Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-17T01:20:29.936Z Has data issue: false hasContentIssue false

29 - Models of composite bone and soft-tissue limb trauma

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Brent A. Uhrig
Affiliation:
Georgia Institute of Technology
Mon-Tzu A. Li
Affiliation:
Georgia Institute of Technology
Nick J. Willett
Affiliation:
Georgia Institute of Technology
Robert E. Guldberg
Affiliation:
Georgia Institute of Technology
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Severe limb trauma often results in substantial injuries to multiple tissue types, including bone, skeletal muscle, nerve, and vasculature. These injuries generally present increased clinical challenges and frequently cannot be managed with conventional reconstruction techniques. Furthermore, due to the complex nature of these injuries, there is no real consensus on intervention strategies [1–3]. Given the inherent severe and pervasive tissue damage, multistage treatment is routinely required, and patients are typically encumbered with diminished long-term function even if limb salvage and reconstruction are successful [4, 5].

Extremity trauma remains the predominant type of combat casualty for US armed forces members engaged in ongoing military conflicts, a continuation of historical trends. Explosive munitions are the primary cause of these injuries [6, 7], resulting in penetrating blast wounds with large zones of injury that encompass multiple tissue types, and, notably, a high incidence of bone and soft-tissue trauma [6] (Figure 29.1). High-energy trauma incidents, such as motor vehicle collisions, produce an additional civilian patient population. Although passenger survival in these incidents has increased with improved engineering of safety features, severe extremity trauma remains common [8, 9].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yazar, S., Lin, C. H. and Wei, F. C. 2004. One-stage reconstruction of composite bone and soft-tissue defects in traumatic lower extremities. Plast. Reconstr. Surg., 114(6), 1457–66.CrossRefGoogle ScholarPubMed
DeFranco, M. J. and Lawton, J. N. 2006. Radial nerve injuries associated with humeral fractures. J. Hand Surg. Am., 31(4), 655–63.CrossRefGoogle ScholarPubMed
Nauth, A., McKee, M. D., Einhorn, T. A. et al. 2011. Managing bone defects. J. Orthop. Trauma, 25(8), 462–6.CrossRefGoogle ScholarPubMed
Bosse, M. J., MacKenzie, E. J., Kellam, J. F. et al. 2002. An analysis of outcomes of reconstruction or amputation after leg-threatening injuries. N. Engl. J. Med., 347(24), 1924–31.CrossRefGoogle ScholarPubMed
MacKenzie, E. J., Bosse, M. J., Pollak, A. N. et al. 2005. Long-term persistence of disability following severe lower-limb trauma. Results of a seven-year follow-up. J. Bone Joint Surg. Am., 87(8), 1801–9.Google ScholarPubMed
Owens, B. D., Kragh, J. F., Macaitis, J., Svoboda, S. J. and Wenke, J. C. 2007. Characterization of extremity wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J. Orthop. Trauma, 21(4), 254–7.CrossRefGoogle ScholarPubMed
Owens, B. D., Kragh, J. F., Wenke, J. C. et al. 2008. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma, 64(2), 295–9.CrossRefGoogle ScholarPubMed
Burgess, A. R., Dischinger, P. C., O’Quinn, T. D. and Schmidhauser, C. B. 1995. Lower extremity injuries in drivers of airbag-equipped automobiles: clinical and crash reconstruction correlations. J. Trauma, 38(4), 509–16.CrossRefGoogle ScholarPubMed
