Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T21:48:59.564Z Has data issue: false hasContentIssue false

4 - Thermal Microscopy Techniques

Published online by Cambridge University Press:  26 October 2017

Guillaume Baffou
Affiliation:
Institut Fresnel, CNRS, University of Aix-Marseille
Get access

Summary

This chapter introduces the thermal microscopy techniques that have been developed and used to probe local temperature in plasmonic structures under illumination. Reliably imaging a temperature distribution with a sub-micrometric resolution is not trivial, which certainly explains why the first temperature measurement in plasmonics dates only from 2009.

To date, ten families of techniques have been developed for this purpose. Interestingly, most of them rely on far-field optical microscopy techniques, which explains why part of the optics community is now tackling problems of thermodynamics. Half of the techniques are based on fluorescence measurements of molecular probes and are gathered in the first section. Then, the other techniques are assigned to specific sections, namely nanodiamond spectroscopy, wavefront sensing, Raman scattering spectroscopy, X-ray absorption spectroscopy, and scanning thermal microscopy. Each section of this chapter begins with a rather detailed explanation of the underlying physics in play. For this reason, the interest of this chapter is also to enter the physics of concepts such as fluorescence emission, surface-enhanced Raman scattering, X-ray absorption or nanodiamond's photophysics.

Introduction

Probing or mapping temperature on the submicrometric scale is not an easy task, even in the twenty-first century. Standard IR thermal radiation measurements, which are usually done on the macro scale, no longer apply at such small dimensions since the involved wavelength of the radiations (more than 10 μm) would lead to a very poor spatial resolution [39]. Moreover, most optical components are not transparent in this wavelength range (lenses, glass coverslips, etc.). Unlike light (which is endowed with a propagative nature), heat just diffuses. This makes any temperature distribution arising from a nanosource of heat confined at its vicinity, and not propagating to the far field. For these reasons, first attempts to probe a temperature field at small scales were based on the use of local probes consisting of a small composite tip acting as a nanoscale thermocouple or bolometer. This is the socalled SThM (scanning thermal microscopy) technique, invented in 1986 [80]. It enables a spatial resolution of around 50 nm. This technique would therefore have been ideal for temperature measurements in nanoplasmonics … if only it were not so invasive

Magnetic resonance imaging (MRI) was one of the first thermal imaging techniques used in thermoplasmonics. The groups of West and Halas used MRI measurement to retrieve the temperature in living animals in the context of photothermal therapies [33].

