Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-ccc76 Total loading time: 0 Render date: 2024-04-30T09:10:18.953Z Has data issue: false hasContentIssue false

21 - Stroke

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Stroke results in irreversible brain damage, with the type and severity of symptoms dependent upon the location and the amount of injured brain tissue. The most common neurological impairment caused by stroke is partial weakness, called paresis, reflecting a reduced ability to voluntarily activate spinal motoneurons. In conjunction with the general reduced ability to voluntarily activate spinal motoneurons, there is often a reduced ability to selectively activate the spinal motoneuron pools, i.e. turning on some neurons while not turning on others. Together, these mechanisms result in altered movement control of many muscles, especially the contralesional hand and arm muscles used for grasping. Because of the altered muscle control, a variety of kinematic and kinetic alterations are observed during grasping in people with paresis post stroke. Impairments in grasping are related to the inability to use the hand for functional activities during daily life. In rare instances, stroke affects the posterior parietal lobe, resulting in distinct grasping deficits that are substantially different from grasping deficits seen after corticospinal system damage. Future studies investigating grasping post stroke could include the examination of both kinematic and kinetic aspects of grasping in the same subject samples, the examination of different types of grasping (e.g. palmar, precision), and the examination of different time points post stroke.

General information about stroke

Stroke is an acute neurological event that is caused by an alteration in blood flow to the brain.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 296 - 310
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Ann Rev Neurosci, 25, 189–220.CrossRefGoogle ScholarPubMed
Angel, R. W. (1975). Electromyographic patterns during ballistic movement of normal and spastic limbs. Brain Res, 99, 387–392.CrossRefGoogle ScholarPubMed
Aruin, A. S. (2005). Support-specific modulation of grip force in individuals with hemiparesis. Arch Phys Med Rehabil, 86, 768–775.CrossRefGoogle ScholarPubMed
Bard, G. & Hirschberg, G. G. (1965). Recovery of voluntary motion in the upper extremity following hemiplegia. Arch Phys Med Rehabil, 46, 567–572.Google ScholarPubMed
Blennerhassett, J. M., Carey, L. M. & Matyas, T. A. (2006). Grip force regulation during pinch grip lifts under somatosensory guidance: comparison between people with stroke and healthy controls. Arch Phys Med Rehabil, 87, 418–429.CrossRefGoogle ScholarPubMed
Blennerhassett, J. M., Matyas, T. A. & Carey, L. M. (2007). Impaired discrimination of surface friction contributes to pinch grip deficit after stroke. Neurorehabil Neural Repair, 21, 263–272.CrossRefGoogle ScholarPubMed
Boissy, P., Bourbonnais, D., Kaegi, C., Gravel, D. & Arsenault, B. A. (1997). Characterization of global synkineses during hand grip in hemiparetic patients. Arch Phys Med Rehabil, 78, 1117–1124.CrossRefGoogle ScholarPubMed
Bourbonnais, D. & Vanden Noven, S. (1989). Weakness in patients with hemiparesis. Am J Occup Ther, 43, 313–319.CrossRefGoogle ScholarPubMed
Bourbonnais, D., Vanden Noven, S., Carey, K. M. & Rymer, W. Z. (1989). Abnormal spatial patterns of elbow muscle activation in hemiparetic human subjects. Brain, 112, 85–102.CrossRefGoogle ScholarPubMed
Canning, C. G., Ada, L. & O'Dwyer, N. (1999). Slowness to develop force contributes to weakness after stroke. Arch Phys Med Rehabil, 80, 66–70.CrossRefGoogle ScholarPubMed
