Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T02:43:44.752Z Has data issue: false hasContentIssue false

28 - Engineering tissue-to-tissue interfaces

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Nora T. Khanarian
Affiliation:
Columbia University
Nancy M. Lee
Affiliation:
Columbia University
Marissa R. Solomon
Affiliation:
Columbia University
Helen H. Lu
Affiliation:
Columbia University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Orthopedic injuries and diseases commonly affect soft tissues, including cartilage, which line the surface of articulating joints, as well as ligaments and tendons, which connect bone to bone and muscle to bone, respectively. Continued developments in tissue engineering have led to advancements in the regeneration of these tissues, while recently emphasis has been placed on the regeneration of the interfaces or insertion sites that connect these soft tissues to bone, which are characterized by a gradient of structural and mechanical properties [1]. The integrity of these regions is essential to facilitating synchronized joint motion, mediating load transfer between distinct tissue types, and sustaining heterotypic cellular communications necessary for interface function and homeostasis [2–4]. These critical junctions are also prone to injury, and healing is typically incomplete after surgical repair. The need for functional interface regeneration is highlighted by the fact that failure to restore the intricate tissue-to-tissue interface has been reported to compromise graft stability and long-term clinical outcome [5, 6].

Fundamentally, tissue engineering involves the use of cells, growth factors, and/or biomaterial scaffolds in a variety of ways to engineer tissues in vitro and in vivo. The principles of tissue engineering have been applied for the successful formation of connective tissues, including bone, cartilage, ligament, and tendon. Recently the focus in the field has shifted from tissue formation to tissue function [7], specifically to imparting physiologically relevant functionality to tissue-engineered grafts. One of the most significant challenges to clinical application is achieving biological fixation of musculoskeletal grafts with each other as well as to the native host environment [8].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, H. H., Subramony, S. D., Boushell, M. K. and Zhang, X. 2010. Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann. Biomed. Eng., 38(6), 2142–54.CrossRefGoogle ScholarPubMed
Benjamin, M., Evans, E. J. and Copp, L. 1986. The histology of tendon attachments to bone in man. J. Anat., 149, 89–100.Google ScholarPubMed
Lu, H. H. and Jiang, J. 2006. Interface tissue engineering and the formulation of multiple-tissue systems. Adv. Biochem. Eng. Biotechnol., 102, 91–111.Google ScholarPubMed
Woo, S. L., Maynard, J., Butler, D. L. et al. 1988. Ligament, tendon, and joint capsule insertions to bone. In Woo, S. L.-Y. and Buckwalter, J. A., editors. Injury and Repair of Musculoskeletal Soft Tissues. Chicago, IL: American Academy of Orthopaedic Surgeons, pp. 133–66.Google ScholarPubMed
Friedman, M. J., Sherman, O. H., Fox, J. M. et al. 1985. Autogeneic anterior cruciate ligament (ACL) anterior reconstruction of the knee. A review. Clin. Orthop., 196, 9–14.Google Scholar
Robertson, D. B., Daniel, D. M. and Biden, E. 1986. Soft tissue fixation to bone. Am. J. Sports Med., 14(5), 398–403.CrossRefGoogle ScholarPubMed
Butler, D. L., Goldstein, S. A. and Guilak, F. 2000. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng., 122(6), 570–5.CrossRefGoogle ScholarPubMed
