Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T10:43:26.900Z Has data issue: false hasContentIssue false

19 - Disorders of the somatosensory system

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

This chapter reviews impairments of grasping and other fine motor tasks following disorders of the somatosensory system. The first part reports findings from transient anesthesia induced experimentally in healthy human subjects. The second part summarizes studies on the effects of lesions to the peripheral sensory system. Findings in patients with sensory deficits following polyneuropathy or carpal tunnel syndrome are differentiated from chronic complete somatosensory deafferentation. The latter group of very rare subjects provides the unique possibility of investigating the function of the motor system deprived of sensory input. The last part summarizes the effects of central lesions due to stroke or cerebral palsy that frequently affect the somatosensory system. The results for various motor tasks including prehensile movements are reported. Specific emphasis is placed on analyses of grip-force control during object manipulation since somatosensory feedback is particularly important for these activities and ample research has been performed during the last few years, enabling comparisons between patient groups.

Introduction

Clarifying the role of sensory information in the control of voluntary movement and force production is one of the most essential questions in sensorimotor research. The most obvious way to investigate this question is to study the effects of damage to the sensory system on movement execution. Indeed, there was controversy about the effects of a complete lack of sensory information at the beginning of the 20th century.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 269 - 284
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augurelle, A. S., Smith, A. M., Lejeune, T. & Thonnard, J. L. (2003). Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol, 89, 665–671.CrossRefGoogle ScholarPubMed
Binkofski, F., Kunesch, E., Classen, J., Seitz, R. J. & Freund, H. J. (2001). Tactile apraxia. Unimodal apractic disorder of tactile object exploration associated with parietal lobe lesions. Brain, 124, 132–144.CrossRefGoogle ScholarPubMed
Blennerhassett, J. M., Matyas, T. A. & Carey, L. M. (2007). Impaired discrimination of surface friction contributes to pinch grip deficit after stroke. Neurorehabil Neural Repair, 21, 263–272.CrossRefGoogle ScholarPubMed
Cole, J. & Paillard, J. (1995). Living without touch and peripheral information about body position and movement: studies with deafferented subjects. In Bermudez, J. L., Marcel, A. & Eilan, N. (Eds.), The Body and the Self (pp. 245–266). Cambridge, MA: MIT Press.
Cole, K. J., Steyers, C. M. & Graybill, E. K. (2003). The effects of graded compression of the median nerve in the carpal canal on grip force. Exp Brain Res, 148, 150–157.CrossRefGoogle ScholarPubMed
Duque, J., Vandermeeren, Y., Lejeune, T. M.et al. (2005). Paradoxical effect of digital anaesthesia on force and corticospinal excitability. Neuroreport, 16, 259–262.CrossRefGoogle ScholarPubMed
Fellows, S. J., Ernst, J., Schwarz, M., Töpper, R. & Noth, J. (2001). Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol, 112, 1793–1802.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Johansson, R. S. (2002). Hand movements. In Ramachandran, V. S. (Ed.), Encyclopedia of the Human Brain, Vol. 2 (pp. 399–414). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Fleury, M., Bard, C., Teasdale, N.et al. (1995). Weight judgment: the discrimination capacity of a deafferented subject. Brain, 118, 1149–1156.CrossRefGoogle ScholarPubMed
Gentilucci, M., Toni, I., Chieffi, S. & Pavesi, G. (1994). The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects. Exp Brain Res, 99, 483–500.CrossRefGoogle Scholar
Gentilucci, M., Toni, I., Daprati, E. & Gangitano, M. (1997). Tactile input of the hand and the control of reaching to grasp movements. Exp Brain Res, 114, 130–137.CrossRefGoogle ScholarPubMed
Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. (1972). The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain, 95, 705–748.CrossRefGoogle ScholarPubMed
Gordon, A. M. & Duff, S. V. (1999). Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral-palsy. Dev Med Child Neurol, 41, 586–591.CrossRefGoogle ScholarPubMed
