Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T11:06:41.127Z Has data issue: false hasContentIssue false

24 - Traumatic brain injury

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Upper-limb speed and dexterity are frequently impaired after moderate or severe traumatic brain injury (TBI). The speed of functional hand movements can be assessed with standardized tasks, such as the Developmental Hand Function Test and the Purdue Pegboard test. Kinematic data on reaching and grasping can be obtained by optoelectronic motion analyses. The fingertip forces measured during a precision grip–lift task describe fine motor control. With these methods, a series of studies analyzed recovery of hand function in brain-injured children and adolescents (age 4–15 years) over 5 months of inpatient rehabilitation, starting ∼3 months post TBI. Compared with healthy age-matched controls, the patients were slower, their prehension movements exhibited curved and variable movement trajectories, and were delayed especially in the final approach phase. They needed more time to establish a precision grip and showed exaggeratedly high grip forces. Despite substantial recovery, differences in hand function between patients and controls were still present ∼8 months after TBI. Young age at injury was not associated with better recovery. Comparable data for adults are lacking so far.

Traumatic brain injury: incidence, severity and imaging

The annual incidence of traumatic brain injury (TBI) in Germany is about 300 per 100,000 inhabitants (Federal Statistical Office, www.destatis.de). Epidemiological studies from other countries report incidences of ∼200–500/100,000 per year; these variations reflect different inclusion criteria and study designs (Hillier et al., 1997; Servadei et al., 2002; Andersson et al., 2003). Common causes of TBI are traffic accidents, falls and sport-related accidents.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 333 - 347
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, E. H., Björklund, R., Emanuelson, I. & Stahlhammer, D. (2003). Epidemiology of traumatic brain injury: a population based study in Western Sweden. Acta Neurolog Scand, 107, 256–259.CrossRefGoogle ScholarPubMed
Asikainen, I., Nybo, T., Muller, K., Sarna, S. & Kaste, M. (1999). Speed performance and long-term functional and vocational outcome in a group of young patients with moderate or severe traumatic brain injury. Eur J Neurol, 6, 179–185.CrossRefGoogle ScholarPubMed
Behbehani, K., Kondraske, G. V., Tintner, R., Tindall, R. A. S. & Imrhan, S. N. (1990). Evaluation of quantitative measures of upper extremity speed and coordination in healthy persons and in three patient populations. Arch Phys Med Rehab, 71, 106–111.Google ScholarPubMed
Benz, B., Ritz, A. & Kiesow, S. (1999). Influence of age-related factors on long-term outcome after traumatic brain injury (TBI) in children: a review of recent literature and some preliminary findings. Rest Neurol Neurosci, 14, 135–141.Google ScholarPubMed
Besenski, N. (2002). Traumatic injuries: imaging of head injuries. Eur Radiol, 12, 1237–1252.CrossRefGoogle ScholarPubMed
Bigler, E. D., Ryser, D. K., Gandhi, P., Kimball, J. & Wilde, E. A. (2006). Day-of-injury computerized tomography, rehabilitation status, and development of cerebral atrophy in persons with traumatic brain injury. Am J Phys Med Rehab, 85, 793–806.CrossRefGoogle ScholarPubMed
Brunnstrom, S. (1966). Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther, 46, 357–375.CrossRefGoogle ScholarPubMed
Chaplin, D., Deitz, J. & Jaffe, K. M. (1993). Motor performance in children after traumatic brain injury. Arch Phys Med Rehab, 74, 161–164.Google ScholarPubMed
Drouin, L. M., Malouin, F., Richards, C. L. & Marcoux, S. (1996). Correlation between the gross motor function measure scores and gait spatiotemporal measures in children with neurological impairments. Dev Med Child Neurol, 38, 1007–1019.CrossRefGoogle ScholarPubMed
Eliasson, A. C., Gordon, A. M. & Forssberg, H. (1991). Basic co-ordination of manipulative forces of children with cerebral palsy. Dev Med Child Neurol, 33, 661–670.CrossRefGoogle ScholarPubMed
Eliasson, A. C., Forssberg, H., Hung, Y. C. & Gordon, A. M. (2006). Development of hand function and precision grip control in individuals with cerebral palsy: a 13-year follow-up study. Pediatrics, 118, 1226–1236.CrossRefGoogle ScholarPubMed