Moffat, K. L., Wang, I. N., Rodeo, S. A. and Lu, H. H. 2009. Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin. Sports Med., 28(1), 157–76.CrossRefGoogle ScholarPubMed
Cooper, R. R. and Misol, S. 1970. Tendon and ligament insertion. A light and electron microscopic study. J. Bone Joint Surg. Am., 52(1), 1–20.CrossRefGoogle ScholarPubMed
Wang, I. E., Mitroo, S., Chen, F. H., Lu, H. H. and Doty, S. B. 2006. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J. Orthop. Res., 24(8), 1745–55.CrossRefGoogle ScholarPubMed
Matyas, J. R., Anton, M. G., Shrive, N. G. and Frank, C. B. 1995. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. J. Biomech., 28(2), 147–57.CrossRefGoogle ScholarPubMed
Spalazzi, J. P., Costa, K. D., Doty, S. B. and Lu, H. H. 2004. Characterization of the mechanical properties, structure, and composition of the anterior cruciate ligament–bone insertion site. Trans. Orthopaedic Res. Soc., 29, Poster #1271.Google Scholar
Moffat, K. L., Sun, W. H., Pena, P. E. et al. 2008. Characterization of the structure–function relationship at the ligament-to-bone interface. Proc. Nat. Acad. Sci. USA, 105(23), 7947–52.CrossRefGoogle ScholarPubMed
Bullough, P. G. and Jagannath, A. 1983. The morphology of the calcification front in articular cartilage. Its significance in joint function. J. Bone Joint Surg. Br., 65(1), 72–8.CrossRefGoogle ScholarPubMed
Oegema, T. R. and Thompson, R. C. 1992. The zone of calcified cartilage. Its role in osteoarthritis. In Kuettner, K. E., Schleyerbach, R., Peyron, J. G. and Hascall, V. C., editors. Articular Cartilage and Osteoarthritis. New York: Raven Press, pp. 319–31.Google Scholar
Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M. and Soslowsky, L. J. 2003. Variations of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res., 21(3), 413–19.CrossRefGoogle Scholar
Ralphs, J. R., Benjamin, M., Waggett, A. D. et al. 1998. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J. Anat., 193(Part 2), 215–22.CrossRefGoogle ScholarPubMed
Ladd, M. R., Lee, S. J., Stitzel, J. D., Atala, A. and Yoo, J. J. 2011. Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering. Biomaterials, 32(6), 1549–59.CrossRefGoogle ScholarPubMed
Li, X. R., Xie, J. W., Lipner, J. et al. 2009. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett., 9(7), 2763–8.CrossRefGoogle ScholarPubMed
Wang, I. E., Shan, J., Choi, R. et al. 2007. Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res., 25(12), 1609–20.CrossRefGoogle ScholarPubMed
Spalazzi, J. P., Doty, S. B., Moffat, K. L., Levine, W. N. and Lu, H. H. 2006. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng., 12(12), 3497–508.CrossRefGoogle ScholarPubMed
Spalazzi, J. P., Dagher, E., Doty, S. B. et al. 2008. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. Part A, 86(1), 1–12.CrossRefGoogle ScholarPubMed
Rodeo, S. A., Arnoczky, S. P., Torzilli, P. A., Hidaka, C. and Warren, R. F. 1993. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Joint Surg. Am., 75(12), 1795–803.CrossRefGoogle Scholar
Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J. and Warren, R. F. 1999. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med., 27(4), 476–88.CrossRefGoogle Scholar
Kurosaka, M., Yoshiya, S. and Andrish, J. T. 1987. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am. J. Sports Med., 15(3), 225–9.CrossRefGoogle ScholarPubMed
Tien, Y. C., Chih, T. T., Lin, J. H., Ju, C. P. and Lin, S. D. 2004. Augmentation of tendon–bone healing by the use of calcium-phosphate cement. J. Bone Joint Surg. Br., 86(7), 1072–6.CrossRefGoogle ScholarPubMed
