Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T01:25:18.774Z Has data issue: false hasContentIssue false

27 - Advancing articular cartilage repair through tissue engineering: from materials and cells to clinical translation

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Megan J. Farrell
Affiliation:
University of Pennsylvania
Robert L. Mauck
Affiliation:
University of Pennsylvania
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Owing to the inability of cartilage to heal even minor defects, as well as the prevalence of osteoarthritis, the biological repair of this tissue has been the primary focus of decades of basic science and pre-clinical research. This research focussed on cartilage repair has witnessed marked advances via developments in biomaterials science as well as in tissue engineering methodologies. In this chapter, we review select topics in cartilage tissue engineering, describe current clinical cartilage repair procedures, and discuss ongoing considerations relating to the realization of these advances through pre-clinical animal models.

Cartilage

Cartilage is a collagenous, proteoglycan-rich, and water-saturated flexible soft connective tissue. A single cell type, the chondrocyte, is responsible for cartilage tissue maintenance and homeostasis. The tissue is aneural and avascular in the adult and relies on diffusion for nutrient and waste exchange (Brodin, 1955; Strangeways, 1920). The structure and function of cartilage categorizes these soft connective tissues into three broad groupings: elastic cartilage, fibrocartilage, and hyaline cartilage (Gray and Goss, 1973).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adesida, A. B., Mulet-Sierra, A. and Jomha, N. M. 2012. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res. Ther., 3, 9.CrossRefGoogle ScholarPubMed
Ahern, B. J., Parvizi, J., Boston, R. and Schaer, T. P. 2009. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage, 17, 705–13.CrossRefGoogle ScholarPubMed
Ahmed, T. A., Dare, E. V. and Hincke, M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev., 14, 199–215.CrossRefGoogle ScholarPubMed
Ando, W., Tateishi, K., Hart, D. A. et al. 2007. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials, 28, 5462–70.CrossRefGoogle Scholar
Armstrong, C. G. and Mow, V. C. 1982. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. Am., 64, 88–94.CrossRefGoogle ScholarPubMed
ASTM 2010. Standard Guide for in vivo Assessment of Implantable Devices Intended to Repair or Regenerate Articular Cartilage. West Conshohocken, PA: ASTM International.Google Scholar
Athanasiou, K. A., Rosenwasser, M. P., Buckwalter, J. A., Malinin, T. I. and Mow, V. C. 1991. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res., 9, 330–40.CrossRefGoogle ScholarPubMed
Baker, B. M., Gee, A. O., Metter, R. B. et al. 2008. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 29, 2348–58.CrossRefGoogle ScholarPubMed
Barnewitz, D., Endres, M., Kruger, I. et al. 2006. Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts. Biomaterials, 27, 2882–9.CrossRefGoogle ScholarPubMed
Barry, F., Boynton, R. E., Liu, B. and Murphy, J. M. 2001. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res., 268, 189–200.CrossRefGoogle ScholarPubMed
Basić, N., Basić, V., Bulić, K. et al. 1996. TGF-β and basement membrane matrigel stimulate the chondrogenic phenotype in osteoblastic cells derived from fetal rat calvaria. J. Bone Miner. Res., 11, 384–91.CrossRefGoogle ScholarPubMed
Benya, P. D. and Shaffer, J. D. 1982. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 30, 215–24.CrossRefGoogle ScholarPubMed
Bhardwaj, N., Nguyen, Q. T., Chen, A. C. et al. 2011. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin–chitosan for in vitro cartilage tissue engineering. Biomaterials, 32, 5773–81.CrossRefGoogle ScholarPubMed
Bian, L., Zhai, D. Y., Tous, E. 2011. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials, 32, 6425–34.CrossRefGoogle ScholarPubMed
Bowles, R. D., Gebhard, H. H., Hartl, R. and Bonassar, L. J. 2011. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc. Nat. Acad. Sci. USA, 108, 13106–11.CrossRefGoogle ScholarPubMed
Bradham, D. M., Passaniti, A. and Horton, W. E. 1995. Mesenchymal cell chondrogenesis is stimulated by basement membrane matrix and inhibited by age-associated factors. Matrix Biol., 14, 561–71.CrossRefGoogle ScholarPubMed
