Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-17T03:34:35.943Z Has data issue: false hasContentIssue false

31 - Dentin–pulp tissue engineering and regeneration

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Jing Wang
Affiliation:
University of Michigan
Xiaobing Jin
Affiliation:
University of Michigan
Peter X. Ma
Affiliation:
University of Michigan
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

The dentin–pulp complex is the principal inner component of the tooth beneath the superficial enamel layer in the tooth crown, and comprises the entire tooth root outlined with a thin cementum layer. The highly mineralized dentin confers structural integrity and insulative properties to the tooth and surrounds the pulp chamber and canals, which confer vitality to the tooth and whose neurovascular supplies exit through constricted foramina at the root apices. The pulp also has reparative mechanisms, activated by insults to the overlying dentin by noxious stimuli such as attrition, trauma, and caries. Together, the dentin–pulp complex plays a crucial role in tooth health.

The aforementioned noxious stimuli may lead to dentinal damage, as well as pulpal inflammation or necrosis. Such external damage to the dentin renders the pulp vulnerable to external invasion if the extent of the insult extends throughout the thickness of the dentin layer in question. Given the pulp’s solely apical blood supply and limited self-healing capacity, recovery from insult to pulp tissue is difficult, and the resulting inflammation is often irreversible. Currently, complete pulpal resection (root canal therapy) is the default treatment for necrosed or irreversibly inflamed pulp of a tooth that is otherwise restorable. Such teeth are restored first by obturating the pulp canals with an inert material, usually Gutta-Percha; then, direct restorative materials (such as silver amalgam or resin-based composites) and/or full-coverage crowns (metal/porcelain/combination) are used to restore the remainder of the tooth. Although these traditional restorative materials and methods have proven to be adequately effective in conserving teeth, they may render the remaining natural tooth structure mechanically compromised [1], and are incapable of repairing the tissue exposed to harmful stimuli [1, 2].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dietschi, D., Duc, O., Krejci, I. and Sadan, A. 2007. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature – Part 1. Composition and micro- and macrostructure alterations. Quintessence Int., 38(9), 733–43.Google ScholarPubMed
Dietschi, D., Duc, O., Krejci, I. and Sadan, A. 2007. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature, part II (evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int., 39(2), 117–29.Google Scholar
Nakashima, M. and Reddi, A. H. 2003. The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnol., 21(9), 1025–32.CrossRefGoogle ScholarPubMed
Sloan, A. J. and Smith, A. J. 2007. Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Dis., 13(2), 151–7.CrossRefGoogle Scholar
Galler, K. M., D’souza, R. N., Hartgerink, J. D. and Schmalz, G. 2011. Scaffolds for dental pulp tissue engineering. Adv. Dent. Res., 23(3), 333–9.CrossRefGoogle ScholarPubMed
Ten Cate, A. R. 1992. Dentin/pulp complex reactions: a reaction. Proc. Finn. Dent. Soc., 88(Suppl. 1), 275–8.Google ScholarPubMed
Ten Cate, A. R. 1998. Oral Histology: Development, Structure, and Function, 5th edn. St. Louis, MO: Mosby, p. 150.Google Scholar
Wiesmann, H. P., Meyer, U., Plate, U. and Hohling, H. J. 2005. Aspects of collagen mineralization in hard tissue formation. Int. Rev. Cytol., 242, 121–56.CrossRefGoogle ScholarPubMed