Canning, C. G., Ada, L. & O'Dwyer, N. J. (2000). Abnormal muscle activation characteristics associated with loss of dexterity after stroke. J Neurol Sci, 176, 45–56.CrossRefGoogle ScholarPubMed
Clough, J. F. M., Kernell, D. & Phillips, C. G. (1968). The distributions of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurons of the baboon's hand and forearm. J Physiol, 198, 145–166.CrossRefGoogle Scholar
Colebatch, J. G. & Gandevia, S. C. (1989). The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain, 112, 749–763.CrossRefGoogle Scholar
Dewald, J. P. & Beer, R. F. (2001). Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve, 24, 273–283.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Dewald, J. P., Pope, P. S., Given, J. D., Buchanan, T. S. & Rymer, W. Z. (1995). Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain, 118, 495–510.CrossRefGoogle ScholarPubMed
Dietz, V. & Berger, W. (1984). Interlimb coordination of posture in patients with spastic paresis. Impaired function of spinal reflexes. Brain, 107, 965–978.CrossRefGoogle ScholarPubMed
Dietz, V., Ketelsen, U. P., Berger, W. & Quintern, J. (1986). Motor unit involvement in spastic paresis. Relationship between leg muscle activation and histochemistry. J Neurol Sci, 75, 89–103.CrossRefGoogle ScholarPubMed
Dum, R. P. & Strick, P. L. (1996). Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci, 16, 6513–6525.CrossRefGoogle ScholarPubMed
Dum, R. P. & Strick, P. L. (2002). Motor areas in the frontal lobe of the primate. Physiol Behav, 77, 677–682.CrossRefGoogle ScholarPubMed
Duncan, P. W., Lai, S. M. & Keighley, J. (2000). Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology, 39, 835–841.CrossRefGoogle ScholarPubMed
Edwards, D. F., Lang, C. E., Wagner, J. M., Birkenmeier, R. & Dromerick, A. W.. Validation of the Wolf Motor Function Test in the acute stage of stroke recovery. in review.
Farmer, S. F., Swash, M., Ingram, D. A. & Stephens, J. A. (1993). Changes in motor unit synchronization following central nervous lesions in man. J Physiol, 463, 83–105.CrossRefGoogle ScholarPubMed
Fellows, S. J., Kaus, C. & Thilmann, A. F. (1994). Voluntary movement at the elbow in spastic hemiparesis. Ann Neurol, 36, 397–407.CrossRefGoogle ScholarPubMed
Fetz, E. E. & Cheney, P. D. (1980). Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol, 44, 751–772.CrossRefGoogle ScholarPubMed
Frontera, W. R., Grimby, L. & Larsson, L. (1997). Firing rate of the lower motoneuron and contractile properties of its muscle fibers after upper motoneuron lesion in man. Muscle Nerve, 20, 938–947.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Galletti, C., Kutz, D. F., Gamberini, M., Breveglieri, R. & Fattori, P. (2003). Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res, 153, 158–170.CrossRefGoogle ScholarPubMed
Gemperline, J. J., Allen, S., Walk, D. & Rymer, W. Z. (1995). Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve, 18, 1101–1114.CrossRefGoogle ScholarPubMed
Gowland, C., deBruin, H., Basmajian, J. V., Plews, N. & Burcea, I. (1992). Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys Ther, 72, 624–633.CrossRefGoogle ScholarPubMed
Granger, C. V., Hamilton, B. B. & Gresham, G. E. (1988). The stroke rehabilitation outcome study – Part I: General description. Arch Phys Med Rehabil, 69, 506–509.Google ScholarPubMed
Gray, C. S., French, J. M., Bates, D.et al. (1990). Motor recovery following acute stroke. Age Ageing, 19, 179–184.CrossRefGoogle ScholarPubMed
Grichting, B., Hediger, V., Kaluzny, P. & Wiesendanger, M. (2000). Impaired proactive and reactive grip force control in chronic hemiparetic patients. Clin Neurophysiol, 111, 1661–1671.CrossRefGoogle ScholarPubMed