Brodin, H. 1955. Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop. Scand., 24, 177–83.CrossRefGoogle ScholarPubMed
Buckley, C. T., Meyer, E. G. and Kelly, D. J. 2012. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells. Tissue Eng. Part A, 18, 382–96.CrossRefGoogle ScholarPubMed
Cals, F. L., Hellingman, C. A., Koevoet, W., Baatenburg de Jong, R. J. and van Osch, G. J. 2012. Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med., 6, 68–76.CrossRefGoogle ScholarPubMed
Carr, A. J., Robertsson, O., Graves, S. et al. 2012 Knee replacement. Lancet, 379, 1331–40.CrossRefGoogle ScholarPubMed
Chang, N. J., Jhung, Y. R., Yao, C. K. and Yeh, M. L. 2012. Hydrophilic gelatin and hyaluronic acid-treated PLGA scaffolds for cartilage tissue engineering. J. Appl. Biomater. Function. Mater., 11(1), e45–52.Google Scholar
Chu, C. R., Szczodry, M. and Bruno, S. 2010. Animal models for cartilage regeneration and repair. Tissue Eng. Part B Rev., 16, 105–15.CrossRefGoogle Scholar
Chung, C., Erickson, I. E., Mauck, R. L. and Burdick, J. A. 2008. Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng. Part A, 14, 1121–31.CrossRefGoogle ScholarPubMed
Coates, E. E., Riggin, C. N. and Fisher, J. P. 2012. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J. Orthop. Res., 30(12), 1886–97.CrossRefGoogle ScholarPubMed
Custers, R. J., Dhert, W. J., Saris, D. B. et al. 2010. Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthritis Cartilage, 18, 377–88.CrossRefGoogle ScholarPubMed
Custers, R. J., Saris, D. B., Dhert, W. J. et al. 2009. Articular cartilage degeneration following the treatment of focal cartilage defects with ceramic metal implants and compared with microfracture. J. Bone Joint Surg. Am., 91, 900–10.CrossRefGoogle ScholarPubMed
Davidson, D., Blanc, A., Filion, D. et al. 2005. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J. Biol. Chem., 280, 20509–15.CrossRefGoogle ScholarPubMed
Degala, S., Williams, R., Zipfel, W. and Bonassar, L. J. 2012. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture. J. Orthop. Res., 30, 793–9.CrossRefGoogle ScholarPubMed
Denker, A. E., Nicoll, S. B. and Tuan, R. S. 1995. Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-β1. Differentiation, 59, 25–34.CrossRefGoogle Scholar
Deponti, D., Di Giancamillo, A., Mangiavini, L. et al. 2012. Fibrin-based model for cartilage regeneration: tissue maturation from in vitro to in vivo. Tissue Eng. Part A, 18, 1109–22.CrossRefGoogle ScholarPubMed
Dickhut, A., Gottwald, E., Steck, E., Heisel, C. and Richter, W. 2008. Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo. Front. Biosci., 13, 4517–28.CrossRefGoogle ScholarPubMed
Dorotka, R., Bindreiter, U., Vavken, P. and Nehrer, S. 2005a. Behavior of human articular chondrocytes derived from nonarthritic and osteoarthritic cartilage in a collagen matrix. Tissue Eng., 11, 877–86.CrossRefGoogle Scholar
Dorotka, R., Windberger, U., Macfelda, K. et al. 2005b. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials, 26, 3617–29.CrossRefGoogle Scholar
El Tamer, M. K. and Reis, R. L. 2009. Progenitor and stem cells for bone and cartilage regeneration. J. Tissue Eng. Regen. Med., 3, 327–37.CrossRefGoogle ScholarPubMed
Erickson, I. E., Huang, A. H., Chung, C. et al. 2009. Differential maturation and structure–function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A, 15, 1041–52.CrossRefGoogle ScholarPubMed
Erickson, I. E., Kestle, S. R., Zellars, K. H. et al. 2012. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater., 8, 3027–34.CrossRefGoogle ScholarPubMed
Estes, B. T., Diekman, B. O., Gimble, J. M. and Guilak, F. 2010. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protoc., 5, 1294–311.CrossRefGoogle ScholarPubMed
Farrell, M. J., Comeau, E. S. and Mauck, R. L. 2012. Mesenchymal stem cells produce functional cartilage matrix in three-dimensional culture in regions of optimal nutrient supply. Eur. Cell Mater., 23, 425–40.CrossRefGoogle ScholarPubMed
Fening, S. D., Mihnovets, J., Jones, M. H., Midura, R. J. and Miniaci, A. 2011. The effect of storage medium tonicity on osteochondral autograft plug diameter. Arthroscopy, 27, 188–93.CrossRefGoogle ScholarPubMed
Flandry, F. and Hommel, G. 2011. Normal anatomy and biomechanics of the knee. Sports Med. Arthrosc., 19, 82–92.CrossRefGoogle Scholar
