Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T07:00:07.207Z Has data issue: false hasContentIssue false

1 - Nanoplasmonics

Published online by Cambridge University Press:  26 October 2017

Guillaume Baffou
Affiliation:
Institut Fresnel, CNRS, University of Aix-Marseille
Get access

Summary

This introductory chapter deals with basic, general and important notions in nanoplasmonics that will be useful before entering the field of thermoplasmonics. The aim is to provide the reader with simple ideas and mathematical expressions that can be used to explain and understand the plasmonic response of metal nanoparticles.

The first section introduces the physics of the localized plasmon resonance for a dipolar spherical metal nanoparticle, for which closed-form expressions of the optical response exist. The section also describes what happens when enlarging the size of the nanoparticle or breaking its spherical symmetry. The second section explains why gold nanoparticles have been preferred in plasmonics compared with nanoparticles made of other materials. This second section also takes the opportunity to discuss a very recent branch of nanoplasmonics aiming to try and find alternative plasmonic materials. Finally, a third section introduces the field of thermoplasmonics by answering common experimental questions.

Localized Plasmon Resonance

Definitions

A localized plasmon (LP) is a normal mode of collective oscillation of the free electrons contained in a metal nanoparticle. A LP resonance can be excited using light when the electric field of the incoming light oscillates at a frequency close to the plasmon eigen frequency [49].

What I call a localized plasmon (LP) in this book is often coined localized surface plasmon (LSP) in the literature. I prefer to remove the word “surface” for the following reason. Apart from LP, there exist bulk plasmons (BP) and surface plasmons (SP). With a bulk plasmon, the excitation occurs in a metal extending over the three dimensions of space (3D). With a SP, the electronic oscillation occurs at the interface between a metal and a dielectric extending over two dimensions of space (2D). With a LP, the oscillation occurs in a space that is confined in all dimensions of space (0D). While “bulk” means 3D, “surface” means 2D, I find it appropriate to use the adjective “localized” to signify 0D, and not “localized surface.”

In this book, I distinguish between the fields of plasmonics and nanoplasmonics. While plasmonics encompasses the physics of LPs and SPs, nanoplasmonics rather focuses on LPs; hence the title of this chapter.

