larochelle, B., Rola-Pleszczynski, M., and Gosselin, J. (1997). Epstein–Barr virus induces GM-CSF synthesis by monocytes: effect on EBV-induced IL-1 and IL-1 receptor antagonist production in neutrophils. Virology, 238(2), 344–352.CrossRefGoogle ScholarPubMed
Rolle, A., Mousavi-Jazi, M., Eriksson, M.et al. (2003). Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J. Immunol., 171(2), 902–9028.CrossRefGoogle ScholarPubMed
Rooney, C. M., Rowe, D. T., Ragot, T., and Farrell, P. J. (1989). The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J. Virol., 63(7), 3109–3116.Google ScholarPubMed
Rovere, P., Peri, G., Fazzini, F.et al. (2000). The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dendritic cells. Blood, 96(13), 4300–4306.Google Scholar
Russo, J. J., Bohenzky, R. A., Chien, M. C.et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93(25), 14862–14867.CrossRefGoogle Scholar
Saifuddin, M., Ghassemi, M., Patki, C., Parker, C. J., and Spear, G. T. (1994). Host cell components affect the sensitivity of HIV type 1 to complement-mediated virolysis. AIDS Res Hum Retroviruses, 10(7), 829–837.Google ScholarPubMed
Sakaguchi, K., Herrera, J. E., Saito, S.et al. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev., 12(18), 2831–2841.CrossRefGoogle ScholarPubMed
Sallusto, F., Lenig, D., Mackay, C. R., and Lanzavecchia, A. (1998). Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med., 187(6), 875–883.CrossRefGoogle Scholar
Sanchez, D. J., Coscoy, L., and Ganem, D. (2002). Functional Organization of MIR2, a Novel Viral Regulator of Selective Endocytosis. J. Biol. Chem., 277(8), 6124–6130.CrossRefGoogle ScholarPubMed
Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J., and Chang, Y. (1997). Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Natl Med., 3(3), 293–298.CrossRefGoogle ScholarPubMed
Sarid, R., Wiezorek, J. S., Moore, P. S., and Chang, Y. (1999). Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J. Virol., 73(2), 1438–1446.Google ScholarPubMed
Sato, M., Taniguchi, T., and Tanaka, N. (2001). The interferon system and interferon regulatory factor transcription factors – studies from gene knockout mice. Cytokine Growth Factor Rev., 12(2–3), 133–142.CrossRefGoogle ScholarPubMed
Savard, M., Belanger, C., Tremblay, M. J.et al. (2000). EBV suppresses prostaglandin E2 biosynthesis in human monocytes. J. Immunol., 164(12), 6467–6473.CrossRefGoogle ScholarPubMed
Seo, T., Lee, D., Lee, B., Chung, J. H., and Choe, J. (2000). Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) binds to, and inhibits transactivation of, CREB-binding protein. Biochem. Biophys. Res. Commun., 270(1), 23–27.CrossRefGoogle ScholarPubMed
Seo, T., Park, J., Lee, D., Hwang, S. G., and Choe, J. (2001). Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J. Virol., 75(13), 6193–6198.CrossRefGoogle ScholarPubMed
Seo, T., Lee, D., Shim, Y. S.et al. (2002). Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J. Virol., 76(17), 8797–8807.CrossRefGoogle ScholarPubMed
Sheng, W., Decaussin, G., Sumner, S., and Ooka, T. (2001). N-terminal domain of BARF1 gene encoded by Epstein–Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene, 20(10), 1176–1178.CrossRefGoogle ScholarPubMed
Sheng, W., Decaussin, G., Ligout, A., Takada, K., and Ooka, T. (2003). Malignant transformation of Epstein-Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J. Virol., 77(6), 3859–3865.CrossRefGoogle ScholarPubMed
Sozzani, S., Luini, W., Bianchi, G.et al. (1998). The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood, 92(11), 4036–4039.Google ScholarPubMed
Spiller, O. B., Blackbourn, D. J., Mark, L., Proctor, D. G., and Blom, A. M. (2003). Functional activity of the complement regulator encoded by Kaposi's sarcoma-associated herpesvirus. J. Biol. Chem., 278(11), 9283–9289.CrossRefGoogle ScholarPubMed