Freeman, M. A. R. 1979. Adult Articular Cartilage. Tunbridge Wells: Pitman Medical.Google Scholar
Freyria, A. M. and Mallein-Gerin, F. 2012. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury, 43, 259–65.CrossRefGoogle ScholarPubMed
Frisbie, D. D., Cross, M. W. and McIlwraith, C. W. 2006. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet. Comp. Orthop. Traumatol., 19, 142–6.CrossRefGoogle ScholarPubMed
Gill, T. J., McCulloch, P. C., Glasson, S. S., Blanchet, T. and Morris, E. A. 2005. Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am. J. Sports Med., 33, 680–5.CrossRefGoogle ScholarPubMed
Girdler, N. M. 1997. The role of mandibular condylar cartilage in articular cartilage repair. Ann. R. Coll. Surg. Engl., 79, 28–37.Google ScholarPubMed
Gomoll, A. H. 2012. Microfracture and augments. J. Knee Surg., 25, 9–15.Google ScholarPubMed
Gomoll, A. H., Farr, J., Gillogly, S. D., Kercher, J. and Minas, T. 2010. Surgical management of articular cartilage defects of the knee. J. Bone Joint Surg. Am., 92, 2470–90.Google Scholar
Gomoll, A. H. and Minas, T. 2011. Debridement, microfracture, and osteochondral autograft transfer for treatment of cartilage defects. In Minas, T., editor. A Primer in Cartilage Repair and Joint Preservation of the Knee. Philadelphia, PA: Saunders, pp. 48–53.CrossRefGoogle Scholar
Gotterbarm, T., Breusch, S. J., Schneider, U. and Jung, M. 2008. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab. Anim., 42, 71–82.CrossRefGoogle ScholarPubMed
Gray, H. and Goss, C. M. 1973. Anatomy of the Human Body. Philadelphia, PA: Lea & Febiger.Google Scholar
Guenther, H. L., Guenther, H. E., and Froesch, E. R. and Fleisch, H. 1982. Effect of insulin-like growth factor on collagen and glycosaminoglycan synthesis by rabbit articular chondrocytes in culture. Experientia, 38, 979–81.CrossRefGoogle ScholarPubMed
Guo, X., Wang, C., Zhang, Y. et al. 2004. Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into β-tricalcium phosphate in a sheep model. Tissue Eng., 10, 1818–29.CrossRefGoogle Scholar
Hangody, L., Vasarhelyi, G., Hangody, L. R. et al. 2008. Autologous osteochondral grafting – technique and long-term results. Injury, 39(Suppl. 1), S32–9.CrossRefGoogle ScholarPubMed
Harrington, E. K., Lunsford, L. E. and Svoboda, K. K. 2004. Chondrocyte terminal differentiation, apoptosis, and type X collagen expression are downregulated by parathyroid hormone. Anat. Rec. A Discov. Molec. Cell Evol. Biol., 281, 1286–95.CrossRefGoogle ScholarPubMed
Heir, S., Nerhus, T. K., Rotterud, J. H. et al. 2010. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am. J. Sports Med., 38, 231–7.CrossRefGoogle ScholarPubMed
Hellingman, C. A., Koevoet, W., Kops, N. et al. 2010. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng. Part A, 16, 545–56.CrossRefGoogle ScholarPubMed
Hendrickson, D. A., Nixon, A. J., Grande, D. A. et al. 1994. Chondrocyte–fibrin matrix transplants for resurfacing extensive articular cartilage defects. J. Orthop. Res., 12, 485–97.CrossRefGoogle ScholarPubMed
Heywood, H. K. and Lee, D. A. 2010. Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes. J. Cell Physiol., 222, 248–53.CrossRefGoogle Scholar
Ho, S. T., Hutmacher, D. W., Ekaputra, A. K., Hitendra, D. and Hui, J. H. 2010. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng. Part A, 16, 1123–41.CrossRefGoogle Scholar
Hoemann, C. D., Hurtig, M., Rossomacha, E. et al. 2005. Chitosan–glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J. Bone Joint Surg. Am., 87, 2671–86.CrossRefGoogle ScholarPubMed
Hoemann, C. D., Kandel, R. A., Roberts, S. et al. 2011. International Cartilage Repair Society (ICRS) recommended guidelines for histological endpoints for cartilage repair in animal studies in animal models and clinical trials. Cartilage, 2, 153–72.CrossRefGoogle ScholarPubMed
Hsieh-Bonassera, N. D., Wu, I., Lin, J. K. et al. 2009. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering. Tissue Eng. Part A, 15, 3513–23.CrossRefGoogle ScholarPubMed
Hu, J. C. and Athanasiou, K. A. 2006. Chondrocytes from different zones exhibit characteristic differences in high density culture. Connect. Tissue Res., 47, 133–40.CrossRefGoogle ScholarPubMed
Huang, A. H., Farrell, M. J., Kim, M. and Mauck, R. L. 2010. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur. Cell Mater., 19, 72–85.CrossRefGoogle ScholarPubMed