Type
Chapter
Information
Thermoplasmonics
Heating Metal Nanoparticles Using Light
, pp. 101 - 142
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Acosta, V.M., Bauch, E., Ledbetter, M.P., Waxman, A., Bouchard, L.S., and Budker, D. 2010. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett., 104, 070801.Google Scholar
[2] Baffou, G., Kreuzer, M.P., Kulzer, F., and Quidant, R. 2009. Temperature Mapping near Plasmonic Nanostructures using Fluorescence Polarization Anisotropy. Opt. Express, 17, 3291.Google Scholar
[3] Baffou, G., Girard, C., and Quidant, R. 2010. Mapping Heat Origin in Plasmonics Structures. Phys. Rev. Lett., 104, 136805.Google Scholar
[4] Baffou, G., Bon, P., Savatier, J., Polleux, J., Zhu, M., Merlin, M., Rigneault, H., and Monneret, S. 2012. Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis. ACS Nano, 6, 2452–2458.Google Scholar
[5] Baffou, G., Berto, P., Bermúdez Ureña, E., Quidant, R., Monneret, S., Polleux, J., and Rigneault, H. 2013. Photoinduced Heating of Nanoparticle Arrays. ACS Nano, 7(8), 6478–6488.Google Scholar
[6] Baffou, G., Rigneault, H., Marguet, D., and Jullien, L. 2014a. A Critque of Methods for Temperature Imaging in Single Cells. Nature Methods, 11, 899–901.Google Scholar
[7] Baffou, G., Bermúdez Ureña, E., Berto, P., Monneret, S., Quidant, R., and Rigneault, H. 2014b. Deterministic Temperature Shaping using Plasmonic Nanoparticle Assemblies. Nanoscale, 6, 8984–8989.Google Scholar
[8] Baffou, G., Polleux, J., Rigneault, H., and Monneret, S. 2014c. Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination. J. Phys. Chem. C, 118, 4890.Google Scholar
[9] Baffou, G., Rigneault, H., Marguet, D., and Jullien, L. 2015. Reply to: “Validating Subcellular Thermal Changes Revealed by Fluorescent Thermosensors” and “The 105 Gap Issue Between Calculation and Measurement in Single-Cell Thermometry.”? Nature Methods, 12, 803.Google Scholar
[10] Baral, S., Johnson, S.C., Alaulamiz, A.A., and Richardson, H.H. 2016. Nanothermometry Using Optically Trapped Erbium Oxide Nanoparticle. Appl. Phys. A, 122, 340.Google Scholar
[11] Bendix, P.M., Reihani, S.N.S., and Oddershede, L.B. 2010. Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256.Google Scholar
[12] Berto, P., Bermúdez Ureña, E., Bon, P., Quidant, R., Rigneault, H., and Baffou, G. 2012. Quantitative Absorption Spectroscopy of Nano-Objects. Phys. Rev. B, 86, 165417.Google Scholar
[13] Carlson, M.T., Khan, A., and Richardson, H.H. 2011. Local Temperature Determination of Optically Excited Nanoparticles and Nanodots. Nano Lett., 11, 1061–1069.Google Scholar
[14] Carlson, M.T., Green, A.J., Khan, A., and Richardson, H.H. 2012a. Optical Measurement of Thermal Conductivity and Absorption Cross-Section of Gold Nanowires. J. Phys. Chem. C, 116, 8798–8803.Google Scholar
[15] Carlson, M.T., Green, A.J., and Richardson, H.H. 2012b. Superheating Water by CW Excitation of Gold Nanodots. Nano Lett., 12, 1534.Google Scholar
[16] Chen, X.D., Dong, C.H., Sun, F.W., Zou, C.L., Cui, J.M., Han, Z.F., and Guo, G.C. 2011. Temperature Dependent Energy Level Shifts of Nitrogen-Vacancy Centers in Diamond. Appl. Phys. Lett., 99, 161903.Google Scholar
[17] Chen, Z., Shan, X., Guan, Y., Wang, S., Zhu, J.J., and Tao, N. 2015. Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy. ACS Nano, 9(12), 11574–11581.Google Scholar
[18] Chiu, M.J., and Chu, L.K. 2015. Quantifying the Photothermal Efficiency of Gold Nanoparticles Using Tryptophan as an in Situ Fluorescent Thermometer. Phys. Chem. Chem. Phys., 17, 17090–17100.Google Scholar