Huangfu, X. and Zhao, J. 2007. Tendon–bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament reconstruction model. Arthroscopy, 23(5), 455–62.CrossRefGoogle Scholar
Gulotta, L. V., Kovacevic, D., Ying, L. et al. 2008. Augmentation of tendon-to-bone healing with a magnesium-based bone adhesive. Am. J. Sports Med., 36(7), 1290–7.CrossRefGoogle ScholarPubMed
Robertson, W. J., Hatch, J. D. and Rodeo, S. A. 2007. Evaluation of tendon graft fixation using α-BSM calcium phosphate cement. Arthroscopy, 23(10), 1087–92.CrossRefGoogle ScholarPubMed
Ishikawa, H., Koshino, T., Takeuchi, R. and Saito, T. 2001. Effects of collagen gel mixed with hydroxyapatite powder on interface between newly formed bone and grafted Achilles tendon in rabbit femoral bone tunnel. Biomaterials, 22(12), 1689–94.CrossRefGoogle ScholarPubMed
Shen, H., Qiao, G., Cao, H. and Jiang, Y. 2010. An histological study of the influence of osteoinductive calcium phosphate ceramics on tendon healing pattern in a bone tunnel with suspensory fixation. Int. Orthop., 34(6), 917–24.CrossRefGoogle Scholar
Mutsuzaki, H., Sakane, M., Nakajima, H. et al. 2004. Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon–bone insertion. J. Biomed. Mater. Res. A, 70(2), 319–27.CrossRefGoogle ScholarPubMed
Chen, C. H., Chen, W. J., Shih, C. H. et al. 2003. Enveloping the tendon graft with periosteum to enhance tendon–bone healing in a bone tunnel: a biomechanical and histologic study in rabbits. Arthroscopy, 19(3), 290–6.CrossRefGoogle Scholar
Youn, I., Jones, D. G., Andrews, P. J., Cook, M. P. and Suh, J. K. 2004. Periosteal augmentation of a tendon graft improves tendon healing in the bone tunnel. Clin. Orthop. Relat. Res., 419, 223–31.CrossRefGoogle Scholar
Ohtera, K., Yamada, Y., Aoki, M., Sasaki, T. and Yamakoshi, K. 2000. Effects of periosteum wrapped around tendon in a bone tunnel: a biomechanical and histological study in rabbits. Crit. Rev. Biomed. Eng., 28(1–2), 115–18.CrossRefGoogle Scholar
Kyung, H. S., Kim, S. Y., Oh, C. W. and Kim, S. J. 2003. Tendon-to-bone tunnel healing in a rabbit model: the effect of periosteum augmentation at the tendon-to-bone interface. Knee Surg. Sports Traumatol. Arthrosc., 11(1), 9–15.CrossRefGoogle Scholar
Karaoglu, S., Celik, C. and Korkusuz, P. 2009. The effects of bone marrow or periosteum on tendon-to-bone tunnel healing in a rabbit model. Knee Surg. Sports Traumatol. Arthrosc., 17(2), 170–8.CrossRefGoogle ScholarPubMed
Hashimoto, Y., Yoshida, G., Toyoda, H. and Takaoka, K. 2007. Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. J. Orthop. Res., 25(11), 1415–24.CrossRefGoogle Scholar
Ma, C. B., Kawamura, S., Deng, X. H. et al. 2007. Bone morphogenetic proteins–signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am. J. Sports Med., 35(4), 597–604.CrossRefGoogle Scholar
Martinek, V., Latterman, C., Usas, A. et al. 2002. Enhancement of tendon–bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J. Bone Joint Surg. Am., 84A(7), 1123–31.CrossRefGoogle Scholar
Chen, C. H., Liu, H. W., Tsai, C. L. et al. 2008. Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am. J. Sports Med., 36(3), 461–73.CrossRefGoogle Scholar
Mihelić, R., Pečina, M., Jelić, M. et al. 2004. Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am. J. Sports Med., 32(7), 1619–25.CrossRefGoogle Scholar
Sasaki, K., Kuroda, R., Ishida, K. et al. 2008. Enhancement of tendon–bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am. J. Sports Med., 36(8), 1519–27.CrossRefGoogle ScholarPubMed