Smith, A. J., Sloan, A. J., Matthews, J. B., Murray, P. E. and Lumley, P J. 2000. Reparative processes in dentine and pulp. In Addy, M., Embery, G., Edgar, W. M. and Orchardson, R., editors. Toothwear and Sensitivity. London: Martin-Dunitz.Google Scholar
Tziafas, D., Smith, A. J. and Lesot, H. 2000. Designing new treatment strategies in vital pulp therapy. J. Dentistry, 28(2), 77–92.CrossRefGoogle ScholarPubMed
Cox, C. F., White, K. C., Ramus, D. L., Farmer, J. B. and Snuggs, H. M. 1992. Reparative dentin: factors affecting its deposition. Quintessence Int., 23(4), 257–70.Google ScholarPubMed
Kim, K., Lee, C. H., Kim, B. K. and Mao, J. J. 2010. Anatomically shaped tooth and periodontal regeneration by cell homing. J. Dental Res., 89(8), 842–7.CrossRefGoogle ScholarPubMed
Young, C. S., Terada, S., Vacanti, J. P. et al. 2002. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J. Dental Res., 81(10), 695–700.CrossRefGoogle ScholarPubMed
Yen, A. H. and Sharpe, P. T. 2008. Stem cells and tooth tissue engineering. Cell Tissue Res., 331(1), 359–72.CrossRefGoogle ScholarPubMed
Sonoyama, W., Liu, Y., Fang, D. et al. 2006. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 1, e79.CrossRefGoogle ScholarPubMed
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. and Shi, S. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Nat. Acad. Sci. USA, 97(25), 13625–30.CrossRefGoogle ScholarPubMed
Miura, M., Gronthos, S., Zhao, M. et al. 2003. SHED: stem cells from human exfoliated deciduous teeth. Proc. Nat. Acad. Sci. USA, 100(10), 5807–12.CrossRefGoogle ScholarPubMed
Sonoyama, W., Liu, Y., Yamaza, T. et al. 2008. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J. Endod., 34(2), 166–71.CrossRefGoogle ScholarPubMed
Morsczeck, C., Gotz, W., Schierholz, J. et al. 2005. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol., 24(2), 155–65.CrossRefGoogle ScholarPubMed
Ma, P. X. 2008. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev., 60(2), 184–98.CrossRefGoogle ScholarPubMed
Langer, R. and Tirrell, D. A. 2004. Designing materials for biology and medicine. Nature, 428(6982), 487–92.CrossRefGoogle ScholarPubMed
Gronthos, S., Brahim, J., Li, W. et al. 2002. Stem cell properties of human dental pulp stem cells. J. Dental Res., 81(8), 531–5.CrossRefGoogle ScholarPubMed
Shi, S. and Gronthos, S. 2003. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res., 18(4), 696–704.CrossRefGoogle ScholarPubMed
Waddington, R. J., Youde, S. J., Lee, C. P. and Sloan, A. J. 2009. Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs, 189(1–4), 268–74.CrossRefGoogle ScholarPubMed
Shi, S., Robey, P. G. and Gronthos, S. 2001. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 29(6), 532–9.CrossRefGoogle ScholarPubMed
Beltrão-Braga, P. I., Pignatari, G. C., Maiorka, P. C. et al. 2011. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant., 20(11–12), 1707–19.CrossRefGoogle ScholarPubMed
Tamaoki, N., Takahashi, K., Tanaka, T. et al. 2010. Dental pulp cells for induced pluripotent stem cell banking. J. Dental Res., 89(8), 773–8.CrossRefGoogle ScholarPubMed
Smith, A. J., Matthews, J. B. and Hall, R. C. 1998. Transforming growth factor-β1 (TGF-β1) in dentine matrix. Ligand activation and receptor expression. Eur. J. Oral Sci., 106(Suppl. 1), 179–84.CrossRefGoogle ScholarPubMed
Roberts-Clark, D. J. and Smith, A. J. 2000. Angiogenic growth factors in human dentine matrix. Arch. Oral Biol., 45(11), 1013–16.CrossRefGoogle ScholarPubMed
Tziafas, D., Alvanou, A., Papadimitriou, S., Gasic, J. and Komnenou, A. 1998. Effects of recombinant basic fibroblast growth factor, insulin-like growth factor-II and transforming growth factor-β1 on dog dental pulp cells in vivo. Arch. Oral Biol., 43(6), 431–44.CrossRefGoogle Scholar