[19] Christopher, P., Xin, H., and Linic, S. 2011. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nature Chem., 3, 467–472.Google Scholar
[20] Clarke, M.L., Grace Chou, S., and Hwang, J. 2010. Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy. J. Phys. Chem. Lett., 1, 1743. 1748.Google Scholar
[21] Coppens, Z.J., Li, W., Walker, D.G., and Valentine, J.G. 2013. Probing and Controlling Photothermal Heat Generation in Plasmonic Nanostructures. Nano Lett., 13, 1023–1028.Google Scholar
[22] Debasu, M.L., Ananias, D., Pastoriza-Santos, I., Liz-Marzán, L.M., Rocha, J., and Carlos, L.D. 2013. All-In-One Optical Heater-Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er+3 Emission and Blackbody Radiation. Adv. Mater., 25, 4868–4874.Google Scholar
[23] Desiatov, B., Goykhman, I, and Levy, U. 2014. Direct Temperature Mapping of Nanoscale Plasmonic Devices. Nano Lett., 14, 648–652.Google Scholar
[24] Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., and Hollenberg, L.C.L. 2013. The Nitrogen-Vacancy Colour Centre in Diamond. Physics Reports, 528, 1–45.Google Scholar
[25] Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., and Wrachtrup, J. 2011. Electric-Field Sensor Using Single Diamond Spins. Nature Phys., 7, 459–463.Google Scholar
[26] Donner, J.S., Thompson, S.A., Alonso-Ortega, C., Morales, J., Rico, L.G., Santos, S.I.C.O., and Quidant, R. 2013. Imaging of Plasmonic Heating in a Living Organism. ACS Nano, 7(10), 8666–8672.Google Scholar
[27] Donner, J.S., Thompson, S.A., Kreuzer, M.P., Baffou, G., and Quidant, R. 2012. Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Lett., 12, 2107–2111.Google Scholar
[28] Ebrahimi, S., Akhlaghi, Y., Kompany-Zareh, M., and Rinnan, Å. 2014. Nucleic Acid Based Fluorescent Nanothermometers. ACS Nano, 8(10), 10372–10382.Google Scholar
[29] Freddi, S., Sironi, L., D'Antuono, R., Morone, D., Donà, A., Cabrini, E., D'Alfonso, L., Collini, M., Pallavivini, P., Baldi, G., Maggioni, D., and Chirico, G. 2013. A Molecular Thermometer for Nanoparticles for Optical Hyperthermia. Nano Lett., 13, 2004–2010.Google Scholar
[30] Gomès, S., Assy, A., and Chapuis, P.O. 2015. Scanning Thermal Microscopy: A review. Phys. Status Solidi A, 212(3), 477–494.Google Scholar
[31] Hao Vu, X., Levy, M., Barroca, T., Nhung Tran, H., and Fort, E. 2013. Gold Nanocrescents for Remotely Measuring and Controlling Local Temperature. Nanotechnology, 24, 325501.Google Scholar
[32] Herzog, J.B., Knight, M.W., and Natelson, D. 2014. Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires. Nano Lett., 14(2), 499–503.Google Scholar
[33] Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., and West, J.L. 2003. Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci.U.S.A., 100(23), 13549–13554.Google Scholar
[34] Honda, M., Saito, Y., Smith, N.I., Fujita, K., and Kawata, S. 2011. Nanoscale Heating of Laser Irradiated Single Gold Nanoparticles in Liquid. Opt. Express, 19(13), 12375–12383.Google Scholar
[35] Hormeño, S., Gregorio-Godoy, P., Pérez-Juste, J., Liz-Marzán, L.M., Juárez, B.H., and Arias-Gonzalez, J.R. 2014. Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small, 10(2), 376–384.Google Scholar
[36] Ito, S., Sugiyama, T., Toitani, N., Katayama, G., and Miyasaka, H. 2007. Application of Fluorescence Correlation Spectroscopy to the Measurement of Local Temperature in Solutions under Optical Trapping Condition. J. Phys. Chem. B, 111, 2365.Google Scholar
[37] Jaque, D., and Vetrone, F. 2012. Luminescence Thermometry. Nanoscale, 4, 4301. 4326.Google Scholar