Soon, M. Y., Hassan, A., Hui, J. H., Goh, J. C. and Lee, E. H. 2007. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am. J. Sports Med., 35(6), 962–71.CrossRefGoogle Scholar
Fan, H., Liu, H., Wong, E. J., Toh, S. L. and Goh, J. C. 2008. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials, 29(23), 3324–37.CrossRefGoogle ScholarPubMed
Ju, Y. J., Muneta, T., Yoshimura, H., Koga, H. and Sekiya, I. 2008. Synovial mesenchymal stem cells accelerate early remodeling of tendon–bone healing. Cell Tissue Res., 332(3), 469–78.CrossRefGoogle ScholarPubMed
Lim, J. K., Hui, J., Li, L. et al. 2004. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy, 20(9), 899–910.CrossRefGoogle Scholar
Ouyang, H. W., Goh, J. C. and Lee, E. H. 2004. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am. J. Sports Med., 32(2), 321–7.CrossRefGoogle Scholar
Dunn, M. G., Liesch, J. B., Tiku, M. L. and Zawadsky, J. P. 1995. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J. Biomed. Mater. Res., 29(11), 1363–71.CrossRefGoogle ScholarPubMed
Altman, G. H., Horan, R. L., Lu, H. H. et al. 2002. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 23(20), 4131–41.CrossRefGoogle ScholarPubMed
Dunn, M. G., Tria, A. J., Kato, Y. P. et al. 1992. Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. A biomechanical and histologic study in rabbits. Am. J. Sports Med., 20(5), 507–15.CrossRefGoogle ScholarPubMed
Cooper, J. A., Lu, H. H., Ko, F. K., Freeman, J. W. and Laurencin, C. T. 2005. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials, 26(13), 1523–32.CrossRefGoogle ScholarPubMed
Inoue, N., Ikeda, K., Aro, H. T. et al. 2002. Biologic tendon fixation to metallic implant augmented with autogenous cancellous bone graft and bone marrow in a canine model. J. Orthop. Res., 20(5), 957–66.CrossRefGoogle Scholar
Cooper, J. A., Sahota, J. S., Gorum, W. J. et al. 2007. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc. Nat. Acad. Sci. USA, 104(9), 3049–54.Google Scholar
Lu, H. H., Cooper, J. A., Manuel, S. et al. 2005. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials, 26(23), 4805–16.CrossRefGoogle ScholarPubMed
Ma, J., Goble, K., Smietana, M. et al. 2009. Morphological and functional characteristics of three-dimensional engineered bone–ligament–bone constructs following implantation. J. Biomech. Eng., 131(10), 101017.CrossRefGoogle ScholarPubMed
Paxton, J. Z., Donnelly, K., Keatch, R. P. and Baar, K. 2009. Engineering the bone–ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng. Part A, 15(6), 1201–9.CrossRefGoogle ScholarPubMed
Lu, H. H., El Amin, S. F., Scott, K. D. and Laurencin, C. T. 2003. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J. Biomed. Mater. Res., 64A(3), 465–74.CrossRefGoogle Scholar
Lee, J., Il Choi, W., Tae, G. et al. 2011. Enhanced regeneration of the ligament-bone interface using a poly(l-lactide-co-ε-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater., 7(1), 244–57.CrossRefGoogle ScholarPubMed
Spalazzi, J. P., Vyner, M. C., Jacobs, M. T., Moffat, K. L. and Lu, H. H. 2008. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers. Clin. Orthopaedics Related Res., 466(8), 1938–48.CrossRefGoogle ScholarPubMed
Blevins, F. T., Djurasovic, M., Flatow, E. L. and Vogel, K. G. 1997. Biology of the rotator cuff tendon. Orthop. Clin. North Am., 28(1), 1–16.CrossRefGoogle ScholarPubMed
Galatz, L. M., Ball, C. M., Teefey, S. A., Middleton, W. D. and Yamaguchi, K. 2004. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J. Bone Joint Surg. Am., 86A(2), 219–24.CrossRefGoogle Scholar