Begue-Kirn, C., Smith, A. J., Ruch, J. V. et al. 1992. Effects of dentin proteins, transforming growth factor β1 (TGF β1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int. J. Dev. Biol., 36(4), 491–503.Google Scholar
Sloan, A. J. and Smith, A. J. 1999. Stimulation of the dentine–pulp complex of rat incisor teeth by transforming growth factor-β isoforms 1–3 in vitro. Arch. Oral Biol., 44(2), 149–56.CrossRefGoogle ScholarPubMed
Nakashima, M., Nagasawa, H., Yamada, Y. and Reddi, A. H. 1994. Regulatory role of transforming growth factor-β, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev. Biol., 162(1), 18–28.CrossRefGoogle ScholarPubMed
Saito, T., Ogawa, M., Hata, Y. and Bessho, K. 2004. Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J. Endod., 30(4), 205–8.CrossRefGoogle ScholarPubMed
Yang, X., van der Kraan, P. M., Bian, Z. et al. 2009. Mineralized tissue formation by BMP2-transfected pulp stem cells. J. Dental Res., 88(11), 1020–5.CrossRefGoogle ScholarPubMed
Rutherford, R. B. 2001. BMP-7 gene transfer to inflamed ferret dental pulps. Eur. J. Oral Sci., 109(6), 422–4.CrossRefGoogle ScholarPubMed
Rutherford, R. B., Spangberg, L., Tucker, M., Rueger, D. and Charette, M. 1994. The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch. Oral Biol., 39(10), 833–8.CrossRefGoogle ScholarPubMed
Jepsen, S., Albers, H. K., Fleiner, B., Tucker, M. and Rueger, D. 1997. Recombinant human osteogenic protein-1 induces dentin formation: an experimental study in miniature swine. J. Endod., 23(6), 378–82.CrossRefGoogle ScholarPubMed
Nakashima, M. 1994. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and -4 with collagen matrix. Arch. Oral Biol., 39(12), 1085–9.CrossRefGoogle ScholarPubMed
Nakashima, M. 1994. Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and -4. J. Dent. Res., 73(9), 1515–22.CrossRefGoogle ScholarPubMed
Lovschall, H., Fejerskov, O. and Flyvbjerg, A. 2001. Pulp-capping with recombinant human insulin-like growth factor I (rhIGF-I) in rat molars. Adv. Dent. Res., 15, 108–12.CrossRefGoogle Scholar
Haddad, M., Lefranc, G. and Aftimos, G. 2003. Local application of IGF1 on dental pulp mechanically exposed; in vivo study on rabbit. Bull. Groupe Int. Rech. Sci. Stomatol. Odontol., 45(1), 12–17.Google ScholarPubMed
Almushayt, A., Narayanan, K., Zaki, A. E. and George, A. 2006. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther., 13(7), 611–20.CrossRefGoogle ScholarPubMed
Liu, J., Jin, T., Ritchie, H. H., Smith, A. J. and Clarkson, B. H. 2005. In vitro differentiation and mineralization of human dental pulp cells induced by dentin extract. In Vitro Cell Dev. Biol. Anim., 41(7), 232–8.CrossRefGoogle ScholarPubMed
Andelin, W. E., Shabahang, S., Wright, K. and Torabinejad, M. 2003. Identification of hard tissue after experimental pulp capping using dentin sialoprotein (DSP) as a marker. J. Endod., 29(10), 646–50.CrossRefGoogle ScholarPubMed
Decup, F., Six, N., Palmier, B. et al. 2000. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat’s molar. Clin. Oral Investig., 4(2), 110–19.CrossRefGoogle ScholarPubMed
Goldberg, M., Six, N., Decup, F. et al. 2003. Bioactive molecules and the future of pulp therapy. Am. J. Dent., 16(1), 66–76.Google ScholarPubMed
Paino, F., Ricci, G., De Rosa, A. et al. 2010. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur. Cell Mater., 20, 295–305.CrossRefGoogle ScholarPubMed
Alliot-Licht, B., Bluteau, G., Magne, D. et al. 2005. Dexamethasone stimulates differentiation of odontoblast-like cells in human dental pulp cultures. Cell Tissue Res., 321(3), 391–400.CrossRefGoogle ScholarPubMed