Richter, M., Pape, H. C., Otte, D. and Krettek, C. 2005. Improvements in passive car safety led to decreased injury severity – a comparison between the 1970s and 1990s. Injury, 36(4), 484–8.CrossRefGoogle ScholarPubMed
Haller, A. 1763. Experimentorum de ossium formatione. In Opera minora. Lausanne: Francisci Grasset.Google Scholar
Hunter, J. 1794. A Treatise on the Blood, Inflammation, and Gun-Shot Wounds. London: G. Nicol.Google Scholar
Gerber, H. P., Vu, T. H., Ryan, A. M. et al. 1999. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med., 5(6), 623–8.CrossRefGoogle ScholarPubMed
Ferguson, C., Alpern, E., Miclau, T. and Helms, J. A. 1999. Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev., 87(1–2), 57–66.CrossRefGoogle ScholarPubMed
Kronenberg, H. M. 2003. Developmental regulation of the growth plate. Nature, 423(6937), 332–6.CrossRefGoogle ScholarPubMed
Glowacki, J. 1998. Angiogenesis in fracture repair. Clin. Orthop. Relat. Res., 355(Suppl.), S82–9.CrossRefGoogle Scholar
Carano, R. A. and Filvaroff, E. H. 2003. Angiogenesis and bone repair. Drug Discov. Today, 8(21), 980–9.CrossRefGoogle ScholarPubMed
Muschler, G. F., Nakamoto, C. and Griffith, L. G. 2004. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am., 86A(7), 1541–58.CrossRefGoogle Scholar
Einhorn, T. A. 1995. Enhancement of fracture-healing. J. Bone Joint Surg. Am., 77(6), 940–56.CrossRefGoogle ScholarPubMed
Brinker, M. R. and Bailey, D. E. 1997. Fracture healing in tibia fractures with an associated vascular injury. J. Trauma, 42(1), 11–9.CrossRefGoogle ScholarPubMed
Dickson, K., Katzman, S., Delgado, E. and Contreras, D. 1994. Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results. Clin. Orthop. Relat. Res., 302, 189–93.Google Scholar
Glass, G. E., Pearse, M. F. and Nanchahal, J. 2009. Improving lower limb salvage following fractures with vascular injury: a systematic review and new management algorithm. J. Plast. Reconstr. Aesthet. Surg., 62(5), 571–9.CrossRefGoogle ScholarPubMed
Kase, T., Skjeldal, S., Nordsletten, L. and Reikeras, O. 1998. Healing of tibial fractures is not impaired after acute hindlimb ischemia in rats. Arch. Orthop. Trauma Surg., 117(4–5), 273–6.CrossRefGoogle Scholar
Lu, C., Miclau, T., Hu, D. and Marcucio, R. S. 2007. Ischemia leads to delayed union during fracture healing: a mouse model. J. Orthop. Res., 25(1), 51–61.CrossRefGoogle ScholarPubMed
Street, J., Bao, M., deGuzman, L. et al. 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Nat. Acad. Sci. USA, 99(15), 9656–61.CrossRefGoogle ScholarPubMed
Hausman, M. R., Schaffler, M. B. and Majeska, R. J. 2001. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone, 29(6), 560–4.CrossRefGoogle ScholarPubMed
Wan, C., Gilbert, S. R., Wang, Y. et al. 2008. Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proc. Nat. Acad. Sci. USA, 105(2), 686–91.CrossRefGoogle ScholarPubMed
Fang, T. D., Salim, A., Xia, W. et al. 2005. Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res., 20(7), 1114–24.CrossRefGoogle ScholarPubMed
Wallace, A. L., Draper, E. R., Strachan, R. K., McCarthy, I. D. and Hughes, S. P. 1994. The vascular response to fracture micromovement. Clin. Orthop. Relat. Res., 301, 281–90.Google Scholar
Lienau, J., Schell, H., Duda, G. N. et al. 2005. Initial vascularization and tissue differentiation are influenced by fixation stability. J. Orthop. Res., 23(3), 639–45.CrossRefGoogle ScholarPubMed
Boerckel, J. D., Uhrig, B. A., Willett, N. J., Huebsch, N. and Guldberg, R. E. 2011. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Nat. Acad. Sci. USA, 108(37), E674–80.CrossRefGoogle ScholarPubMed