Gordon, J., Ghilardi, M. F. & Ghez, C. (1995). Impairments of reaching movements in patients without proprioception. 1. Spatial errors. J Neurophysiol, 73, 347–360.CrossRefGoogle ScholarPubMed
Häger-Ross, C. & Johansson, R. S. (1996). Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res, 110, 131–141.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Mai, N., Rudroff, G. & Münβinger, M. (1994). Untersuchung zerebraler Handfunktionsstörungen. Ein Vorschlag zur standardisierten Durchführung. Dortmund, Germany: Borgmann.Google Scholar
Hermsdörfer, J., Hagl, E., Nowak, D. A. & Marquardt, C. (2003). Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol, 114, 915–929.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Hagl, E. & Nowak, D. A. (2004). Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hum Mov Sci, 23, 643–662.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Nowak, D. A., Lee, A.et al. (2005). The representation of predictive force control and internal forward models: evidence from lesion studies and brain imaging. Cogn Proc Int Quart Cogn Sci, 6, 48–58.Google Scholar
Hermsdörfer, J., Elias, Z., Cole, J. D., Quaney, B. M. & Nowak, D. A. (2008). Preserved and impaired aspects of feedforward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair, 22, 374–384.CrossRefGoogle Scholar
Jeannerod, M., Michel, F. & Prablanc, C. (1984). The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain, 107, 899–920.CrossRefGoogle Scholar
Jenmalm, P. & Johansson, R. S. (1997). Visual and somatosensory information about object shape control manipulative fingertip forces. J Neurosci, 17, 4486–4499.CrossRefGoogle ScholarPubMed
Johansson, R. S. (1996). Sensory control of dexterous manipulation in humans. In Wing, A. M., Haggard, P. & Flanagan, J. R. (Eds.), Hand and Brain (pp. 381–414). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Jones, L. A. & Lederman, S. J. (2006). Human Hand Function. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Kim, J. S. & Choi-Kwon, S. (1996). Discriminative sensory dysfunction after unilateral stroke. Stroke, 27, 677–682.CrossRefGoogle ScholarPubMed
Kinoshita, H. (1999). Effect of gloves on prehensile forces during lifting and holding tasks. Ergonomics, 42, 1372–1385.CrossRefGoogle ScholarPubMed
Knapp, H. D., Taub, E. & Berman, A. J. (1963). Movements in monkeys with deafferented forelimbs. Exp Neurol, 7, 315.CrossRefGoogle ScholarPubMed
Lafargue, G., Paillard, J., Lamarre, Y. & Sirigu, A. (2003). Production and perception of grip force without proprioception: is there a sense of effort in deafferented subjects?Eur J Neurosci, 17, 2741–2749.CrossRefGoogle Scholar
Lederman, S. J. & Klatzky, R. L. (1987). Hand movements: a window into haptic object recognition. Cogn Psychol, 19, 342–368.CrossRefGoogle ScholarPubMed
Lowe, B. D. & Freivalds, A. (1999). Effect of carpal-tunnel syndrome on grip force coordination on hand tools. Ergonomics, 42, 550–564.CrossRefGoogle ScholarPubMed
Macefield, V. G. & Johansson, R. S. (1996). Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. Exp Brain Res, 108, 172–184.Google ScholarPubMed
Miall, R. C. & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9, 1265–1279.CrossRefGoogle Scholar
Moberg, E. (1962). Criticism and study of methods for examining sensibility in the hand. Neurology, 12, 8–19.CrossRefGoogle Scholar
Moberg, E. (1991). The unsolved problem – how to test the functional value of hand sensibility. J Hand Ther, 4, 105–110.CrossRefGoogle Scholar
Monzee, J., Lamarre, Y. & Smith, A. M. (2003). The effects of digital anesthesia on force control using a precision grip. J Neurophysiol, 89, 672–683.CrossRefGoogle ScholarPubMed
Mott, F. W. & Sherrington, C. S. (1895). Experiments upon the influence of sensory nerves upon movement and nutrition of the limbs. Proc R Soc Lond B, 57, 488.Google Scholar
Munk, H. (1909). Über die Folge des Sensibilitätsverlustes der Extremität für deren Motilität. Über die Funktion von Hirn und Rückenmark. In Gesammelte Mitteilungen (pp. 247–285). Berlin: Hirschwald.Google Scholar