Hammond, M. C., Fitts, S. S., Kraft, G. H.et al. (1988). Co-contraction in the hemiparetic forearm: quantitative EMG evaluation. Arch Phys Med Rehabil, 69, 348–351.Google ScholarPubMed
Han, L., Law-Gibson, D. & Reding, M. (2002). Key neurological impairments influence function-related group outcomes after stroke. Stroke, 33, 1920–1924.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Hagl, E., Nowak, D. A. & Marquardt, C. (2003). Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol, 114, 915–929.CrossRefGoogle ScholarPubMed
Jakobsson, F., Edstrom, L., Grimby, L. & Thornell, L. E. (1991). Disuse of anterior tibial muscle during locomotion and increased proportion of type II fibres in hemiplegia. J Neurol Sci, 105, 49–56.CrossRefGoogle ScholarPubMed
Jakobsson, F., Grimby, L. & Edstrom, L. (1992). Motoneuron activity and muscle fibre type composition in hemiparesis. Scand J Rehabil Med, 24, 115–119.Google ScholarPubMed
Jeannerod, M. (1984). The timing of natural prehension movements. J Motor Behav, 16, 235–254.CrossRefGoogle ScholarPubMed
Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behav Brain Res, 19, 99–116.CrossRefGoogle ScholarPubMed
Jeannerod, M., Michel, F. & Prablanc, C. (1984). The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain, 107, 899–920.CrossRefGoogle Scholar
Jorgensen, H. S., Nakayama, H., Raaschou, H. O.et al. (1995a). Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil, 76, 399–405.CrossRefGoogle ScholarPubMed
Jorgensen, H. S., Nakayama, H., Raaschou, H. O.et al. (1995b). Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil, 76, 406–412.CrossRefGoogle ScholarPubMed
Kamper, D. G. & Rymer, W. Z. (2001). Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve, 24, 673–681.CrossRefGoogle ScholarPubMed
Kelly-Hayes, M., Robertson, J. T., Broderick, J. P.et al. (1998). The American Heart Association Stroke Outcome Classification. Stroke, 29, 1274–1280.CrossRefGoogle ScholarPubMed
Kwakkel, G., Kollen, B. J., Grond, J. & Prevo, A. J. (2003). Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke, 34, 2181–2186.CrossRefGoogle ScholarPubMed
Lai, S. M., Studenski, S., Duncan, P. W. & Perera, S. (2002). Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke, 33, 1840–1844.CrossRefGoogle ScholarPubMed
Lang, C. E. & Schieber, M. H. (2004). Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. J Neurophysiol, 91, 1722–1733.CrossRefGoogle ScholarPubMed
Lang, C. E. & Beebe, J. A. (2007). Relating movement control at 9 upper extremity segments to loss of hand function in people with chronic hemiparesis. Neurorehabil Neural Repair, 21, 279–291.CrossRefGoogle ScholarPubMed
Lang, C. E., Wagner, J. M., Bastian, A. J.et al. (2005). Deficits in grasp versus reach during acute hemiparesis. Exp Brain Res, 166, 126–136.CrossRefGoogle ScholarPubMed
Lang, C. E., Wagner, J. M., Edwards, D. F., Sahrmann, S. A. & Dromerick, A. W. (2006a). Recovery of grasp versus reach in people with hemiparesis poststroke. Neurorehabil Neural Repair, 20, 444–454.CrossRefGoogle ScholarPubMed
Lang, C. E., Wagner, J. M., Dromerick, A. W. & Edwards, D. F. (2006b). Measurement of upper-extremity function early after stroke: properties of the action research arm test. Arch Phys Med Rehabil, 87, 1605–1610.CrossRefGoogle ScholarPubMed
Mai, N. (1989). Residual control of isometric finger forces in hemiparetic patients. Evidence for dissociation of performance deficits. Neurosci Lett, 101, 347–351.CrossRefGoogle ScholarPubMed
McComas, A. J., Sica, R. E., Upton, A. R. & Aguilera, N. (1973). Functional changes in motoneurones of hemiparetic patients. J Neurol Neurosurg Psychiatry, 36, 183–193.CrossRefGoogle ScholarPubMed
McDonnell, M. N., Hillier, S. L., Ridding, M. C. & Miles, T. S. (2006). Impairments in precision grip correlate with functional measures in adult hemiplegia. Clin Neurophysiol, 117, 1474–1480.CrossRefGoogle ScholarPubMed
