Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T10:17:33.637Z Has data issue: false hasContentIssue false

26 - Cerebellar disorders

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Precise control of grasping when manipulating objects depends on intact function of the cerebellum. Given its stereotyped cytoarchitecture, the widespread connections with cortical and subcortical sensorimotor structures and the neural activity of cerebellar Purkinje cells during sensorimotor tasks, the cerebellum is considered to play a major role in the establishment and maintenance of sensorimotor representations related to grasping. Such representations are necessary to predict the consequences of movements. This chapter summarizes anatomical and theoretical aspects, electrophysiological and behavioral data characterizing the cerebellum, a key player in the processing of healthy grasping and in its dysfunction.

The anatomy of the cerebellum and its relation to the control of grasping

The cerebellum has attracted the attention of theorists and modelers for many years. The attraction is that the regular cytoarchitecture of the cerebellar cortex, with only one output cell and four main classes of interneurons, and the functional cerebellar circuitry have been very well documented (Wolpert et al., 1998). The circuitry of the cerebellum is unique by its stereotyped geometric arrangement and its modular organization, highly reminiscent of a machinery designed to process neuronal information in a unique manner (Ito, 2006). The cerebellum appears highly foliated, and this foliation is the reason for subdivision into smaller units (Larouche & Hawkes, 2006). From a structural standpoint, the cerebellum is made of pairs of nuclei embedded in white matter and surrounded by a mantle of cortex (Colin et al., 2002).