Nowak, D. A. & Hermsdörfer, J. (2002). Impaired coordination between grip force and load force in amyotrophic lateral sclerosis: a case-control study. Amyotrophic Lat Sclerosis, 3, 199–207.Google ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2003a). Digit cooling influences grasp efficiency during manipulative tasks. Eur J Appl Physiol, 89, 127–133.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2003b). Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits. Neurosci Res, 47, 65–72.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord, 20, 11–25.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2006). Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res, 173, 650–660.Google ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Glasauer, S.et al. (2001). The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci, 14, 756–762.CrossRefGoogle ScholarPubMed
Nowak, D. A., Glasauer, S., Meyer, L., Mai, N. & Hermsdörfer, J. (2002a). The role of cutaneous feedback for anticipatory grip force adjustments during object movements and externally imposed variation of the direction of gravity. Somatosensory Mot Res, 19, 49–60.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Marquardt, C. & Fuchs, H. H. (2002b). Load force coupling during discrete vertical movements in patients with cerebellar atrophy. Exp Brain Res, 145, 28–39.CrossRefGoogle ScholarPubMed
Nowak, D. A., Glasauer, S. & Hermsdörfer, J. (2003a). Grip force efficiency in long-term deprivation of somatosensory feedback. Neuroreport, 14, 1803–1807.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Marquardt, C. & Topka, H. (2003b). Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility?Clin Neurophysiol, 114, 472–487.Google ScholarPubMed
Nowak, D. A., Hermsdörfer, J. & Topka, H. (2003c). Deficits of predictive grip force control during object manipulation in acute stroke. J Neurol, 250, 850–860.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J. & Topka, H. (2003d). When motor execution is selectively impaired: control of manipulative finger forces in amyotrophic lateral sclerosis. Mot Contr, 7, 304–320.CrossRefGoogle ScholarPubMed
Nowak, D. A., Glasauer, S. & Hermsdörfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback?Brain, 127, 182–192.CrossRefGoogle ScholarPubMed
Pause, M., Kunesch, E., Binkofski, F. & Freund, H. J. (1989). Sensorimotor disturbances in patients with brain lesions of the parietal cortex. Brain, 112, 1599–1625.CrossRefGoogle ScholarPubMed
Phillips, C. G. (1986). Movements of the hand. Sherrington Lecture, 17.Google Scholar
Rost, K. R., Nowak, D. A., Timman, D. T. & Hermsdörfer, J. (2005). Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol, 116, 1405–1414.CrossRefGoogle ScholarPubMed
Rothwell, J. C., Traub, M. M., Day, B. L.et al. (1982). Manual motor performance in a deafferented man. Brain, 105, 515–542.CrossRefGoogle Scholar
Sainburg, R. L., Ghilardi, M. F., Poizner, H. & Ghez, C. (1995). Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol, 73, 820–835.CrossRefGoogle ScholarPubMed
Sanes, J. N. & Jennings, V. A. (1984). Centrally programmed patterns of muscle activity in voluntary motor behavior of humans. Exp Brain Res, 54, 23–32.CrossRefGoogle ScholarPubMed
Sanes, J. N., Mauritz, K.-H., Dalakas, M. C. & Evarts, E. V. (1985). Motor control in humans with large-fiber sensory neuropathy. Hum Neurobiol, 4, 101–114.Google ScholarPubMed
Sarlegna, F., Blouin, J., Bresciani, J. P.et al. (2003). Target and hand position information in the online control of goal-directed arm movements. Exp Brain Res, 151, 524–535.CrossRefGoogle ScholarPubMed
Schenker, M., Burstedt, M. K. O., Wiberg, M. & Johansson, R. S. (2006). Precision grip function after hand replantation and digital nerve injury. J Plast Reconstr Aesth Surg, 59, 706–716.CrossRefGoogle ScholarPubMed
Simoneau, M., Paillard, J., Bard, C.et al. (1999). Role of the feedforward command and reafferent information in the coordination of a passing prehension task. Exp Brain Res, 128, 236–242.CrossRefGoogle ScholarPubMed
Smania, N., Montagnana, B., Faccioli, S., Fiaschi, A. & Aglioti, S. M. (2003). Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Arch Phys Med Rehabil, 84, 1692–1702.CrossRefGoogle ScholarPubMed
Teasdale, N., Forget, R., Bard, C.et al. (1993). The role of proprioceptive information for the production of isometric forces and for handwriting tasks. Acta Psychol, 82, 179–191.CrossRefGoogle ScholarPubMed
Thonnard, J. L., Saels, P., Vandenbergh, P. & Lejeune, T. (1999). Effects of chronic median nerve compression at the wrist on sensation and manual skills. Exp Brain Res, 128, 61–64.CrossRefGoogle ScholarPubMed
Wenzelburger, R., Kopper, F., Frenzel, A.et al. (2005). Hand coordination following capsular stroke. Brain, 128, 64–74.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×