Coons, D. A. and Alan, B. F. 2006. Tendon graft substitutes–rotator cuff patches. Sports Med. Arthrosc., 14(3), 185–90.CrossRefGoogle ScholarPubMed
Derwin, K. A., Baker, A. R., Spragg, R. K., Leigh, D. R. and Iannotti, J. P. 2006. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J. Bone Joint Surg. Am., 88(12), 2665–72.CrossRefGoogle ScholarPubMed
Iannotti, J. P., Codsi, M. J., Kwon, Y. W. et al. 2006. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J. Bone Joint Surg. Am., 88(6), 1238–44.CrossRefGoogle ScholarPubMed
Fujioka, H., Thakur, R., Wang, G. J. et al. 1998. Comparison of surgically attached and non-attached repair of the rat Achilles tendon–bone interface. Cellular organization and type X collagen expression. Connect. Tissue Res., 37(3–4), 205–18.CrossRefGoogle ScholarPubMed
Chang, C. H., Chen, C. H., Su, C. Y., Liu, H. T. and Yu, C. M. 2009. Rotator cuff repair with periosteum for enhancing tendon–bone healing: a biomechanical and histological study in rabbits. Knee Surg. Sports Traumatol. Arthrosc., 17(12), 1447–53.CrossRefGoogle ScholarPubMed
Sundar, S., Pendegrass, C. J. and Blunn, G. W. 2009. Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J. Biomed. Mater. Res. B Appl. Biomater., 88(1), 115–22.CrossRefGoogle ScholarPubMed
Rodeo, S. A., Potter, H. G., Kawamura, S. et al. 2007. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J. Bone Joint Surg. Am., 89(11), 2485–97.Google ScholarPubMed
Gulotta, L. V., Kovacevic, D., Montgomery, S. et al. 2010. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am. J. Sports Med., 38(7), 1429–37.CrossRefGoogle ScholarPubMed
Bedi, A., Kovacevic, D., Hettrich, C. et al. 2010. The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J. Shoulder. Elbow. Surg., 19(3), 384–91.CrossRefGoogle Scholar
Yokoya, S., Mochizuki, Y., Nagata, Y., Deie, M. and Ochi, M. 2008. Tendon–bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model. Am. J. Sports Med., 36(7), 1298–309.CrossRefGoogle ScholarPubMed
Ma, Z., Kotaki, M., Inai, R. and Ramakrishna, S. 2005. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng., 11(1–2), 101–9.CrossRefGoogle ScholarPubMed
Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S. and Ko, F. K. 2002. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res., 60(4), 613–21.CrossRefGoogle ScholarPubMed
Pham, Q. P., Sharma, U. and Mikos, A. G. 2006. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng., 12(5), 1197–211.CrossRefGoogle ScholarPubMed
Li, W. J., Mauck, R. L., Cooper, J. A., Yuan, X. and Tuan, R. S. 2007. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech., 40(8), 1686–93.CrossRefGoogle ScholarPubMed
Moffat, K. L., Kwei, A. S., Spalazzi, J. P. et al. 2009. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng. Part A, 15(1), 115–26.CrossRefGoogle ScholarPubMed
Itoi, E., Berglund, L. J., Grabowski, J. J. et al. 1995. Tensile properties of the supraspinatus tendon. J. Orthop. Res., 13(4), 578–84.CrossRefGoogle ScholarPubMed
Moffat, K. L., Levine, W. N. and Lu, H. H. 2008. In vitro evaluation of rotator cuff tendon fibroblasts on aligned composite scaffold of polymer nanofibers and hydroxyapatite nanoparticles. In Transactions of the 54th Annual Meeting of the Orthopaedic Research Society.
Moffat, K. L. 2010. Biomimetic nanofiber scaffold design for tendon-to-bone interface tissue engineering. Ph.D. Thesis, Columbia University.
Moffat, K. L., Cassilly, R. T., Subramony, S. D. et al. 2010. In vivo evalution of a bi-phasic nanofiber-based scaffold for integrative rotator cuff repair. In Transactions of the 56th Annual Meeting of the Orthopaedic Research Society.