Spiller, O. B., Morgan, B. P., Tufaro, F., and Devine, D. V. (1996). Altered expression of host-encoded complement regulators on human cytomegalovirus-infected cells. Eur. J. Immunol., 26(7), 1532–1538.CrossRefGoogle ScholarPubMed
Spiller, O. B., Robinson, M., O'Donnell, E.et al. (2003b). Complement regulation by Kaposi's sarcoma-associated herpesvirus ORF4 protein. J. Virol., 77(1), 592–599.CrossRefGoogle Scholar
Stahl, N., Boulton, T. G., Farruggella, T.et al. (1994). Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science, 263(5143), 92–95.CrossRefGoogle ScholarPubMed
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998). How cells respond to interferons. Annu. Rev. Biochem., 67, 227–264.CrossRefGoogle ScholarPubMed
Staskus, K. A., Zhong, W., Gebhard, K.et al. (1997). Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol., 71(1), 715–719.Google ScholarPubMed
Stine, J. T., Wood, C., Hill, M.et al. (2000). KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood, 95(4), 1151–1157.Google ScholarPubMed
Strockbine, L. D., Cohen, J. I., Farrah, T.et al. (1998). The Epstein–Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J. Virol., 72(5), 4015–4021.Google ScholarPubMed
Sun, Q., Matta, H., and Chaudhary, P. M. (2003). The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-kappa B activation. Blood, 101(5), 1956–1961.CrossRefGoogle ScholarPubMed
Sun, R., Lin, S. F., Staskus, K.et al. (1999). Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol., 73(3), 2232–2242.Google ScholarPubMed
Swaminathan, S., Hesselton, R., Sullivan, J., and Kieff, E. (1993). Epstein–Barr virus recombinants with specifically mutated BCRF1 genes. J. Virol., 67(12), 7406–7413.Google ScholarPubMed
Tabiasco, J., Vercellone, A., Meggetto, F.et al. (2003). Acquisition of viral receptor by NK cells through immunological synapse. J. Immunol., 170(12), 5993–5998.CrossRefGoogle ScholarPubMed
Takayama, T., Morelli, A. E., Onai, N.et al. (2001). Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J. Immunol., 166(12), 7136–71643.CrossRefGoogle ScholarPubMed
Taniguchi, T., Ogasawara, K., Takaoka, A., and Tanaka, N. (2001). IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol., 19: 623–655.CrossRefGoogle ScholarPubMed
Tellam, J., Connolly, G., Green, K. J.et al. (2004). Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr virus-encoded nuclear antigen 1. J. Exp. Med., 199(10), 1421–1431.CrossRefGoogle ScholarPubMed
Thome, M., Schneider, P., Hofmann, K.et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386(6624), 517–521.CrossRefGoogle ScholarPubMed
Thomis, D. C. and Samuel, C. E. (1992). Mechanism of interferon action: autoregulation of RNA-dependent P1/eIF-2 alpha protein kinase (PKR) expression in transfected mammalian cells. Proc. Natl Acad. Sci. USA, 89(22), 10837–10841.CrossRefGoogle ScholarPubMed
Volz, A., Wende, H., Laun, K., and Ziegler, A. (2001). Genesis of the ILT/LIR/MIR clusters within the human leukocyte receptor complex. Immunol. Rev., 181, 39–51.CrossRefGoogle ScholarPubMed
Roenn, J. H. and Cianfrocca, M. (2001). Treatment of Kaposi's sarcoma. Cancer Treat. Res., 104, 127–148.CrossRefGoogle Scholar
Voo, K. S., Fu, T., Heslop, H. E.et al. (2002). Identification of HLA-DP3-restricted peptides from EBNA1 recognized by CD4(+) T cells. Cancer Res., 62(24), 7195–7199.Google ScholarPubMed
Voo, K. S., Fu, T., Wang, H. Y.et al. (2004). Evidence for the presentation of major histocompatibility complex class I-restricted Epstein-Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J. Exp. Med., 199(4), 459–470.CrossRefGoogle ScholarPubMed