Huang, C. Y., Stankiewicz, A., Ateshian, G. A. and Mow, V. C. 2005. Anisotropy, inhomogeneity, and tension–compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech., 38, 799–809.CrossRefGoogle ScholarPubMed
Huang, Q., Goh, J. C., Hutmacher, D. W. and Lee, E. H. 2002. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Eng., 8, 469–82.CrossRefGoogle ScholarPubMed
Hui, J. H., Ren, X., Afizah, M. H., Chian, K. S. and Mikos, A. G. 2013. Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin. Orthop. Relat. Res., 471(4), 1174–85.CrossRefGoogle ScholarPubMed
Huntley, J. S., Bush, P. G., McBirnie, J. M., Simpson, A. H. and Hall, A. C. 2005. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J. Bone Joint Surg. Am., 87, 351–60.CrossRefGoogle ScholarPubMed
Hurtig, M. B., Buschmann, M. D., Fortier, L. A. et al. 2011. Preclinical studies for cartilage repair: recommendations from the International Cartilage Repair Society. Cartilage, 2, 137–59.CrossRefGoogle ScholarPubMed
Hwang, N. S., Varghese, S., Li, H. and Elisseeff, J. 2011. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG–ECM hydrogels. Cell Tissue Res., 344, 499–509.CrossRefGoogle ScholarPubMed
Ionescu, L. C., Lee, G. C., Huang, K. L. and Mauck, R. L. 2012. Growth factor supplementation improves native and engineered meniscus repair in vitro. Acta Biomater., 8(10), 3687–94.CrossRefGoogle ScholarPubMed
Irrgang, J. J., Anderson, A. F., Boland, A. L. et al. 2001. Development and validation of the international knee documentation committee subjective knee form. Am. J. Sports Med., 29, 600–13.CrossRefGoogle ScholarPubMed
Jackson, D. W., Lalor, P. A., Aberman, H. M. and Simon, T. M. 2001. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J. Bone Joint Surg. Am., 83A, 53–64.CrossRefGoogle Scholar
Jiang, C. C., Chiang, H., Liao, C. J. et al. 2007. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J. Orthop. Res., 25, 1277–90.CrossRefGoogle ScholarPubMed
Jiang, J., Tang, A., Ateshian, G. A. et al. 2010. Bioactive stratified polymer ceramic–hydrogel scaffold for integrative osteochondral repair. Ann. Biomed. Eng., 38, 2183–96.CrossRefGoogle ScholarPubMed
Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M. and Yoo, J. U. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res., 238, 265–72.CrossRefGoogle ScholarPubMed
Jones, B. A. and Pei, M. 2012. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng. Part B Rev., 18(4), 301–11.CrossRefGoogle ScholarPubMed
Jones, R. S., Keene, G. C., Learmonth, D. J. et al. 1996. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin. Biomech., 11, 295–300.CrossRefGoogle ScholarPubMed
Jurgens, W. J., Lu, Z., Zandieh-Doulabi, B. et al. 2012. Hyperosmolarity and hypoxia induce chondrogenesis of adipose-derived stem cells in a collagen type 2 hydrogel. J. Tissue Eng. Regen. Med., 6, 570–78.CrossRefGoogle Scholar
Kandel, R. A., Grynpas, M., Pilliar, R. et al. 2006. Repair of osteochondral defects with biphasic cartilage–calcium polyphosphate constructs in a sheep model. Biomaterials, 27, 4120–31.CrossRefGoogle Scholar
Kaplonyi, G., Zimmerman, I., Frenyo, A. D., Farkas, T. and Nemes, G. 1988. The use of fibrin adhesive in the repair of chondral and osteochondral injuries. Injury, 19, 267–72.CrossRefGoogle ScholarPubMed
Karagianes, M. T., Wheeler, K. R. and Nilles, J. L. 1975. Cartilage repair over porous metal implants. Arch. Pathol., 99, 398–400.Google ScholarPubMed
Kim, H. J. and Im, G. I. 2009. Combination of transforming growth factor-β2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Eng. Part A, 15, 1543–51.CrossRefGoogle ScholarPubMed
Kim, M., Kraft, J. J., Volk, A. C. et al. 2011. Characterization of a cartilage-like engineered biomass using a self-aggregating suspension culture model: molecular composition using FT-IRIS. J. Orthop. Res., 29, 1881–87.CrossRefGoogle ScholarPubMed
Kim, T. K., Sharma, B., Williams, C. G. et al. 2003. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage, 11, 653–64.CrossRefGoogle ScholarPubMed
Klein, T. J., Chaudhry, M., Bae, W. C. and Sah, R. L. 2007. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J. Biomech., 40, 182–90.CrossRefGoogle ScholarPubMed
Kocher, M. S., Steadman, J. R., Briggs, K. K., Sterett, W. I. and Hawkins, R. J. 2004. Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J. Bone Joint Surg. Am., 86A, 1139–45.CrossRefGoogle Scholar