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 361 - 374
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. I., Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiol Rev, 54, 957–1006.CrossRefGoogle ScholarPubMed
Bastian, A. J. (2006). Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol, 16, 645–649.CrossRefGoogle ScholarPubMed
Bastian, A. J. & Thach, W. T. (2002). Structure and function of the cerebellum. In Manto, M. & Pandolfo, M. (Eds.), The Cerebellum and its Disorders (pp. 49–66). Cambridge, UK: Cambridge University Press.Google Scholar
Blakemore, S. J., Frith, C. D. & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12, 1879–1884.CrossRefGoogle Scholar
Butz, M., Timmermann, L., Gross, J.et al. (2006). Oscillatory coupling in writing and writer's cramp. J Physiol Paris, 99, 14–20.CrossRefGoogle ScholarPubMed
Colin, F., Ris, L. & Godaux, E. (2002). Neuroanatomy of the cerebellum. In Manto, M. & Pandolfo, M. (Eds)., The Cerebellum and its Disorders (pp. 6–29). Cambridge, UK: Cambridge University Press.Google Scholar
Dichgans, J. & Fetter, M. (1993). Compartmentalized cerebellar functions upon the stabilization of body posture. Rev Neurol (Paris), 149, 654–664.Google ScholarPubMed
Dugas, C. & Smith, A. M. (1992). Responses of cerebellar Purkinje cells to slip of a hand-held object. J Neurophysiol, 67, 483–495.CrossRefGoogle ScholarPubMed
Espinoza, E., Smith, A. M. (1990). Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. J Neurophysiol, 64, 698–714.CrossRefGoogle ScholarPubMed
Fellows, S. J., Ernst, J., Schwarz, M., Töpper, R. & Noth, J. (2001). Precision grip in cerebellar disorders in man. Clin Neurophysiol, 112, 1793–1802.CrossRefGoogle ScholarPubMed
Flament, D. & Hore, J. (1986). Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol, 55, 1221–1233.CrossRefGoogle ScholarPubMed
Gao, J. H., Parsons, L. M., Bower, J. M.et al. (1996). Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science, 272, 545–547.CrossRefGoogle ScholarPubMed
Gilbert, P. F. C. & Thach, W. T. (1977). Purkinje cell activity during motor learning. Brain Res, 128, 309–328.CrossRefGoogle ScholarPubMed
Gilman, S. (1969). The mechanism of cerebellar hypotonia. Brain, 92, 621–638.CrossRefGoogle ScholarPubMed
Gilman, S., Bloedel, J. R. & Lechtenberg, R. (1981). Disorders of the Cerebellum. Contemporary Neurology Series. Philadelphia, PA: Davis.Google Scholar
Glickstein, M. & Yeo, C. (1990). The cerebellum and motor learning. J Cogn Neurosci, 2, 69–80.CrossRefGoogle ScholarPubMed
Glickstein, M., Waller, J., Baizer, J. S., Brown, B. & Timmann, D. (2005). Cerebellum lesions and finger use. Cerebellum, 4, 189–197.CrossRefGoogle ScholarPubMed
Holmes, G. (1917). The symptoms of acute cerebellar injuries from gunshot wounds. Brain, 40, 461–535.CrossRefGoogle Scholar
Holmes, G. (1939). The cerebellum of man. The Hughlings Jackson memorial lecture. Brain, 62, 1–30.CrossRefGoogle Scholar
Hore, J., Wild, B. & Diener, H. C. (1991). Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol, 65, 563–571.CrossRefGoogle ScholarPubMed
Hoover, J. & Strick, P. (1999). The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneural transport of herpes simplex virus type I. J Neurosci, 19, 1446–1463.CrossRefGoogle Scholar
Imamizu, H., Miyauchi, S., Tamada, T.et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403, 192–195.CrossRefGoogle ScholarPubMed
Ito, M. (1984). The Cerebellum and Neural Control. New York, NY: Raven Press.Google Scholar
Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Prog Neurobiol, 78, 272–303.CrossRefGoogle ScholarPubMed
Jansen, J. (1969). On cerebellar evolution and organization, from the point of view of a morphologist. In Llinas, R. (Ed.), Neurobiology of Cerebellar Evolution and Development (pp. 881–893). Chicago, IL: AMA-ERF Inst Biomed Res.Google Scholar
Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr Opin Neurobiol, 9, 718–727.CrossRefGoogle ScholarPubMed
Kitazawa, S., Kimura, T. & Yin, P. B. (1998). Cerebellar complex spikes encode both destinations and errors in arm movements. Nature, 392, 494–497.CrossRefGoogle ScholarPubMed
Lamarre, Y., Spidalieri, G. & Chapman, C. E. (1983). A comparison of neuronal discharge recorded in the sensori-motor cortex, parietal cortex, and dentate nucleus of the monkey during arm movements triggered by light, sound or somesthetic stimuli. Exp Brain Res, 7, 140–156.Google Scholar
Larouche, M. & Hawkes, R. (2006). From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum, 5, 77–88.CrossRefGoogle ScholarPubMed
Larsell, O. (1937). The cerebellum. A review and interpretation. Arch Neurol Psychiatric (Chicago), 38, 580–607.CrossRefGoogle Scholar