Michaelsen, S. M., Jacobs, S., Roby-Brami, A. & Levin, M. F. (2004). Compensation for distal impairments of grasping in adults with hemiparesis. Exp Brain Res, 157, 162–173.CrossRefGoogle ScholarPubMed
Nakayama, H., Jorgensen, H. S., Raaschou, H. O. & Olsen, T. S. (1994). Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil, 75, 394–398.CrossRefGoogle ScholarPubMed
Palmer, E. & Ashby, P. (1992). Corticospinal projections to upper limb motoneurones in humans. J Physiol, 448, 397–412.CrossRefGoogle ScholarPubMed
Patel, A. T., Duncan, P. W., Lai, S. M. & Studenski, S. (2000). The relation between impairments and functional outcomes poststroke. Arch Phys Med Rehabil, 81, 1357–1363.CrossRefGoogle ScholarPubMed
Pineiro, R., Pendlebury, S. T., Smith, S.et al. (2000). Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke, 31, 672–679.CrossRefGoogle ScholarPubMed
Porter, R. & Lemon, R. N. (1993). Corticospinal Function and Voluntary Movement. Vol. 45. Oxford, UK: Oxford University Press.Google Scholar
Quaney, B. M., Perera, S., Maletsky, R., Luchies, C. W. & Nudo, R. J. (2005). Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke. Neurorehabil Neural Repair, 19, 338–349.CrossRefGoogle ScholarPubMed
Raghavan, P., Santello, M., Krakauer, J. W. & Gordon, A. M. (2006). Shaping the hand to object contours after stroke. Poster. Atlanta, GA: Society for Neuroscience.Google Scholar
Reding, M. J. & Potes, E. (1988). Rehabilitation outcome following initial unilateral hemispheric stroke. Life table analysis approach. Stroke, 19, 1354–1358.CrossRefGoogle ScholarPubMed
Rosenfalck, A. & Andreassen, S. (1980). Impaired regulation of force and firing pattern of single motor units in patients with spasticity. J Neurol Neurosurg Psychiatry, 43, 907–916.CrossRefGoogle ScholarPubMed
Sahrmann, S. A. & Norton, B. J. (1977). The relationship of voluntary movement to spasticity in the upper motor neuron syndrome. Ann Neurol, 2, 460–465.CrossRefGoogle ScholarPubMed
Staines, W. R., McIlroy, W. E., Graham, S. J. & Black, S. E. (2001). Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology, 56, 401–404.CrossRefGoogle ScholarPubMed
Tang, A. & Rymer, W. Z. (1981). Abnormal force – EMG relations in paretic limbs of hemiparetic human subjects. J Neurol Neurosurg Psychiatry, 44, 690–698.CrossRefGoogle ScholarPubMed
Trombly, C. A. & Quintana, L. A. (1983). The effects of exercise on finger extension of CVA patients. Am J Occup Ther, 37, 195–202.CrossRefGoogle ScholarPubMed
Trombly, C. A., Thayer-Nason, L., Bliss, G.et al. (1986). The effectiveness of therapy in improving finger extension in stroke patients. Am J Occup Ther, 40, 612–617.CrossRefGoogle ScholarPubMed
Twitchell, T. E. (1951). The restoration of motor function following hemiplegia in man. Brain, 74, 443–480.CrossRefGoogle ScholarPubMed
Wade, D. T. & Hewer, R. L. (1987). Functional abilities after stroke: measurement, natural history and prognosis. J Neurol Neurosurg Psychiatry, 50, 177–182.CrossRefGoogle ScholarPubMed
Ward, N. S., Newton, J. M., Swayne, O. B.et al. (2006). Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain, 129, 809–819.CrossRefGoogle ScholarPubMed
Wenzelburger, R., Kopper, F., Frenzel, A.et al. (2005). Hand coordination following capsular stroke. Brain, 128, 64–74.CrossRefGoogle ScholarPubMed
Wing, A. M., Haggard, P. & Flanagan, J. R. (1996). Hand and Brain. The Neurophysiology and Psychology of Hand Movements. San Diego, CA: Academic Press.Google Scholar
Young, J. L. & Mayer, R. F. (1982). Physiological alterations of motor units in hemiplegia. J Neurol Sci, 54, 401–412.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×