Couble, M. L., Farges, J. C., Bleicher, F. et al. 2000. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif. Tissue Int., 66(2), 129–38.CrossRefGoogle ScholarPubMed
Zhang, W., Walboomers, X. F., Wolke, J. G. et al. 2005. Differentiation ability of rat postnatal dental pulp cells in vitro. Tissue Eng., 11(3–4), 357–68.CrossRefGoogle ScholarPubMed
Laino, G., Graziano, A., d’Aquino, R. et al. 2006. An approachable human adult stem cell source for hard-tissue engineering. J. Cell Physiol., 206(3), 693–701.CrossRefGoogle ScholarPubMed
Zhang, W., Walboomers, X. F., van Osch, G. J., van den Dolder, J. and Jansen, J. A. 2008. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng. Part A, 14(2), 285–94.CrossRefGoogle Scholar
Wang, J., Liu, X., Jin, X. et al. 2010. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(l-lactic acid) scaffolds in vitro and in vivo. Acta Biomater., 6(10), 3856–63.CrossRefGoogle ScholarPubMed
Smith, A. J., Patel, M., Graham, L., Sloan, A. J. and Cooper, P. R. 2005. Dentine regeneration: key roles for stem cells and molecular signalling. Oral Biosci. Med., 2, 127–32.Google Scholar
Nakashima, M., Tachibana, K., Iohara, K. et al. 2003. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum. Gene Ther., 14(6), 591–7.CrossRefGoogle ScholarPubMed
Nakashima, M., Iohara, K., Ishikawa, M. et al. 2004. Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum. Gene Ther., 15(11), 1045–53.CrossRefGoogle Scholar
Yang, X., van der Kraan, P. M., van den Dolder, J. et al. 2007. STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation. Tissue Eng., 13(11), 2803–12.CrossRefGoogle ScholarPubMed
Yang, X., Walboomers, X. F., van den Dolder, J. et al. 2008. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng. Part A, 14(1), 71–81.CrossRefGoogle ScholarPubMed
Wei, G., Jin, Q., Giannobile, W. V. and Ma, P. X. 2007. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheresBiomaterials, 28(12), 2087–96.CrossRefGoogle ScholarPubMed
Mizuno, M. K. Y. 2000. Type 1 collagen matrix and β-glycerophosphate facilitates mineralized tissue formation by rat dental pulp cells. Jap. J. Oral Biol., 42, 102–8.CrossRefGoogle Scholar
Mizuno, M., Miyamoto, T., Wada, K., Watatani, S. and Zhang, G. X. 2003. Type I collagen regulated dentin matrix protein-1 (Dmp-1) and osteocalcin (OCN) gene expression of rat dental pulp cells. J. Cell Biochem., 88(6), 1112–19.CrossRefGoogle ScholarPubMed
Kim, N. R., Lee, D. H., Chung, P. H. and Yang, H. C. 2009. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 108(5), e94–100.CrossRefGoogle ScholarPubMed
Prescott, R. S., Alsanea, R., Fayad, M. I. et al. 2008. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J. Endod., 34(4), 421–6.CrossRefGoogle ScholarPubMed
Huang, G. T., Sonoyama, W., Chen, J. and Park, S. H. 2006. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res., 324(2), 225–36.CrossRefGoogle ScholarPubMed
Yang, X., Walboomers, X. F., van den Beucken, J. J. et al. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng. Part A, 15(2), 367–75.CrossRef
Zhang, W., Walboomers, X. F., van Kuppevelt, T. H. et al. 2006. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials, 27(33), 5658–68.CrossRefGoogle ScholarPubMed
Duailibi, M. T., Duailibi, S. E., Young, C. S. et al. 2004. Bioengineered teeth from cultured rat tooth bud cells. J. Dent. Res., 83(7), 523–8.CrossRefGoogle ScholarPubMed
Iwatsuki, S., Honda, M. J., Harada, H. and Ueda, M. 2006. Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur. J. Oral Sci., 114(4), 310–7.CrossRefGoogle Scholar
Young, C. S., Abukawa, H., Asrican, R. et al. 2005. Tissue-engineered hybrid tooth and bone. Tissue Eng., 11(9–10), 1599–610.CrossRefGoogle Scholar
Mooney, D. J., Powell, C., Piana, J. and Rutherford, B. 1996. Engineering dental pulp-like tissue in vitro. Biotechnol. Prog., 12(6), 865–8.CrossRefGoogle ScholarPubMed