Lawrence, D. G. & Kuypers, H. G. J. M. (1968). The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 91, 1–14.CrossRefGoogle ScholarPubMed
Lewis, R. F. & Zee, D. S. (1993). Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol (Paris), 149, 665–677.Google ScholarPubMed
Manto, M. (2002). Clinical signs of cerebellar disorders. In Manto, M. & Pandolfo, M. (Eds.), The Cerebellum and its Disorders (pp. 97–120). Cambridge, UK: Cambridge University Press.Google Scholar
Manto, M. (2006). On the cerebello-cerebral interactions. Cerebellum, 5, 286–288.CrossRefGoogle ScholarPubMed
Manto, M. & Bastian, A. (2007). Cerebellum and the deciphering of motor coding. Cerebellum, 6, 3–6.CrossRefGoogle Scholar
Manto, M., Nowak, D. A. & Schutter, D. J. L. G. (2006). Coupling between cerebellar hemispheres and sensory processing. Cerebellum, 5, 187–188.CrossRefGoogle ScholarPubMed
Manzoni, D. (2007). The cerebellum and sensorimotor coupling: looking at the problem from the perspective of vestibular reflexes. Cerebellum, 6, 24–37.CrossRefGoogle ScholarPubMed
Mason, C. R., Hendrix, C. M. & Ebner, T. J. (2006). Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey. J Neurophysiol, 95, 144–158.CrossRefGoogle ScholarPubMed
Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. (1993). Is the cerebellum a Smith predictor? J Mot Behav, 25, 203–216.CrossRefGoogle ScholarPubMed
Middleton, F. A. & Strick, P. L. (1997). Cerebellar output channels. In Schmahmann, J. D. (Ed.), The Cerebellum and Cognition (pp. 61–82). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Monzee, J. & Smith, A. M. (2004). Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J Neurophysiol, 911, 230–239.Google Scholar
Nowak, D. A., Hermsdörfer, J., Marquardt, C. & Fuchs, H. H. (2002). Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res, 145, 28–39.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Rost, K., Timmann, D. & Topka, H. (2004). Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum, 3, 227–235.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Timmann, D., Rost, K. & Topka, H. (2005). Impaired generalization of weight-related information in cerebellar degeneration. Neuropsychologia, 43, 20–27.CrossRefGoogle ScholarPubMed
Nowak, D. A., Timmann, D. & Hermsdörfer, J. (2007). Dexterity in cerebellar agenesis. Neuropsychologia, 45, 696–703.CrossRefGoogle ScholarPubMed
Nowak, D. A., Topka, H., Timmann, D., Boecker, H. & Hermsdörfer, J. (2007). The role of the cerebellum for predictive control of grasping. Cerebellum, 6, 7–17.CrossRefGoogle ScholarPubMed
Oscarsson, O. (1976). Functional organization of spinocerebellar paths. In Iggo, A. (Ed.), Handbook of Sensory Physiology, Vol II. Somatosensory System (pp. 339–380). Berlin: Springer-Verlag.Google Scholar
Pellionisz, A. & Llinás, R. (1980). Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor. Neuroscience, 5, 1125–1138.CrossRefGoogle Scholar
Rost, K., Nowak, D. A., Timmann, D. & Hermsdörfer, J. (2005). Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol, 116, 1405–1414.CrossRefGoogle ScholarPubMed
Sainburg, R. L., Ghez, C. & Kalakanis, D. (1999). Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol, 81, 1045–1056.CrossRefGoogle ScholarPubMed
Schneider, K., Zernicke, R. F., Ulrich, B. D., Jensen, J. L. & Thelen, E. (1990). Understanding movement control in infants through the analysis of limb intersegmental dynamics. J Motor Behav, 22, 493–520.CrossRefGoogle ScholarPubMed
Serrien, J. D. & Wiesendanger, M. (1999). Grip-load coordination in cerebellar patients. Exp Brain Res, 128, 76–80.CrossRefGoogle ScholarPubMed
Smith, A. M., Dugas, C., Fortier, P., Kalaska, J. & Picard, N. (1993). Comparing cerebellar and motor cortical activity in reaching and grasping. Can J Neurol Sci, 3, S53–S61.Google Scholar
Soteropoulos, D. S. & Baker, S. N. (2006). Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol, 95, 1194–1206.CrossRefGoogle ScholarPubMed
Thach, W. T. (1967). Discharges of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol, 31, 785–796.CrossRefGoogle Scholar
Vilis, T. & Hore, J. (1977). Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol, 40, 1214–1224.CrossRefGoogle ScholarPubMed
Vilis, T. & Hore, J. (1980). Central neuronal mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol, 43, 279–291.CrossRefGoogle Scholar
Wolpert, D. M. & Miall, R. C. (1996). Forward models for physiological motor control. Neural Networks, 9, 1265–1279.Google ScholarPubMed
Wolpert, D. M., Miall, R. C. & Kawato, M. (1998). Internal models in the cerebellum. Trends Cogn Sci, 2, 338–347.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×