Xie, J., Li, X., Lipner, J. et al. 2010. “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale, 2(6), 923–6.CrossRefGoogle ScholarPubMed
Phillips, J. E., Burns, K. L., Le Doux, J. M., Guldberg, R. E. and Garcia, A. J. 2008. Engineering graded tissue interfaces. Proc. Nat. Acad. Sci. USA, 105(34), 12170–5.CrossRefGoogle ScholarPubMed
Yang, P. J. and Temenoff, J. S. 2009. Engineering orthopedic tissue interfaces. Tissue Eng. Part B Rev., 15(2), 127–41.CrossRefGoogle ScholarPubMed
Tidball, J. G. 1991. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc. Sport Sci. Rev., 19, 419–45.CrossRefGoogle ScholarPubMed
Swasdison, S. and Mayne, R. 1991. In vitro attachment of skeletal muscle fibers to a collagen gel duplicates the structure of the myotendinous junction. Exp. Cell Res., 193(1), 227–31.CrossRefGoogle ScholarPubMed
Swasdison, S. and Mayne, R. 1992. Formation of highly organized skeletal muscle fibers in vitro. Comparison with muscle development in vivo. J. Cell Sci., 102(Part 3), 643–52.Google ScholarPubMed
Larkin, L. M., Calve, S., Kostrominova, T. Y. and Arruda, E. M. 2006. Structure and functional evaluation of tendon–skeletal muscle constructs engineered in vitro. Tissue Eng., 12(11), 3149–58.CrossRefGoogle ScholarPubMed
Fawns, H. T. and Landells, J. W. 1953. Histochemical studies of rheumatic conditions. I. Observations on the fine structures of the matrix of normal bone and cartilage. Ann. Rheum. Dis., 12(2), 105–13.CrossRefGoogle ScholarPubMed
Oegema, T. R. and Thompson, R. C. 1990. Cartilage–bone interface (tidemark). In Brandt, K. D., editor. Cartilage Changes in Osteoarthritis. Bloomington, IN: Indiana University Press, pp. 43–52.Google Scholar
Lyons, T. J., Stoddart, R. W., McClure, S. F. and McClure, J. 2005. The tidemark of the chondro-osseous junction of the normal human knee joint. J. Molec. Histol., 36(3), 207–15.CrossRefGoogle ScholarPubMed
Collins, D. H. 1950. The Pathology of Articular and Spinal Diseases. Baltimore, MD: Lippincott Williams & Wilkins.Google Scholar
Redler, I., Mow, V. C., Zimny, M. L. and Mansell, J. 1975. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin. Orthop. Relat. Res., 112, 357–62.CrossRefGoogle Scholar
Mow, V. C., Proctor, C. S. and Kelly, M. A. 1989. Biomechanics of articular cartilage. In Nordin, M. and Frankel, V. H., editors. Basic Biomechanics of the Musculoskeletal System, 2nd edn. Baltimore, MD: Lippincott Williams & Wilkins, pp. 31–58.Google Scholar
Hunziker, E. B., Driesang, I. M. and Saager, C. 2001. Structural barrier principle for growth factor-based articular cartilage repair. Clin. Orthop. Relat. Res., 391(Suppl.), S182–9.CrossRefGoogle Scholar
Schaefer, D., Martin, I., Shastri, P. et al. 2000. In vitro generation of osteochondral composites. Biomaterials, 21(24), 2599–606.CrossRefGoogle ScholarPubMed
Gao, J., Dennis, J. E., Solchaga, L. A. et al. 2001. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng., 7(4), 363–71.CrossRefGoogle ScholarPubMed
Alhadlaq, A. and Mao, J. J. 2005. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J. Bone Joint Surg. Am., 87(5), 936–44.CrossRefGoogle ScholarPubMed
Swieszkowski, W., Tuan, B. H. S., Kurzydlowski, K. J. and Hutmacher, D. W. 2007. Repair and regeneration of osteochondral defects in the articular joints. Biomolec. Eng., 24(5), 489–95.CrossRefGoogle ScholarPubMed
Chen, G., Sato, T., Tanaka, J. and Tateishi, T. 2006. Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater. Sci. Eng. C, 26(1), 118–23.CrossRefGoogle Scholar
Shao, X., Goh, J. C., Hutmacher, D. W., Lee, E. H. and Zigang, G. 2006. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng., 12(6), 1539–51.CrossRefGoogle Scholar
Sherwood, J. K., Riley, S. L., Palazzolo, R. et al. 2002. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23(24), 4739–51.CrossRefGoogle ScholarPubMed
Zhang, K., Ma, Y. and Francis, L. F. 2002. Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces. J. Biomed. Mater. Res., 61(4), 551–63.CrossRefGoogle ScholarPubMed