Bohl, K. S., Shon, J., Rutherford, B. and Mooney, D. J. 1998. Role of synthetic extracellular matrix in development of engineered dental pulp. J. Biomater. Sci. Polymer Edition, 9(7), 749–64.CrossRefGoogle ScholarPubMed
Cordeiro, M. M., Dong, Z., Kaneko, T. et al. 2008. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J. Endod., 34(8), 962–9.CrossRefGoogle ScholarPubMed
Huang, G. T., Yamaza, T., Shea, L. D. et al. 2010. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng. Part A, 16(2), 605–15.CrossRefGoogle Scholar
Ekblom, P., Vestweber, D. and Kemler, R. 1986. Cell–matrix interactions and cell adhesion during development. Ann. Rev. Cell Biol., 2, 27–47.CrossRefGoogle ScholarPubMed
Deng, X. L., Xu, M., Li, D. et al. 2007. Electrospun PLLA/MWNTs/HA hybrid nanofiber scaffolds and their potential in dental tissue engineering. Key Eng. Mater. Bioceram., 19(V330–2), 393–6.CrossRefGoogle Scholar
Xu, M. M., Fan, M., Li, D. et al. 2007. Electrospun poly(l-lacticacid)/nano-hydroxyapatite hybrid nanofibers and their potential in dental tissue engineering. Key Eng. Mater. Bioceram., 19(V330–2), 377–80.CrossRefGoogle Scholar
Yang, X., Yang, F., Walboomers, X. F. et al. 2010. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J. Biomed. Mater. Res. A, 93(1), 247–57.Google ScholarPubMed
Hartgerink, J. D., Beniash, E. and Stupp, S. I. 2001. Self-assembly and mineralization of peptide–amphiphile nanofibers. Science, 294(5547), 1684–8.CrossRefGoogle ScholarPubMed
Silva, G. A., Czeisler, C., Niece, K. L. et al. 2004. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 303(5662), 1352–5.CrossRefGoogle ScholarPubMed
Galler, K. M., Cavender, A., Yuwono, V. et al. 2008. Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Eng. Part A, 14(12), 2051–8.CrossRefGoogle ScholarPubMed
Ma, P. X. and Zhang, R. 1999. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res., 46(1), 60–72.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Zhang, R. and Ma, P. X. 2000. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J. Biomed. Mater. Res., 52(2), 430–8.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Chen, V. J. and Ma, P. X. 2004. Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials, 25(11), 2065–73.CrossRefGoogle ScholarPubMed
Wei, G. and Ma, P. X. 2006. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J. Biomed. Mater. Res. Part A, 78(2), 306–15.CrossRefGoogle ScholarPubMed
Wang, J., Ma, H., Jin, X. et al. 2011. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials, 32(31), 7822–30.CrossRefGoogle ScholarPubMed
Woo, K. M., Chen, V. J. and Ma, P. X. 2003. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A, 67(2), 531–7.CrossRefGoogle ScholarPubMed
Lesot, H., Fausser, J. L., Akiyama, S. K. et al. 1992. The carboxy-terminal extension of the collagen binding domain of fibronectin mediates interaction with a 165 kDa membrane protein involved in odontoblast differentiation. Differentiation, 49(2), 109–18.CrossRefGoogle ScholarPubMed
Tziafas, D., Alvanou, A. and Kaidoglou, K. 1992. Dentinogenic activity of allogenic plasma fibronectin on dog dental pulp. J. Dent. Res., 71(5), 1189–95.CrossRefGoogle ScholarPubMed
Tziafas, D., Panagiotakopoulos, N. and Komnenou, A. 1995. Immunolocalization of fibronectin during the early response of dog dental pulp to demineralized dentine or calcium hydroxide-containing cement. Arch. Oral Biol., 40(1), 23–31.CrossRefGoogle ScholarPubMed
Murray, P. E., About, I., Franquin, J. C., Remusat, M. and Smith, A. J. 2001. Restorative pulpal and repair responses. J. Am. Dent. Assoc., 132(4), 482–91.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×