Trueta, J. 1963. The role of the vessels in osteogenesis. J. Bone Joint Surg. – Brit. Vol., 45(2), 402–18.CrossRefGoogle Scholar
Kempen, D. H., Creemers, L. B., Alblas, J. et al. 2010. Growth factor interactions in bone regeneration. Tissue Eng. Part B Rev., 16(6), 551–66.CrossRefGoogle ScholarPubMed
Wang, Y., Wan, C., Deng, L. et al. 2007. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest., 117(6), 1616–26.CrossRefGoogle ScholarPubMed
Araldi, E. and Schipani, E. 2010. Hypoxia, HIFs and bone development. Bone, 47(2), 190–6.CrossRefGoogle ScholarPubMed
Shen, X., Wan, C., Ramaswamy, G. et al. 2009. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J. Orthop. Res., 27(10), 1298–305.CrossRefGoogle ScholarPubMed
Stewart, R., Goldstein, J., Eberhardt, A., Chu, G. T. and Gilbert, S. 2011. Increasing vascularity to improve healing of a segmental defect of the rat femur. J. Orthop. Trauma, 25(8), 472–6.CrossRefGoogle ScholarPubMed
Urist, M. R. 1965. Bone: formation by autoinduction. Science, 150(698), 893–9.CrossRefGoogle ScholarPubMed
Deckers, M. M., van Bezooijen, R. L., van der Horst, G. et al. 2002. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, 143(4), 1545–53.CrossRefGoogle ScholarPubMed
Zhang, F., Qiu, T., Wu, X. et al. 2009. Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J. Bone Miner. Res., 24(7), 1224–33.CrossRefGoogle ScholarPubMed
Smadja, D. M., Bieche, I., Silvestre, J. S. et al. 2008. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler. Thromb. Vasc. Biol., 28(12), 2137–43.CrossRefGoogle ScholarPubMed
Kempen, D. H., Lu, L., Heijink, A. et al. 2009. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials, 30(14), 2816–25.CrossRefGoogle ScholarPubMed
Peng, H., Wright, V., Usas, A. et al. 2002. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest., 110(6), 751–9.CrossRefGoogle ScholarPubMed
Lu, C., Xing, Z., Yu, Y. Y. et al. 2010. Recombinant human bone morphogenetic protein-7 enhances fracture healing in an ischemic environment. J. Orthop. Res., 28(5), 687–96.Google Scholar
Duvall, C. L., Taylor, W. R., Weiss, D., Wojtowicz, A. M. and Guldberg, R. E. 2007. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J. Bone Miner. Res., 22(2), 286–97.CrossRefGoogle ScholarPubMed
Hurrell, D. J. 1937. The nerve supply of bone. J. Anat., 72(1), 54–61.Google Scholar
Sherman, M. S. 1963. The nerves of bone. J. Bone Joint Surg. – Am. Vol., 45(3), 522–8.CrossRefGoogle Scholar
Serre, C. M., Farlay, D., Delmas, P. D. and Chenu, C. 1999. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone, 25(6), 623–9.CrossRefGoogle ScholarPubMed
Mach, D. B., Rogers, S. D., Sabino, M. C. et al. 2002. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience, 113(1), 155–66.CrossRefGoogle ScholarPubMed
Frenkel, S. R., Guerra, L. A., Mitchell, O. G. and Singh, I. J. 1990. Nerve growth factor in skeletal tissues of the embryonic chick. Cell Tissue Res., 260(3), 507–11.CrossRefGoogle ScholarPubMed
Imai, S. and Matsusue, Y. 2002. Neuronal regulation of bone metabolism and anabolism: calcitonin gene-related peptide-, substance P-, and tyrosine hydroxylase-containing nerves and the bone. Microsc. Res. Tech., 58(2), 61–9.CrossRefGoogle ScholarPubMed
Spencer, G. J., Hitchcock, I. S. and Genever, P. G. 2004. Emerging neuroskeletal signalling pathways: a review. FEBS Lett., 559(1–3), 6–12.CrossRefGoogle ScholarPubMed
Elefteriou, F. 2008. Regulation of bone remodeling by the central and peripheral nervous system. Arch. Biochem. Biophys., 473(2), 231–6.CrossRefGoogle ScholarPubMed