Kon, E., Filardo, G., Tschon, M. et al. 2012. Tissue engineering for total meniscal substitution: animal study in sheep model – Results at 12 months. Tissue Eng. Part A, 18(15–16), 1573–82.CrossRefGoogle ScholarPubMed
Kon, E., Mutini, A., Arcangeli, E. et al. 2010. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J. Tissue Eng. Regen. Med., 4, 300–8.CrossRefGoogle ScholarPubMed
Lahiji, A., Sohrabi, A., Hungerford, D. S. and Frondoza, C. G. 2000. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res., 51, 586–95.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
LaPrade, R. F., Bursch, L. S., Olson, E. J., Havlas, V. and Carlson, C. S. 2008. Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am. J. Sports Med., 36, 360–8.CrossRefGoogle ScholarPubMed
Lawrence, R. C., Felson, D. T., Helmick, C. G. et al. 2008. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum., 58, 26–35.CrossRefGoogle ScholarPubMed
Lee, C. H., Cook, J. L., Mendelson, A. et al. 2010. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet, 376, 440–8.CrossRefGoogle ScholarPubMed
Li, X. A., Iyer, S., Cross, M. B. and Figgie, M. P. 2012. Total joint replacement in adolescents: literature review and case examples. Curr. Opin. Pediatr., 24, 57–63.CrossRefGoogle ScholarPubMed
Lima, E. G., Bian, L., Ng, K. W. et al. 2007. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Osteoarthritis Cartilage, 15, 1025–33.CrossRefGoogle ScholarPubMed
Lind, M., Larsen, A., Clausen, C., Osther, K. and Everland, H. 2008. Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg. Sports Traumatol. Arthrosc., 16, 690–8.CrossRefGoogle Scholar
Liu, X., Jin, X. and Ma, P. X. 2011 Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Mater., 10, 398–406.CrossRefGoogle ScholarPubMed
Macchiarini, P., Jungebluth, P., Go, T. et al. 2008. Clinical transplantation of a tissue-engineered airway. Lancet, 372, 2023–30.CrossRefGoogle ScholarPubMed
Maher, S. A., Mauck, R. L., Rackwitz, L. and Tuan, R. S. 2010. A nanofibrous cell-seeded hydrogel promotes integration in a cartilage gap model. J. Tissue Eng. Regen. Med., 4, 25–9.Google Scholar
Mainil-Varlet, P., Van Damme, B., Nesic, D. et al. 2010. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am. J. Sports Med., 38, 880–90.CrossRefGoogle ScholarPubMed
Makris, E. A., Hadidi, P. and Athanasiou, K. A. 2011. The knee meniscus: structure–function, pathophysiology, current repair, techniques, and prospects for regeneration. Biomaterials, 32, 7411–31.CrossRefGoogle ScholarPubMed
Malda, J., Martens, D. E., Tramper, J., van Blitterswijk, C. A. and Riesle, J. 2003. Cartilage tissue engineering: controversy in the effect of oxygen. Crit. Rev. Biotechnol., 23, 175–94.CrossRefGoogle ScholarPubMed
Mandal, B. B., Park, S. H., Gil, E. S. and Kaplan, D. L. 2011. Stem cell-based meniscus tissue engineering. Tissue Eng. Part A, 17, 2749–61.CrossRefGoogle ScholarPubMed
Mardones, R. M., Reinholz, G. G., Fitzsimmons, J. S. et al. 2005. Development of a biologic prosthetic composite for cartilage repair. Tissue Eng., 11, 1368–78.CrossRefGoogle ScholarPubMed
Marlovits, S., Singer, P., Zeller, P. et al. 2006. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur. J. Radiol., 57, 16–23.CrossRefGoogle ScholarPubMed
Marlovits, S., Striessnig, G., Resinger, C. T. et al. 2004. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur. J. Radiol., 52, 310–19.CrossRefGoogle ScholarPubMed
Marquass, B., Schulz, R., Hepp, P. et al. 2011. Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am. J. Sports Med., 39, 1401–12.CrossRefGoogle ScholarPubMed
Matricali, G. A., Dereymaeker, G. P. and Luyten, F. P. 2010. Donor site morbidity after articular cartilage repair procedures: a review. Acta Orthop. Belg., 76, 669–74.Google ScholarPubMed
Mauck, R. L., Yuan, X. and Tuan, R. S. 2006. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage, 14, 179–89.CrossRefGoogle ScholarPubMed
McCormick, F., Yanke, A., Provencher, M. T. and Cole, B. J. 2008. Minced articular cartilage – basic science, surgical technique, and clinical application. Sports Med. Arthrosc., 16, 217–20.CrossRefGoogle ScholarPubMed
Mease, P. J., Hanna, S., Frakes, E. P. and Altman, R. D. 2011. Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. J. Rheumatol., 38, 1546–51.CrossRefGoogle ScholarPubMed
Minas, T. 2001. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin. Orthop. Relat. Res., S349–61.