Type
Chapter
Information
Thermoplasmonics
Heating Metal Nanoparticles Using Light
, pp. 1 - 35
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alabastri, A., Tuccio, S., Giugni, A., Toma, A., Liberale, C., Das, G., De Angelis, F., Di Fabrizio, E., and Zaccaria, P. 2013. Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature. Materials, 6, 4879–4910.Google Scholar
[2] Alabastri, A., Toma, A., Malerba, M., De Angelis, F., and Proietti Zaccaria, R. 2015. High Temperature Nanoplasmonics: The Key Role of Nonlinear Effects. ACS Photonics, 2, 115–120.Google Scholar
[3] Averitt, R.D., Westcott, S.L., and Halas, N.J. 1999. Linear Optical Properties of Gold Nanoshells. J. Opt. Soc. Am. B, 16(10), 1824–1832.Google Scholar
[4] Baffou, G., and Quidant, R. 2013. Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat. Laser & Photon. Rev., 7(2), 171–187.Google Scholar
[5] Baffou, G., and Quidant, R. 2014. Nanoplasmonics for Chemistry. Chem. Soc. Rev., 43, 3898–3907.Google Scholar
[6] Basit, L., Wang, C., Jenkins, C.A., Balke, B., Ksenofontov, V., Fecher, G.H., Felser, C.,Mugnaioli, E., Kolb, U., Nepijko, S.A., Schönhense, G., and Klimenkov, M. 2009. Heusler Compounds as Ternary Intermetallic Nanoparticles: Co2FeGa. Journal of Physics D: Applied Physics, 42(8), 084018.Google Scholar
[7] Bell, A.P., Fairfield, J.A., McCarthy, E.K., Mills, S., Boland, J.J., Baffou, G., and McCloskey, D. 2015. Quantitative Study of the Photothermal Properties of Metallic Nanowire Networks. ACS Nano, 9(5), 5551–5558.Google Scholar
[8] Blaber, M.G., Arnold, M.D., Harris, N., Ford, M.J., and Cortie, M.B. 2007. Plasmon Absorption in Nanospheres: A Comparison of Sodium, Potassium, Aluminium, Silver and Gold. Physica B, 394, 184–187.Google Scholar
[9] Blaber, M.G., Arnold, M.D., and Ford, M.J. 2009. Optical Properties of Intermetallic Compounds from First Principles Calculations: A Search for the Ideal Plasmonic Material. J. Phys.: Condens. Matter, 21, 144211.Google Scholar
[10] Blaber, M.G., Arnold, M.D., and Ford, M.J. 2010. A Review of the Optical Properties of Alloys and Intermetallics for Plasmonics. J. Phys.: Condens. Matter, 22, 143201.Google Scholar
[11] Cable, R.E., and Schaak, R.E. 2007. Solution Synthesis of Nanocrystalling M– Zn (M=Pd, Au, Cu) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors. Chem. Mater., 19, 4098–4104.Google Scholar
[12] Chan, G.H., Zhao, J., Schatz, G.C., and Van Duyne, P. 2008. Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles. J. Phys. Chem. C, 112, 13958–13963.Google Scholar
[13] Chen, C.F., Park, C.H., Boudouris, B.W., Horng, J., Geng, B., Girit, C., Zettl, A., Crommie, M.F., Segalman, R.A., Louie, S.G., and Wang, F. 2011a. Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature, 471, 617–620.Google Scholar
[14] Chen, J., Albella, P., Pirzadeh, Z., Alonso-González, P., Huth, F., Bonetti, S., Bonanni, V., Å kerman, J., Nogués, J., Vavassori, P., Dmitriev, A., Aizpurua, J., and Hillenbrand, R. 2011b. Plasmonic Nickel Nanoantennas. Small, 7(16), 2341–2347.Google Scholar
[15] Comin, A., and Manna, L. 2014. New Materials for Tunable Plasmonic Colloidal Nanocrystals. Chem. Soc. Rev., 43, 3957–3975.Google Scholar
[16] Cortie, M.B., Maaroof, A., Smith, G.B., and Ngoepe, P. 2006. Nanoscale Coatings of AuAlx and PtAlx and their Mesoporous Elemental Derivatives. Curr. Appl. Phys., 6(3), 440–443.Google Scholar
[17] Dalacu, D., and Martinu, L. 2000. Temperature Dependence of the Surface Plasmon Resonance of Au/SiO2 Nanocomposite Films. Appl. Phys. Lett., 77(26), 4283–4285.Google Scholar