Emanuelson, I., Wendt, L., Bjure, J., Wiklund, L. M. & Uvebrant, P. (1997). Computed tomography and single-photon emission computed tomography as diagnostic tools in acquired brain injury among children and adolescents. Dev Med Child Neurol, 39, 502–507.CrossRefGoogle ScholarPubMed
Emanuelson, I., Wendt, L., Beckung, E. & Hagberg, I. (1998). Late outcome after severe traumatic brain injury in children and adolescents. Ped Rehab, 2, 65–70.Google ScholarPubMed
Firsching, R., Woischneck, D., Klein, S., Ludwig, K. & Döhring, W. (2002). Brain stem lesions after head injury. Neurol Res, 24, 145–146.CrossRefGoogle ScholarPubMed
Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S. & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Exp Brain Res, 85, 451–457.CrossRefGoogle Scholar
Forssberg, H., Eliasson, A. C., Redon-Zouitenn, C., Mercuri, E. & Dubowitz, L. (1999). Impaired grip-lift synergy in children with unilateral brain lesions. Brain, 122, 1157–1168.CrossRefGoogle ScholarPubMed
Fyrberg, A., Marchioni, M. & Emanuelson, I. (2007). Severe acquired brain injury: rehabilitation of communicative skills in children and adolescents. Int J Rehab Res, 30, 153–157CrossRefGoogle ScholarPubMed
Gaetz, M. (2004). The neurophysiology of brain injury. Clin Neurophysiol, 115, 4–18.CrossRefGoogle ScholarPubMed
Gardner, R. A. & Broman, M. (1979). The Purdue Pegboard: Normative data on 1334 school children. J Clin Child Psychol, 1, 156–162.CrossRefGoogle Scholar
Gennarelli, T. A., Thibault, L. E., Adams, J. H.et al. (1982). Diffuse axonal injury and traumatic coma in the primate. Ann Neurol, 12, 564–574.CrossRefGoogle ScholarPubMed
Gölge, M., Schütz, C., Dreesmann, M.et al. (2003). Grip force parameters in precision grip of individuals with myelomeningocele. Dev Med Child Neurol, 45, 249–256.CrossRefGoogle ScholarPubMed
Gölge, M., Müller, M., Dreesmann, M.et al. (2004). Recovery of the precision grip in children after traumatic brain injury. Arch Phys Med Rehab, 85, 1435–1444.CrossRefGoogle ScholarPubMed
Gordon, A. M., Lewis, S. R., Eliasson, A. C. & Duff, S. V. (2003). Object release under varying task constraints in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 45, 240–248.CrossRefGoogle ScholarPubMed
Haley, S. M., Cioffi, M. I., Lewin, J. E. & Baryza, M. J. (1990). Motor dysfunction in children and adolescents after traumatic brain injury. J Head Trauma Rehab, 5, 77–90.CrossRefGoogle Scholar
Hillier, S. L., Hiller, J. E. & Metzer, J. (1997). Epidemiology of traumatic brain injury in South Australia. Brain Injury, 11, 649–659.Google ScholarPubMed
Holzhäuser, M. (2006). Optoelektronische Analyse gezielter Greifbewegungen bei Kindern und Jugendlichen nach Schädel-Hirn-Trauma. Unpublished M.D. thesis (in German). Medizinische Fakultät der Christian-Albrechts-Universität zu Kiel.
Jaffe, K. M., Fay, G. C., Polissar, N. L.et al. (1993). Severity of pediatric traumatic brain injury and neurobehavioral recovery at one year – a cohort study. Arch Phys Med Rehab, 74, 587–595.CrossRefGoogle ScholarPubMed
Jaffe, K. M., Polissar, N. L., Fay, G. C. & Liao, S. (1995). Recovery trends over three years following pediatric traumatic brain injury. Arch Phys Med Rehab, 76, 17–26.CrossRefGoogle ScholarPubMed
Jebsen, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J. & Howard, L. A. (1969). An objective and standardized test of hand function. Arch Phys Med Rehab, 50, 311–319.Google ScholarPubMed
Jonsson, C. A., Horneman, G. & Emanuelson, I. (2004). Neuropsychological progress during 14 years after severe traumatic brain injury in childhood and adolescence. Brain Injury, 18, 921–934.CrossRefGoogle ScholarPubMed
Katz, D. I., Alexander, M. P. & Klein, R. B. (1998). Recovery of arm function in patients with paresis after traumatic brain injury. Arch Phys Med Rehab, 79, 488–493.CrossRefGoogle ScholarPubMed
Kennard, M. A. (1936). Age and other factors in motor recovery from precentral lesions in monkeys. Am J Physiol, 115, 138–146.Google Scholar
Klonoff, H., Clark, C. & Klonoff, P. S. (1993). Long-term outcome of head injuries: a 23 year follow up study of children with head injuries. J Neurol Neurosurg Psychiatry, 56, 410–415.CrossRefGoogle ScholarPubMed