Minas, T. 2011. Autologous chondrocyte implantation. In Minas, T., editor. A Primer in Cartilage Repair and Joint Preservation of the Knee. Philadelphia, PA: Saunders, pp. 65–119.CrossRefGoogle Scholar
Miot, S., Brehm, W., Dickinson, S. et al. 2012. Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur. Cell Mater., 23, 222–36.CrossRefGoogle Scholar
Mithoefer, K., McAdams, T., Williams, R. J., Kreuz, P. C. and Mandelbaum, B. R. 2009. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am. J. Sports Med., 37, 2053–63.CrossRefGoogle ScholarPubMed
Moutos, F. T., Freed, L. E. and Guilak, F. 2007. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater., 6, 162–7.CrossRefGoogle ScholarPubMed
Moutos, F. T. and Guilak, F. 2010. Functional properties of cell-seeded three-dimensionally woven poly(ε-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng. Part A, 16, 1291–301.CrossRefGoogle ScholarPubMed
Mow, V. C., and Huiskes, R. 2005. Basic Orthopaedic Biomechanics & Mechanobiology. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Mow, V. C., Kuei, S. C., Lai, W. M. and Armstrong, C. G. 1980. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng., 102, 73–84.CrossRefGoogle ScholarPubMed
Mrosek, E. H., Schagemann, J. C., Chung, H. W. et al. 2010. Porous tantalum and poly-ε-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits. J. Orthop. Res., 28, 141–8.Google ScholarPubMed
Mulhall, K. J., Ghomrawi, H. M., Scully, S., Callaghan, J. J. and Saleh, K. J. 2006. Current etiologies and modes of failure in total knee arthroplasty revision. Clin. Orthop. Relat. Res., 446, 45–50.CrossRefGoogle ScholarPubMed
Natoli, R. M., Revell, C. M. and Athanasiou, K. A. 2009. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng. Part A, 15, 3119–28.CrossRefGoogle ScholarPubMed
Nehrer, S., Breinan, H. A., Ramappa, A. et al. 1998. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials, 19, 2313–28.CrossRefGoogle Scholar
Nehrer, S., Spector, M. and Minas, T. 1999. Histologic analysis of tissue after failed cartilage repair procedures. Clin. Orthop. Relat. Res., 149–62.
Nerurkar, N. L., Sen, S., Huang, A. H., Elliott, D. M. and Mauck, R. L. 2010. Engineered disc-like angle-ply structures for intervertebral disc replacement. Spine, 35, 867–73.CrossRefGoogle ScholarPubMed
Nettles, D. L., Kitaoka, K., Hanson, N. A. et al. 2008. In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng. Part A, 14, 1133–40.CrossRefGoogle Scholar
Ng, K. W., Ateshian, G. A. and Hung, C. T. 2009. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng. Part A, 15, 2315–24.CrossRefGoogle Scholar
Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S. and Sah, R. L. 2012. Cartilage-like mechanical properties of poly(ethylene glycol)-diacrylate hydrogels. Biomaterials, 33, 6682–90.CrossRefGoogle ScholarPubMed
Niederauer, G. G., Slivka, M. A., Leatherbury, N. C. et al. 2000. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials, 21, 2561–74.CrossRefGoogle ScholarPubMed
O’Driscoll, S. W., Marx, R. G., Beaton, D. E. et al. 2001. Validation of a simple histological–histochemical cartilage scoring system. Tissue Eng., 7, 313–20.CrossRefGoogle ScholarPubMed
Ogston, A. G., and Stanier, J. E. 1953. The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J. Physiol., 119, 244–52.CrossRefGoogle ScholarPubMed
Pallante, A. L., Bae, W. C., Chen, A. C. et al. 2009. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am. J. Sports Med., 37(Suppl. 1), 24S–32S.CrossRefGoogle ScholarPubMed
Park, S. H., Gil, E. S. and Cho, H. 2012. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng. Part A, 18, 447–58.CrossRefGoogle ScholarPubMed
Pelttari, K., Winter, A., Steck, E. et al. 2006. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum., 54, 3254–66.CrossRefGoogle ScholarPubMed
Pittenger, M. F., Mackay, A. M., Beck, S. C. et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–7.CrossRefGoogle ScholarPubMed
Re’em, T., Witte, F., Willbold, E., Ruvinov, E. and Cohen, S. 2012. Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-β and BMP-4 in a bilayer affinity binding system. Acta Biomater., 8, 3283–93.CrossRefGoogle Scholar
Reimann, I. 1976. Pathological human synovial fluids. Viscosity and boundary lubricating properties. Clin. Orthop. Relat. Res., 237–41.