[18] Ding, X., Hao Liow, C., Zhang, M., Huang, R., Li, C., Shen, H., Liu, M., Zou, Y., Gao, N., Zhang, Z., Li, Y.,Wang, Q., Li, S., and Jiang, J. 2014. Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window. J. Am. Chem. Soc., 136(44), 15684.Google Scholar
[19] Faucheaux, J.A., Stanton, A.L.D., and Jain, P.K. 2014. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. J. Phys. Chem. Lett., 5(6), 976–985.Google Scholar
[20] Ferrando, R., Jellinek, J., and Johnston, R.L. 2008. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev., 108, 845–910.Google Scholar
[21] García de Abajo, F.J. 2014. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics, 1, 135–152.Google Scholar
[22] Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., and West, J.L. 2007. Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy. Nano Lett., 7(7), 1929–1934.Google Scholar
[23] Govorov, A.O., and Richardson, H.H. 2007. Generating Heat with Metal Nanoparticles. Nano Today, 2(1), 30.Google Scholar
[24] Guler, U., and Turan, R. 2010. Effect of Particle Properties and Light Polarization on the Plasmonic Resonances in Metallic Nanoparticles. Opt. Express, 18(16), 17322-17338.Google Scholar
[25] Guler, U., Naik, G.V., Boltasseva, A., Shalaev, V.M., and Kildishev, A.V. 2012. Performance Analysis of Nitride Alternative Plasmonic Materials for Localized Surface Plasmon Applications. Appl. Phys. B, 107, 285–291.Google Scholar
[26] Guler, U., Ndukaife, C., Naik, G.V., Nnanna, A.G.A., Kildishev, A.V., Shalaev, V.M., and Boltasseva, A. 2013. Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles. Nano Lett., 13, 6078–6083.Google Scholar
[27] Guler, U., Boltasseva, A., and Shalaev, V.M. 2014. Refractory Plasmonics. Science, 344, 263–264.Google Scholar
[28] Guler, U., Shalaev, V.M., and Boltasseva, A. 2015a. Nanoparticle Plasmonics: Going Practical with Transition Metal Nitrides. Mater. Today, 18(4), 227–237.Google Scholar
[29] Guler, U., Kildishev, A.V., Boltasseva, A., and Shalaev, V.M. 2015b. Plasmonics on the Slope of Enlightenment: The Role of TransitionMetal Nitrides. Faraday Discuss., 178, 71.Google Scholar
[30] Huang, X., Tang, S., Mu, X., Dai, Y., Chen, G., Zhou, Z., Ruan, F., Yang, Z., and Zheng, N. 2011. Freestanding Palladium Nanosheets with Plasmonic and Catalytic Properties. Nature Nanotech., 6, 28–32.Google Scholar
[31] Jackson, J.D. 1999. Classical Electrodynamics . Wiley.
[32] Jain, P.K., Lee, K.S., El-Sayed, I.H., and El-Sayed, M.A. 2006. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B, 110(14), 7238–7248.Google Scholar
[33] Jiang, Y., Pillai, S., and Green, M.A. 2015. Re-Evaluation of Literature Values of Silver Optical Constants. Opt. Express, 23(3), 2133–2144.Google Scholar
[34] Johnson, P.B., and Christy, R.W. 1972. Optical Constants of the NobleMetals. Phys. Rev. B, 6, 4370.Google Scholar
[35] Johnson, P.B., and Christy, R.W. 1974. Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd. Phys. Rev. B, 9(12), 5056–5070.Google Scholar
[36] Knight, M.K., Liu, L., Wang, Y., Brown, L., Mukherjee, S., King, N.S., Everitt, H. O, Nordlander, P., and Halas, N.J. 2012. Aluminum Plasmonic Nanoantennas. Nano Lett., 12, 6000–6004.Google Scholar
[37] Knight, M.W., King, N.S., Liu, L., Everitt, H.O., Nordlander, P., and Halas, N.J. 2014. Aluminum for Plasmonics. ACS Nano, 8(1), 834–840.Google Scholar
[38] Knight, M.W., Coenen, T., Yang, Y., Brenny, B.J.M., Losurdo, M., Brown, A.S., Everitt, H.O., and Polman, A. 2015. Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles. ACS Nano, 9(2), 2049–2060.Google Scholar