Ducy, P., Amling, M., Takeda, S. et al. 2000. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 100(2), 197–207.CrossRefGoogle ScholarPubMed
Sample, S. J., Behan, M., Smith, L. et al. 2008. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones. J. Bone Miner. Res., 23(9), 1372–81.CrossRefGoogle ScholarPubMed
Kondo, H., Nifuji, A., Takeda, S. et al. 2005. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J. Biol Chem., 280(34), 30192–200.CrossRefGoogle ScholarPubMed
Nagao, M., Feinstein, T. N., Ezura, Y. et al. 2011. Sympathetic control of bone mass regulated by osteopontin. Proc. Nat. Acad. Sci. USA, 108(43), 17767–72.CrossRefGoogle ScholarPubMed
Whiteside, G. T., Boulet, J. M., Sellers, R., Bunton, T. E. and Walker, K. 2006. Neuropathy-induced osteopenia in rats is not due to a reduction in weight born on the affected limb. Bone, 38(3), 387–93.CrossRefGoogle Scholar
Li, J., Ahmad, T., Spetea, M., Ahmed, M. and Kreicbergs, A. 2001. Bone reinnervation after fracture: a study in the rat. J. Bone Miner. Res., 16(8), 1505–10.CrossRefGoogle ScholarPubMed
Santavirta, S., Konttinen, Y. T., Nordstrom, D. et al. 1992. Immunologic studies of nonunited fractures. Acta Orthop. Scand., 63(6), 579–86.CrossRefGoogle ScholarPubMed
Perkins, R. and Skirving, A. P. 1987. Callus formation and the rate of healing of femoral fractures in patients with head injuries. J. Bone Joint Surg. – Brit. Vol., 69(4), 521–4.CrossRefGoogle ScholarPubMed
Spencer, R. F. 1987. The effect of head injury on fracture healing. A quantitative assessment. J. Bone Joint Surg. – Brit. Vol., 69(4), 525–8.CrossRefGoogle ScholarPubMed
Garland, D. E. 1988. Clinical observations on fractures and heterotopic ossification in the spinal cord and raumatic brain injured populations. Clin. Orthop. Relat. Res., 233, 86–101.Google Scholar
Kushwaha, V. P. and Garland, D. G. 1998. Extremity fractures in the patient with a traumatic brain injury. J. Am. Acad. Orthop. Surg., 6(5), 298–307.CrossRefGoogle ScholarPubMed
Morley, J., Marsh, S., Drakoulakis, E., Pape, H. C. and Giannoudis, P. V. 2005. Does traumatic brain injury result in accelerated fracture healing? Injury, 36(3), 363–8.CrossRefGoogle ScholarPubMed
Aro, H., Eerola, E., Aho, A. J. and Penttinen, R. 1981. Healing of experimental fractures in the denervated limbs of the rat. Clin. Orthop. Relat. Res., 155, 211–17.Google Scholar
Aro, H. 1985. Effect of nerve injury on fracture healing. Callus formation studied in the rat. Acta Orthop. Scand., 56(3), 233–7.CrossRefGoogle ScholarPubMed
Nordsletten, L., Madsen, J. E., Almaas, R. et al. 1994. The neuronal regulation of fracture healing. Effects of sciatic nerve resection in rat tibia. Acta Orthop. Scand., 65(3), 299–304.CrossRefGoogle ScholarPubMed
Hukkanen, M., Konttinen, Y. T., Santavirta, S. et al. 1995. Effect of sciatic nerve section on neural ingrowth into the rat tibial fracture callus. Clin. Orthop. Relat. Res., 311, 247–57.Google Scholar
Madsen, J. E., Hukkanen, M., Aune, A. K. et al. 1998. Fracture healing and callus innervation after peripheral nerve resection in rats. Clin. Orthop. Relat. Res., 351, 230–40.CrossRefGoogle Scholar
Frymoyer, J. W. and Pope, M. H. 1977. Fracture healing in the sciatically denervated rat. J. Trauma, 17(5), 355–61.CrossRefGoogle ScholarPubMed
Aro, H., Eerola, E. and Aho, A. J. 1985. Development of nonunions in the rat fibula after removal of periosteal neural mechanoreceptors. Clin. Orthop. Relat. Res., 199, 292–9.Google Scholar