Reinholz, G. G., Lu, L., Saris, D. B., Yaszemski, M. J. and O’Driscoll, S. W. 2004. Animal models for cartilage reconstruction. Biomaterials, 25, 1511–21.CrossRefGoogle ScholarPubMed
Robinson, P. D. 1993. Histologic study of articular cartilage repair in the marmoset condyle. J. Oral Maxillofac. Surg., 51, 1088–94; discussion 1094–5.CrossRefGoogle ScholarPubMed
Ropes, M. W., Bennett, G. A. and Bauer, W. 1939. The origin and nature of normal synovial fluid. J. Clin. Invest., 18, 351–72.CrossRefGoogle ScholarPubMed
Sage, A., Chang, A. A., Schumacher, B. L.Sah, R. L. and Watson, D. 2009. Cartilage outgrowth in fibrin scaffolds. Am. J. Rhinol. Allergy, 23, 486–91.CrossRefGoogle ScholarPubMed
Sams, A. E., and Nixon, A. J. 1995. Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage, 3, 47–59.CrossRefGoogle ScholarPubMed
Schatti, O., Grad, S., Goldhahn, J. et al. 2011. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater., 22, 214–25.CrossRefGoogle ScholarPubMed
Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J. and Krebsbach, P. H. 2004. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng., 10, 1376–85.CrossRefGoogle ScholarPubMed
Schiltz, J. R., Mayne, R. and Holtzer, H. 1973. The synthesis of collagen and glycosaminoglycans by dedifferentiated chondroblasts in culture. Differentiation, 1, 97–108.CrossRefGoogle Scholar
Schinagl, R. M., Gurskis, D., Chen, A. C. and Sah, R. L. 1997. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res., 15, 499–506.CrossRefGoogle ScholarPubMed
Schinhan, M., Gruber, M., Vavken, P. et al. 2012. Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J. Orthop. Res., 30, 214–20.CrossRefGoogle Scholar
Schulz, R. M., Zscharnack, M., Hanisch, I. et al. 2008. Cartilage tissue engineering by collagen matrix associated bone marrow derived mesenchymal stem cells. Biomed. Mater. Eng., 18, S55–70.Google ScholarPubMed
Schumacher, B. L., Block, J. A., Schmid, T. M., Aydelotte, M. B. and Kuettner, K. E. 1994. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch. Biochem. Biophys., 311, 144–52.CrossRefGoogle ScholarPubMed
Sechriest, V. F., Miao, Y. J., Niyibizi, C. et al. 2000. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J. Biomed. Mater. Res., 49, 534–41.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Shahin, K. and Doran, P. M. 2011. Improved seeding of chondrocytes into polyglycolic acid scaffolds using semi-static and alginate loading methods. Biotechnol. Prog., 27, 191–200.CrossRefGoogle ScholarPubMed
Shortkroff, S., Barone, L., Hsu, H. P. et al. 1996. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials, 17, 147–54.CrossRefGoogle Scholar
Skaalure, S. C., Milligan, I. L. and Bryant, S. J. 2012. Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels. Biomed. Mater., 7, 024111.CrossRefGoogle ScholarPubMed
Smith, H. J., Richardson, J. B. and Tennant, A. 2009. Modification and validation of the Lysholm Knee Scale to assess articular cartilage damage. Osteoarthritis Cartilage, 17, 53–8.CrossRefGoogle ScholarPubMed
Solorio, L. D., Vieregge, E. L., Dhami, C. D., Dang, P. N. and Alsberg, E. 2012. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-β1. J. Control. Release, 158, 224–32.CrossRefGoogle ScholarPubMed
Spiller, K. L., Holloway, J. L., Gribb, M. E. and Lowman, A. M. 2011. Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering. J. Tissue. Eng. Regen. Med., 5, 636–47.CrossRefGoogle ScholarPubMed
Spiller, K. L., Laurencin, S. J. and Lowman, A. M. 2009. Characterization of the behavior of porous hydrogels in model osmotically-conditioned articular cartilage systems. J. Biomed. Mater. Res. B Appl. Biomater., 90, 752–9.CrossRefGoogle ScholarPubMed
Starkman, B. G., Cravero, J. D., Delcarlo, M. and Loeser, R. F. 2005. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem. J., 389, 723–9.CrossRefGoogle Scholar
Strangeways, T. S. 1920. Observations on the nutrition of articular cartilage. Br. Med. J., 1, 661–3.CrossRefGoogle ScholarPubMed
Sung, M. S., Jeong, C. H., Lim, Y. S. et al. 2011. Periosteal autograft for articular cartilage defects in dogs: MR imaging and ultrasonography of the repair process. Acta Radiol., 52, 181–90.CrossRefGoogle ScholarPubMed
Swann, D. A., Silver, F. H., Slayter, H. S., Stafford, W. and Shore, E. 1985. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J., 225, 195–201.CrossRefGoogle ScholarPubMed
Tampieri, A., Sandri, M., Landi, E. et al. 2008. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials, 29, 3539–46.CrossRefGoogle ScholarPubMed
Tanaka, T., Komaki, H., Chazono, M. and Fujii, K. 2005. Use of a biphasic graft constructed with chondrocytes overlying a β-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng., 11, 331–9.CrossRefGoogle ScholarPubMed
Tegner, Y. and Lysholm, J. 1985. Rating systems in the evaluation of knee ligament injuries. Clin. Orthop. Relat. Res., 43–9.