[39] Lalisse, A., Tessier, G., Plain, J., and Baffou, G. 2015. Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion. J. Phys. Chem. C, 119, 25518–25528.Google Scholar
[40] Lalisse, A., Tessier, G., Plain, J., and Baffou, G. 2016. Plasmonic Efficiencies of Nanoparticles Made of Metal Nitrides (TiN, ZrN) Compared with Gold. Sci. Rep., 6, 38647.Google Scholar
[41] Lecarme, O., Sun, Q., Ueno, K., and Misawa, H. 2014. Robust and Versatile Light Absorption at Near-Infrared Wavelengths by Plasmonic Aluminum Nanorods. ACS Photonics, 1, 538–546.Google Scholar
[42] Lindquist, N.C., Nagpal, P., McPeak, K.M., Norris, D.J., and Oh, S.H. 2012. Engineering Metallic Nanostructures for Plasmonics and Nanophotonics. Rep. Prog. Phys., 75, 036501.Google Scholar
[43] Link, S., Wang, Z.L., and El-Sayed, M.A. 1999. Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on their Composition. J. Phys. Chem. B, 103, 3529–3533.Google Scholar
[44] Liu, X., and Swihart, M. 2014. Heavily-Doped Colloidal Semiconductor and Metal Oxide Nanocrystals: An Emerging New Class of Plasmonic Nanomaterials. Chem. Soc. Rev., 43, 3908–3920.Google Scholar
[45] Long, R., Rao, Z., Mao, K., Li, Y., Zhang, C., Liu, Q., Wang, C., Li, Z.Y., Wu, X., and Xiong, Y. 2015. Efficient Coupling of Solar Energy to Catalytic Hydrogenation by Using Well-Designed Palladium Nanostructures. Angew. Chem. Int. Ed., 127, 2455–2460.Google Scholar
[46] Mallin, M.P., and Murphy, C.J. 2002. Solution-Phase Synthesis of Sub-10 nm Au– Ag Alloy Nanoparticles. Nano Lett., 2(11), 1235–1237.Google Scholar
[47] Martin, J., and Plain, J. 2015. Fabrication of Aluminium Nanostructures for plasmonics. J. Phys. D: Appl. Phys., 48, 184002.Google Scholar
[48] Martin, J., Kociak, M., Mahfoud, Z., Proust, J., D., Gérard, and Plain, J. 2014. High-Resolution Imaging and Spectroscopy of Multipolar Plasmonic Resonances in Aluminum Nanoantennas. Nano Lett., 14(10), 5517–5523.Google Scholar
[49] Mayer, S.A. 2007. Plasmonics . Springer.
[50] McClain, M.J., Schlather, A.E., Ringe, E., King, N.S., Liu, L., Manjavacas, A., Knight, M.W., Kumar, I., Whitmire, K.H., Everitt, H.O., Nordlander, P., and Halas, N.J. 2015. Aluminum Nanocrystals. Nano Lett., 15(4), 2751–2755.Google Scholar
[51] McMahon, M.D., Lopez, R.,Meyer, H.M., Feldman, L.C., and Haglund, R.F. 2005. Rapid Tarnishing of Silver Nanoparticles in Ambient Laboratory Air. Appl. Phys. B, 80, 915–921.Google Scholar
[52] Metwally, K., Mensah, S., and Baffou, G. 2015. Fluence Threshold for Photothermal Bubble Generation Using Plasmonic Nanoparticles. J. Phys. Chem. C, 119, 28586. 28596.Google Scholar
[53] Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A.M., Novo, C., Mulvaney, P., Liz-Marzán, L.M., and García de Abajo, F.J. 2008. Modeling the Optical Response of Gold Nanoparticles. Chem. Soc. Rev., 37, 1792–1805.Google Scholar
[54] Naik, G.V., Kim, J., and Boltasseva, A. 2011. Oxides and Nitrides as Alternative Plasmonic Materials in the Optical Range. Opt. Mater. Express, 1(6), 1090–1099.Google Scholar
[55] Novotny, L., and Hecht, B. 2006. Principles of Nano-Optics . Cambridge University Press.
[56] Palik, E.D. (ed). 1998. Handbook of Optical Constants of Solids . Academic Press, Elsevier.
[57] Patsalas, P., Kalfagiannis, N., and Kassavetis, S. 2015. Optical Properties and Plasmonic Performances of Titanium Nitride. Materials, 8, 3128–3154.Google Scholar
[58] Rakic, A.D., Djurisic, A.B., Elazar, J.M., and Majewski, M. 1998. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl. Opt., 37(22), 5271–5283.Google Scholar