Apel, P. J., Crane, D., Northam, C. N. et al. 2009. Effect of selective sensory denervation on fracture-healing: an experimental study of rats. J. Bone Joint Surg. Am., 91(12), 2886–95.CrossRefGoogle ScholarPubMed
Boes, M., Kain, M., Kakar, S. et al. 2006. Osteogenic effects of traumatic brain injury on experimental fracture-healing. J. Bone Joint Surg. Am., 88(4), 738–43.Google ScholarPubMed
Bjurholm, A., Kreicbergs, A., Brodin, E. and Schultzberg, M. 1988. Substance P- and CGRP-immunoreactive nerves in bone. Peptides, 9(1), 165–71.CrossRefGoogle ScholarPubMed
Hukkanen, M., Konttinen, Y. T., Santavirta, S. et al. 1993. Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience, 54(4), 969–79.CrossRefGoogle ScholarPubMed
Bernard, G. W. and Shih, C. 1990. The osteogenic stimulating effect of neuroactive calcitonin gene-related peptide. Peptides, 11(4), 625–32.CrossRefGoogle ScholarPubMed
Ballica, R., Valentijn, K., Khachatryan, A. et al. 1999. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice. J. Bone Miner. Res., 14(7), 1067–74.CrossRefGoogle ScholarPubMed
Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R. and MacIntyre, I. 1985. Calcitonin gene-related peptide is a potent vasodilator. Nature, 313(5997), 54–6.CrossRefGoogle ScholarPubMed
Haegerstrand, A., Dalsgaard, C. J., Jonzon, B., Larsson, O. and Nilsson, J. 1990. Calcitonin gene-related peptide stimulates proliferation of human endothelial cells. Proc. Nat. Acad. Sci. USA, 87(9), 3299–303.CrossRefGoogle ScholarPubMed
Midrio, M., Corsi, A. and Granata, A. L. 1968. Early effects of nerve section on the blood flow of skeletal muscle. Am. J. Physiol., 214(2), 287–93.Google ScholarPubMed
Siemionow, M., Andreasen, T., Chick, L. and Lister, G. 1994. Effect of muscle flap denervation on flow hemodynamics: a new model for chronic in vivo studies. Microsurgery, 15(12), 891–4.CrossRefGoogle ScholarPubMed
Shim, S. S., Copp, D. H. and Patterson, F. P. 1966. Bone blood flow in the limb following complete sciatic nerve section. Surg. Gynecol. Obstet., 123(2), 333–5.Google ScholarPubMed
Carr, M. M., Best, T. J., Mackinnon, S. E. and Evans, P. J. 1992. Strain differences in autotomy in rats undergoing sciatic nerve transection or repair. Ann. Plast. Surg., 28(6), 538–44.CrossRefGoogle ScholarPubMed
Sharir, A., Stern, T., Rot, C., Shahar, R. and Zelzer, E. 2011. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development, 138(15), 3247–59.CrossRefGoogle ScholarPubMed
Macdonald, H., Kontulainen, S., Petit, M., Janssen, P. and McKay, H. 2006. Bone strength and its determinants in pre- and early pubertal boys and girls. Bone, 39(3), 598–608.CrossRefGoogle ScholarPubMed
Gross, T. S., Poliachik, S. L., Prasad, J. and Bain, S. D. 2010. The effect of muscle dysfunction on bone mass and morphology. J. Musculoskelet. Neuronal Interact., 10(1), 25–34.Google Scholar
Duda, G. N., Taylor, W. R., Winkler, T. et al. 2008. Biomechanical, microvascular, and cellular factors promote muscle and bone regeneration. Exerc. Sport Sci. Rev., 36(2), 64–70.CrossRefGoogle ScholarPubMed
Gopal, S., Majumder, S., Batchelor, A. G. et al. 2000. Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J. Bone Joint Surg. – Brit. Vol., 82(7), 959–66.CrossRefGoogle ScholarPubMed
Will, R. E., Fleming, M. E., Lafferty, P. M., Fletcher, J. W. and Cole, P. A. 2011. Low complication rate associated with raising mature flap for tibial nonunion reconstruction. J. Trauma, 71(6), 1709–14.Google ScholarPubMed