Terada, S., Yoshimoto, H., Fuchs, J. R. et al. 2005. Hydrogel optimization for cultured elastic chondrocytes seeded onto a polyglycolic acid scaffold. J. Biomed. Mater. Res. A, 75, 907–16.CrossRefGoogle ScholarPubMed
Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M. and Soslowsky, L. J. 2003. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res., 21, 413–19.CrossRefGoogle ScholarPubMed
Thoms, R. J. and Marwin, S. E. 2009. The role of fibrin sealants in orthopaedic surgery. J. Am. Acad. Orthop. Surg., 17, 727–36.CrossRefGoogle ScholarPubMed
Toh, W. S., Lee, E. H. and Cao, T. 2011. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev., 7, 544–59.CrossRefGoogle ScholarPubMed
Toh, W. S., Lim, T. C., Kurisawa, M. and Spector, M. 2012. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33, 3835–45.CrossRefGoogle Scholar
Tran-Khanh, N., Hoemann, C. D., McKee, M. D., Henderson, J. E. and Buschmann, M. D. 2005. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J. Orthop. Res., 23, 1354–62.CrossRefGoogle ScholarPubMed
Treppo, S., Koepp, H., Quan, E. C. et al. 2000. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res., 18, 739–48.CrossRefGoogle ScholarPubMed
Van Assche, D., Staes, F., Van Caspel, D. et al. 2010. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg. Sports Traumatol. Arthrosc., 18, 486–95.CrossRefGoogle ScholarPubMed
Watanabe, H., de Caestecker, M. P. and Yamada, Y. 2001. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J. Biol. Chem., 276, 14466–73.CrossRefGoogle ScholarPubMed
Weiss, S., Hennig, T., Bock, R., Steck, E. and Richter, W. 2010. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J. Cell Physiol., 223, 84–93.Google ScholarPubMed
Williamson, A. K., Chen, A. C. and Sah, R. L. 2001. Compressive properties and function–composition relationships of developing bovine articular cartilage. J. Orthop. Res., 19, 1113–21.CrossRefGoogle ScholarPubMed
Wong, J. M., and Khan, W. S., Chimutengwende-Gordon, M. and Dowd, G. S. 2011. Recent advances in designs, approaches and materials in total knee replacement: literature review and evidence today. J. Perioper. Pract., 21, 165–71.CrossRefGoogle ScholarPubMed
Xerogeanes, J. W., Fox, R. J., Takeda, Y. et al. 1998. A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann. Biomed. Eng., 26, 345–52.CrossRefGoogle ScholarPubMed
Yamazoe, K., Mishima, H., Torigoe, K. et al. 2007. Effects of atelocollagen gel containing bone marrow-derived stromal cells on the repair of osteochondral defects in a dog. J. Vet. Med. Sci., 69, 835–9.CrossRefGoogle Scholar
Yang, Q., Peng, J., Lu, S. B. et al. 2011. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin. Med. J. (Engl.), 124, 3930–8.Google Scholar
Yokota, M., Yasuda, K., Kitamura, N. et al. 2011. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel. BMC Musculoskelet. Disord., 12, 49.CrossRefGoogle Scholar
Youn, I., Choi, J. B., Cao, L., Setton, L. A. and Guilak, F. 2006. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthritis Cartilage, 14, 889–97.CrossRefGoogle ScholarPubMed
Yuan, T., Zhang, L., Feng, L., Fan, H. and Zhang, X. 2010. Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnol. Prog., 26, 1749–58.CrossRefGoogle ScholarPubMed
Zhou, G., Liu, W., Cui, L. et al. 2006. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng., 12, 3209–21.CrossRefGoogle ScholarPubMed
Zhou, S., Cui, Z. and Urban, J. P. 2004. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage–bone interface: a modeling study. Arthritis Rheum., 50, 3915–24.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×