[59] Reddy, H., Guler, U., Kildishev, A.V., Boltasseva, A., and Shalaev, V.M. 2016. Temperature-Dependent Optical Properties of Gold Thin Films. Opt. Mater. Express, 6(9), 2776.Google Scholar
[60] Ross, M.B., and Schatz, G.C. 2014. Aluminum and Indium Plasmonic Nanoantennas in the Ultraviolet. J. Phys. Chem. C, 118, 12506–12514.Google Scholar
[61] Sanz, J.M., Ortiz, D., Alcaraz de la Osa, R., Saiz, J.M., González, F., Brown, A.S., Losurdo, M., Everitt, H.O., and Moreno, F. 2013. UV Plasmonic Behavior of Various Metal Nanoparticles in the Near- and Far-Field Regimes: Geometry and Substrate Effects. J. Phys. Chem. C, 117, 19606–19615.Google Scholar
[62] Shalaev, V.M. 2000. Unknown title. Proceedings of the International School on Quantum Electronics , 239-243.Google Scholar
[63] Sobhani, A., Manjavacas, A., Cao, Y., McClain, M.J., García de Abajo, F.J., Nordlander, P., and Halas, N.J. 2015. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Lett., 15(10), 6946–6951.Google Scholar
[64] Sterl, F., Strohfeldt, N.,Walter, R., Griessen, R., Tittl, A., and Giessen, H. 2015. Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range. Nano Lett., 15, 7949–7955.Google Scholar
[65] Stockman, M.I. 2011. Nanoplasmonics: Past, Present, and Glimpse into Future. Opt. Express, 19(22), 22029–22106.Google Scholar
[66] Strohfeldt, N., Tittl, A., Schäferling, M., Neubrech, F., Kreibig, U., Griessen, R., and Giessen, H. 2014. Yttrium Hydride Nanoantennas for Active Plasmonics. Nano Lett., 14(3), 1140–1147.Google Scholar
[67] Sun, Q.C., Ding, Y., Goodman, S.M., Funke, H.H., and Nagpal, P. 2014. Copper Plasmonics and Catalysis: Role of Electron–Phonon Interactions in Dephasing Localized Surface Plasmons. Nanoscale, 6, 12450.Google Scholar
[68] Wang, F., and Shen, Y.R. 2006. General Properties of Local Plasmons in Metal Nanostructures. Phys. Rev. Lett., 97, 206806.Google Scholar
[69] Watson, A.M., Zhang, X., Alcaraz de la Osa, R., Sanz, J.M., González, F., Moreno, F., Finkelstein, G., Liu, J., and Everitt, H.O. 2015. Rhodium Nanoparticles for Ultraviolet Plasmonics. Nano Lett., 15, 1095–1100.Google Scholar
[70] West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., and Boltasseva, A. 2010. Searching for Better Plasmonic Materials. Laser & Photon. Rev., 6, 795–808.Google Scholar
[71] Wu, P.C., Khoury, C.G., Kim, T.H., Yang, Y., Losurdo, M., Bianco, G.V., Vo- Dinh, T., Brown, A.S., and Everitt, H.O. 2009. Demonstration of Surface-Enhanced Raman Scattering by Tunable, Plasmonic Gallium Nanoparticles. J. Am. Chem. Soc., 131, 12032–12033.Google Scholar
[72] Yang, H.U., D'Archangel, J., Sundheimer, M.L., Tucker, E., Boreman, G.D., and Raschke, M.B. 2015. Optical Dielectric Function of Silver. Phys. Rev. B, 91, 235137.Google Scholar
[73] Yang, Y., Callahan, J.M., Kim, T.H., Brown, A.S., and Everitt, H.O. 2013. Ultraviolet Nanoplasmonics: A Demonstration of Surface-Enhanced Raman Spectroscopy, Fluorescence, and Photodegradation Using Gallium Nanoparticles. Nano Lett., 13, 2837–2841.Google Scholar
[74] Yarema, M., Wörle, M., Rossell, M.D., Erni, R., Caputo, R., Protesescu, L., Kravchyk, K.V., Dirin, D.N., Lienau, K., von Rohr, F., Schilling, A., Nachtegaal, M., and Kovalenko, M.V. 2014. Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage. J. Am. Chem. Soc., 126, 12422–12430.Google Scholar
[75] Yeshchenko, O.A., Bondarchuk, I.S., Gurin, V.S., Dmitruk, I.M., and Kotko, A.V. 2013. Temperature Dependence of the Surface Plasmon Resonance in Gold Nanoparticles. Surf. Sci., 608, 275–281.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×