Franken, J. M., Hupkens, P. and Spauwen, P. H. 2010. The treatment of soft-tissue defects of the lower leg after a traumatic open tibial fracture. Eur. J. Plastic Surg., 33(3), 129–33.CrossRefGoogle ScholarPubMed
Choudry, U., Moran, S. and Karacor, Z. 2008. Soft-tissue coverage and outcome of gustilo grade IIIB midshaft tibia fractures: a 15-year experience. Plastic Reconstruct. Surg., 122(2), 479–85.CrossRefGoogle ScholarPubMed
Jupiter, J. B., Gerhard, H. J., Guerrero, J., Nunley, J. A. and Levin, L. S. 1997. Treatment of segmental defects of the radius with use of the vascularized osteoseptocutaneous fibular autogenous graft. J. Bone Joint Surg. Am. Vol., 79(4), 542–50.CrossRefGoogle ScholarPubMed
Stein, H., Perren, S. M., Cordey, J. et al. 2002. The muscle bed – a crucial factor for fracture healing: a physiological concept. Orthopedics, 25(12), 1379–83.Google ScholarPubMed
Liu, R., Schindeler, A. and Little, D. G. 2010. The potential role of muscle in bone repair. J. Musculoskelet. Neuronal Interact., 10(1), 71–6.Google ScholarPubMed
Claes, L., Maurer-Klein, N., Henke, T. et al. 2006. Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J. Orthop. Res., 24(6), 1178–85.CrossRefGoogle ScholarPubMed
Melnyk, M., Henke, T., Claes, L. and Augat, P. 2008. Revascularisation during fracture healing with soft tissue injury. Arch. Orthop. Trauma Surg., 128(10), 1159–65.CrossRefGoogle ScholarPubMed
Landry, P. S., Marino, A. A., Sadasivan, K. K. and Albright, J. A. 1996. Bone injury response. An animal model for testing theories of regulation. Clin. Orthop. Relat. Res., 332, 260–73.CrossRefGoogle Scholar
Landry, P. S., Marino, A. A., Sadasivan, K. K. and Albright, J. A. 2000. Effect of soft-tissue trauma on the early periosteal response of bone to injury. J. Trauma, 48(3), 479–83.CrossRefGoogle Scholar
Utvag, S. E., Grundnes, O., Rindal, D. B. and Reikeras, O. 2003. Influence of extensive muscle injury on fracture healing in rat tibia. J. Orthop. Trauma, 17(6), 430–5.CrossRefGoogle ScholarPubMed
Utvag, S. E., Iversen, K. B., Grundnes, O. and Reikeras, O. 2002. Poor muscle coverage delays fracture healing in rats. Acta Orthop. Scand., 73(4), 471–4.CrossRefGoogle ScholarPubMed
Richards, R. R., Orsini, E. C., Mahoney, J. L. and Verschuren, R. 1987. The influence of muscle flap coverage on the repair of devascularized tibial cortex: an experimental investigation in the dog. Plast. Reconstr. Surg., 79(6), 946–58.CrossRefGoogle ScholarPubMed
Richards, R. R. and Schemitsch, E. H. 1989. Effect of muscle flap coverage on bone blood flow following devascularization of a segment of tibia: an experimental investigation in the dog. J. Orthop. Res., 7(4), 550–8.CrossRefGoogle Scholar
Richards, R. R., McKee, M. D., Paitich, C. B., Anderson, G. I. and Bertoia, J. T. 1991. A comparison of the effects of skin coverage and muscle flap coverage on the early strength of union at the site of osteotomy after devascularization of a segment of canine tibia. J. Bone Joint Surg. Am., 73(9), 1323–30.CrossRefGoogle ScholarPubMed
Schemitsch, E. H., Weinberg, J. A., McKee, M. D. and Richards, R. R. 1997. The relative importance of intramedullary, intracortical, and extraosseous soft-tissue blood flow to the repair of devascularized canine tibial cortex. Ann. Plast. Surg., 38(6), 623–31.CrossRefGoogle ScholarPubMed
Harry, L. E., Sandison, A., Paleolog, E. M. et al. 2008. Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J. Orthop. Res., 26(9), 1238–44.CrossRefGoogle ScholarPubMed