Wan, X., Wang, H., and Nicholas, J. (1999). Human herpesvirus 8 interleukin-6 (vIL-6) signals through gp130 but has structural and receptor-binding properties distinct from those of human IL-6. J. Virol., 73(10), 8268–8278.Google ScholarPubMed
Wang, H. W., Sharp, T. V., Koumi, A., Koentges, G., and Boshoff, C. (2002). Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J., 21(11), 2602–2615.CrossRefGoogle ScholarPubMed
Weaver, B. K., Kumar, K. P., and Reich, N. C. (1998). Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor. Mol. Cell. Biol., 18(3), 1359–1368.CrossRefGoogle ScholarPubMed
Weber, K. S., Grone, H. J., Rocken, M.et al. (2001). Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur. J. Immunol., 31(8), 2458–2466.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Wegenka, U. M., Lutticken, C., Buschmann, J.et al. (1994). The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol. Cell. Biol., 14(5), 3186–3196.CrossRefGoogle ScholarPubMed
Wei, M. X. and Ooka, T. (1989). A transforming function of the BARF1 gene encoded by Epstein-Barr virus. EMBO J., 8(10), 2897–2903.Google ScholarPubMed
Wei, M. X., Moulin, J. C., Decaussin, G., Berger, F., and Ooka, T. (1994). Expression and tumorigenicity of the Epstein–Barr virus BARF1 gene in human Louckes B-lymphocyte cell line. Cancer Res., 54(7), 1843–1848.Google ScholarPubMed
Wei, M. X., Turenne-Tessier, M., Decaussin, G., Benet, G., and Ooka, T. (1997). Establishment of a monkey kidney epithelial cell line with the BARF1 open reading frame from Epstein–Barr virus. Oncogene, 14(25), 3073–3081.CrossRefGoogle ScholarPubMed
Xu, Z. G., Iwatsuki, K., Oyama, N.et al. (2001). The latency pattern of Epstein–Barr virus infection and viral IL-10 expression in cutaneous natural killer/T-cell lymphomas. Br. J. Cancer., 84(7), 920–925.CrossRefGoogle ScholarPubMed
Yates, J., Warren, N., Reisman, D., and Sugden, B. (1984). A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl Acad. Sci. USA, 81(12), 3806–3810.CrossRefGoogle ScholarPubMed
Yin, Y., Manoury, B., and Fahraeus, R. (2003). Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science, 301(5638), 1371–1374.CrossRefGoogle ScholarPubMed
Zaldumbide, A., Ossevoort, M., Wiertz, E. J. H. J., and Hoeben, R. C. (2006). In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma Herpes virus. Mol. Immunol., e-pub.
Zeidler, R., Eissner, G., Meissner, P.et al. (1997). Downregulation of TAP1 in B lymphocytes by cellular and Epstein–Barr virus-encoded interleukin-10. Blood, 90(6), 2390–2397.Google Scholar
Zhang, J., Das, S. C., Kotalik, C., Pattnaik, A. K., and Zhang, L. (2004). The latent membrane protein 1 of Epstein–Barr virus establishes an antiviral state via induction of interferon-stimulated genes. J. Biol. Chem.CrossRef
Zhang, L. and Pagano, J. S. (2001). Interferon regulatory factor 7 mediates activation of Tap-2 by Epstein-Barr virus latent membrane protein 1. J. Virol., 75(1), 341–350.CrossRefGoogle ScholarPubMed
Zhang, L., Wu, L., Hong, K., and Pagano, J. S. (2001). Intracellular signaling molecules activated by Epstein-Barr virus for induction of interferon regulatory factor 7. J. Virol., 75(24), 12393–12401.CrossRefGoogle ScholarPubMed
Zhu, F. X. and Yuan, Y. (2003). The ORF45 protein of Kaposi's sarcoma-associated herpesvirus is associated with purified virions. J. Virol., 77(7), 4221–4230.CrossRefGoogle ScholarPubMed
Zhu, F. X., King, S. M., Smith, E. J., Levy, D. E., and Yuan, Y. (2002). A Kaposi's sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. Proc. Natl Acad. Sci. USA, 99(8), 5573–5578.CrossRefGoogle ScholarPubMed
Hausen, zur A., Brink, A. A., Craanen, M. E.et al. (2000). Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res., 60(10), 2745–2748.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×