Koskiniemi, M., Kyykkä, T., Nybo, T. & Jarho, L. (1995). Long-term outcome after severe brain injury in preschoolers is worse than expected. Arch Pediatr Adolesc Med, 149, 249–254.Google ScholarPubMed
Kuhtz-Buschbeck, J. P., Stolze, H., Jöhnk, K., Boczek-Funcke, A. & Illert, M. (1998). Development of prehension movements in children: a kinematic study. Exp Brain Res, 122, 424–432.CrossRefGoogle ScholarPubMed
Kuhtz-Buschbeck, J. P., Boczek-Funcke, A., Illert, M., Jöhnk, K. & Stolze, H. (1999). Prehension movements and motor development in children. Exp Brain Res, 128, 65–68.CrossRefGoogle ScholarPubMed
Kuhtz-Buschbeck, J. P., Hoppe, B., Gölge, M.et al. (2003a). Sensorimotor recovery after traumatic brain injury: analyses of gait, gross motor, and fine motor skills. Dev Med Child Neurol, 45, 821–828.CrossRefGoogle ScholarPubMed
Kuhtz-Buschbeck, J. P., Stolze, H., Gölge, M. & Ritz, A. (2003b). Analyses of gait, reaching, and grasping in children after traumatic brain injury. Arch Phys Med Rehab, 84, 424–430.CrossRefGoogle ScholarPubMed
Laurent-Vannier, A., Brugel, D. G. & DeAgostini, M. (2000). Rehabilitation of brain-injured children. Child Nerv System, 16, 760–764.Google ScholarPubMed
Loewen, S. C. & Anderson, B. A. (1988). Reliability of the Modified Motor Assessment Scale and the Barthel Index. Phys Ther, 68, 1077–1081.CrossRefGoogle ScholarPubMed
Lotze, M., Grodd, W., Rodden, F. A.et al. (2006). Neuroimaging patterns associated with motor control in traumatic brain injury. Neurorehab Neural Repair, 20, 14–23.CrossRefGoogle ScholarPubMed
Mahoney, F. I. & Barthel, D. W. (1965). Functional evaluation: the Barthel Index. Maryland State Med J, 14, 61–65.Google ScholarPubMed
Massagli, T. L., Jaffe, K. M., Fay, G. C.et al. (1996). Neurobehavioral sequelae of severe pediatric traumatic brain injury: a cohort study. Arch Phys Med Rehab, 77, 223–231.CrossRefGoogle ScholarPubMed
Möllmann, F. T. (2006). Epidemiologie, Unfallursachen und akutklinische Initialversorgung beim Schädel-Hirn-Trauma. Unpublished M.D. thesis (in German). Medizinische Fakultät der Westfälischen Wilhelms-Universität Münster.
Ommaya, A. & Gennarelli, T. (1974). Cerebral concussion and traumatic unconsciousness: correlation of experimental and clinical observations on blunt head injuries. Brain, 97, 633–654.CrossRefGoogle ScholarPubMed
Pereira, H. S., Eliasson, A. C. & Forssberg, H. (2000). Detrimental neural control of precision grip lifts in children with ADHD. Dev Med Child Neurol, 42, 5454–5553.Google ScholarPubMed
Reddon, J. R., Gill, D. M., Gauk, S. E. & Maerz, M. D. (1988). Purdue Pegboard: Test-retest estimation. Percept Motor Skills, 66, 503–506.CrossRefGoogle Scholar
Rossi, C. & Sullivan, S. J. (1996). Motor fitness in children and adolescents with traumatic brain injury. Arch Phys Med Rehab, 77, 1062–1065.CrossRefGoogle ScholarPubMed
Russell, D. J., Rosenbaum, P. L., Cadman, D. T.et al. (1989). The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol, 31, 341–352.CrossRefGoogle ScholarPubMed
Servadei, F., Antonelli, V., Betti, L.et al. (2002). Regional brain injury epidemiology as the basis for planning brain injury treatment. The Romagna (Italy) experience. J Neurosurg Sci, 46, 111–119.Google ScholarPubMed
Taylor, N., Sand, P. L. & Jebsen, R. H. (1973). Evaluation of hand function in children. Arch Phys Med Rehab, 54, 129–135.Google ScholarPubMed
Teasdale, G. M. & Jennett, B. (1974). Assessment of coma and impaired consciousness: practical scale. Lancet, 2, 81–84.CrossRefGoogle ScholarPubMed
Wallen, M. A., Mackay, S., Duff, S. M., McCartney, L. C. & O'Flaherty, S. J. (2001). Upper-limb function in Australian children with traumatic brain injury: a controlled, prospective study. Arch Phys Med Rehab, 82, 642–649.CrossRefGoogle ScholarPubMed
Westling, G. & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Exp Brain Res, 53, 277–284.CrossRefGoogle ScholarPubMed
Wiese, H., Stude, P., Nebel, K.et al. (2004). Recovery of movement-related potentials in the temporal course after prefrontal traumatic brain injury: a follow-up study. Clin Neurophysiol, 115, 2677–2692.CrossRefGoogle ScholarPubMed
Wiese, H., Tönnes, C., Greiff, A.et al. (2006). Self-initiated movements in chronic prefrontal traumatic brain injury: an event-related functional MRI study. Neuroimage, 30, 1292–1301.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×