Kaufman, H., Reznick, A., Stein, H., Barak, M. and Maor, G. 2008. The biological basis of the bone–muscle inter-relationship in the algorithm of fracture healing. Orthopedics, 31(8), 751.CrossRefGoogle ScholarPubMed
Kolambkar, Y. M., Dupont, K. M., Boerckel, J. D. et al. 2011. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials, 32(1), 65–74.CrossRefGoogle ScholarPubMed
Schaser, K. D., Zhang, L., Haas, N. P. et al. 2003. Temporal profile of microvascular disturbances in rat tibial periosteum following closed soft tissue trauma. Langenbeck’s Arch. Surg./Deutsche Gesellschaft Chirurg., 388(5), 323–30.CrossRefGoogle ScholarPubMed
Hamrick, M. W. 2011. A role for myokines in muscle – bone interactions. Exerc. Sport Sci. Rev., 39(1), 43–7.CrossRefGoogle ScholarPubMed
Hamrick, M. W., McNeil, P. L. and Patterson, S. L. 2010. Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact., 10(1), 64–70.Google ScholarPubMed
Hughes-Fulford, M. and Li, C. F. 2011. The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization. J. Orthop. Surg. Res., 6, 8.CrossRefGoogle ScholarPubMed
Yakar, S., Rosen, C. J., Beamer, W. G. et al. 2002. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest., 110(6), 771–81.CrossRefGoogle ScholarPubMed
McPherron, A. C., Lawler, A. M. and Lee, S. J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature, 387(6628), 83–90.CrossRefGoogle ScholarPubMed
Elkasrawy, M. N. and Hamrick, M. W. 2010. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J. Musculoskelet. Neuronal Interact., 10(1), 56–63.Google ScholarPubMed
Hamrick, M. W., Shi, X., Zhang, W. et al. 2007. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone, 40(6), 1544–53.CrossRefGoogle ScholarPubMed
Kellum, E., Starr, H., Arounleut, P. et al. 2009. Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone, 44(1), 17–23.CrossRefGoogle ScholarPubMed
Hamrick, M. W., Arounleut, P., Kellum, E. et al. 2010. Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury. J. Trauma, 69(3), 579–83.CrossRefGoogle Scholar
Nesti, L. J., Jackson, W. M., Shanti, R. M. et al. 2008. Differentiation potential of multipotent progenitor cells derived from war-traumatized muscle tissue. J. Bone Joint Surg. Am., 90(11), 2390–8.CrossRefGoogle ScholarPubMed
Jackson, W. M., Aragon, A. B., Djouad, F. et al. 2009. Mesenchymal progenitor cells derived from traumatized human muscle. J. Tissue Eng. Regen. Med., 3(2), 129–38.CrossRefGoogle ScholarPubMed
Peng, H. and Huard, J. 2004. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl. Immunol., 12(3–4), 311–19.CrossRefGoogle ScholarPubMed
Asakura, A., Komaki, M. and Rudnicki, M. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation, 68(4–5), 245–53.CrossRefGoogle ScholarPubMed
Wada, M. R., Inagawa-Ogashiwa, M., Shimizu, S., Yasumoto, S. and Hashimoto, N. 2002. Generation of different fates from multipotent muscle stem cells. Development, 129(12), 2987–95.Google ScholarPubMed
Lee, J. Y., Qu-Petersen, Z., Cao, B. et al. 2000. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J. Cell Biol., 150(5), 1085–100.CrossRefGoogle ScholarPubMed
Gersbach, C. A., Guldberg, R. E. and Garcia, A. J. 2007. In vitro and in vivo osteoblastic differentiation of BMP-2- and Runx2-engineered skeletal myoblasts. J. Cell Biochem., 100(5), 1324–36.CrossRefGoogle ScholarPubMed
Brockes, J. P. and Kumar, A. 2005. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science, 310(5756), 1919–23.CrossRefGoogle ScholarPubMed
Nacu, E. and Tanaka, E. M. 2011. Limb regeneration: a new development? Ann. Rev. Cell Dev. Biol., 27, 409–40.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×