Harley, B. A., Lynn, A. K., Wissner-Gross, Z. et al. 2010. Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. A, 92(3), 1078–93.Google ScholarPubMed
Kon, E., Mutini, A., Arcangeli, E. et al. 2010. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J. Tissue Eng. Regen. Med., 4(4), 300–8.CrossRefGoogle ScholarPubMed
Dormer, N. H., Singh, M., Wang, L., Berkland, C. J. and Detamore, M. S. 2010. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann. Biomed. Eng., 38(6), 2167–82.CrossRefGoogle ScholarPubMed
Erisken, C., Kalyon, D. M., Wang, H. J., Ornek-Ballanco, C. and Xu, J. H. 2011. Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and β-glycerophosphate concentrations. Tissue Eng. Part A, 17(9–10), 1239–52.CrossRefGoogle ScholarPubMed
Heymer, A., Bradica, G., Eulert, J. and Noth, U. 2009. Multiphasic collagen fibre–PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study. J. Tissue Eng. Regen. Med., 3(5), 389–97.CrossRefGoogle Scholar
Jiang, J., Tang, A., Ateshian, G. A. et al. 2010. Bioactive stratified polymer ceramic–hydrogel scaffold for integrative osteochondral repair. Ann. Biomed. Eng., 38(6), 2183–96.CrossRefGoogle ScholarPubMed
Cheng, H. W., Luk, K. D., Cheung, K. M. and Chan, B. P. 2011. In vitro generation of an osteochondral interface from mesenchymal stem cell–collagen microspheres. Biomaterials, 32(6), 1526–35.CrossRefGoogle ScholarPubMed
Kandel, R. A., Hurtig, M. and Grynpas, M. 1999. Characterization of the mineral in calcified articular cartilagenous tissue formed in vitro. Tissue Eng., 5(1), 25–34.CrossRefGoogle ScholarPubMed
Allan, K. S., Pilliar, R. M., Wang, J., Grynpas, M. D. and Kandel, R. A. 2007. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng., 13(1), 167–77.CrossRefGoogle ScholarPubMed
St-Pierre, J. P., Gan, L., Wang, J. et al. 2012. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate. Acta Biomater., 8(4), 1603–15.CrossRefGoogle ScholarPubMed
Duer, M. J., Friscic, T., Murray, R. C., Reid, D. G. and Wise, E. R. 2009. The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix. Biophys. J., 96(8), 3372–8.CrossRefGoogle ScholarPubMed
Khanarian, N. T., Jiang, J., Wan, L. Q., Mow, V. C. and Lu, H. H. 2012 A hydrogel–mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng. Part A, 18(5–6), 533–45.CrossRefGoogle ScholarPubMed
Khanarian, N. T., Haney, N. M., Burga, R. A. and Lu, H. H. 2012. A functional agarose–hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 33(21), 5247–58.CrossRefGoogle ScholarPubMed
Bitar, M., Knowles, C., Lewis, M. P. and Salih, V. 2005. Soluble phosphate glass fibres for repair of bone–ligament interface. J. Mater. Sci. Mater. Med., 16(12), 1131–6.CrossRefGoogle ScholarPubMed
Spalazzi, J. P., Doty, S. B., Moffat, K. L., Levine, W. N. and Lu, H. H. 2006. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng., 12(12), 3497–508.CrossRefGoogle ScholarPubMed
Spalazzi, J. P., Dagher, E., Doty, S. B. et al. 2008. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A, 86(1), 1–12.CrossRefGoogle ScholarPubMed
Paxton, J. Z., Grover, L. M. and Baar, K. 2010. Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng. Part A, 16(11), 3515–25.CrossRefGoogle Scholar
Paxton, J. Z., Donnelly, K., Keatch, R. P., Baar, K. and Grover, L. M. 2010. Factors affecting the longevity and strength in an in vitro model of the bone–ligament interface. Ann. Biomed. Eng., 38(6), 2155–66.CrossRefGoogle Scholar
Kandel, R. A., Boyle, J., Gibson, G., Cruz, T. and Speagle, M. 1997. In vitro formation of mineralized cartilagenous tissue by articular chondrocytes. In Vitro Cell Dev. Biol. Anim., 33(3), 174–81.CrossRefGoogle ScholarPubMed
Jiang, J., Tang, A., Ateshian, G. A. et al. 2010. Bioactive stratified polymer ceramic–hydrogel scaffold for integrative osteochondral repair. Ann. Biomed. Eng., 38(6), 2183–96.CrossRefGoogle ScholarPubMed
Kon, E., Delcogliano, M., Filardo, G. et al. 2010. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury, 41(7), 778–86.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×