[38] Jaque, D., Maestro, L.M., Escudero, E., MartínRodriguez, E., Capobianco, J.A., Vetrone, F., Juarranz de la Fuente, A., Sanz-Rodríguez, F., Iglesias-de la Cruz, M.C., Jacinto, C., Rocha, U., and García Solé, J. 2013. Fluorescent Nano-Particles for Multi-Photon Thermal Sensing. J. Luminescence, 133, 249–253.Google Scholar
[39] Jonsson, G.E., Milijkovic, V., and Dmitriev, A. 2014. Nanoplasmon-Enabled Macroscopic Thermal Management. Sci. Rep., 4, 5111.Google Scholar
[40] Kim, K., Chung, J., Hwang, G., Kwon, O., and Sik Lee, J. 2011. Quantitative Measurement with Scanning Thermal Microscope by Preventing Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air. ACS Nano, 5, 8700–8709.Google Scholar
[41] Kinkhabwala, A.A., Staffaroni, M., Suze, O., and Burgos, S. 2016. Nanoscale Thermal Mapping of HAMR Heads Using Polymer Imprint Thermal Mapping. IEEE Trans. Magn., 52(2), 1.Google Scholar
[42] Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., and Feld, M.S. 1997. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett., 78, 1667–1670.Google Scholar
[43] Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., and Lukin, M.D. 2013. Nanometre-Scale Thermometry in a Living Cell. Nature, 500, 54–59.Google Scholar
[44] Lakovicz, J.R. 2007. Principles of Fluorescence Spectroscopy . Springer.
[45] Ma, H., Bendix, P.M., and Oddershede, L.B. 2012. Large-Scale Orientation Dependent Heating from a Single Irradiated Gold Nanorod. Nano Lett., 12, 3954–3960.Google Scholar
[46] Maestro, L.M., Haro-González, P., Coello, J.G., and Jaque, D. 2012. Absorption Efficiency of Gold Nanorods Determined by Quantum Dot Fluorescence Thermometry. Appl. Phys. Lett., 100, 201110.Google Scholar
[47] Maestro, L.M., Haro-González, P., del Rosal, B., Ramiro, J., no, Caama Carrasco, E., Juarranz, A., Sanz-Rodríguez, F., García Solé, J., and Jaque, D. 2013. Heating Efficiency of Multi-Walled Carbon Nanotubes in the First and Second Biological Windows. Nanoscale, 5, 7882–7889.Google Scholar
[48] Maestro, L.M., Haro-González, P., Ana, Sánchez-Iglesias, Liz-Marzán, L.M., García Solé, J., and Jaque, D. 2014. Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold Nanoparticles. Langmuir, 30, 1650–1658.Google Scholar
[49] Martinez Maestro, L., Martín Roriguez, E., Vetrone, F., Naccache, R., LoroRamirez, H., Jaque, D., Capobianco, J.A., and García Solé, J.A. 2010. Nanoparticles for Highly Efficient Multiphoton Fluorescence Bioimaging. Opt. Express, 18(23), 23544–23553.Google Scholar
[50] Neuman, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., and Wrachtrup, J. 2013. High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond. Nano Lett., 13(6), 2738–2742.Google Scholar
[51] Newville, Matthew. 2004. Fundamentals of XAFS . University of Chicago.
[52] Nie, S., and Emory, S.R. 1997. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 275(5303), 1102–1106.Google Scholar
[53] Pacardo, D.B., Neupane, B., Wang, G., Gu, Z., Walker, G.M., and Ligler, F.S. 2015. A Temperature Microsensor for Measuring Laser-Induced Heating in Gold Nanorods. Anal. Bioanal. Chem., 407, 719–725.Google Scholar
[54] Petriashvili, G., De Santo, M.P., Chubinidze, K., Hamdi, R., and Barberi, R. 2014. Visual Micro-Thermometers for Nanoparticles Photo-Thermal Conversion. Opt. Express, 22(12), 14705–14711.Google Scholar
[55] Plakhotnik, T., and Gruber, D. 2010. Luminescence of Nitrogen-Vacancy Centers in Nanodiamonds at Temperatures between 300 and 700 K: Perspectives on Nanothermometry. Phys. Chem. Chem. Phys., 12, 9751–9756.Google Scholar
[56] Plakhotnik, T., Doherty, M.W., Cole, J.H., Chapman, R., and Manson, N.B. 2014. All-Optical Thermometry and Thermal Properties of the Optically Detected Spin Resonances of the NV− Center in Nanodiamond. Nano Lett., 14, 4989–4996.Google Scholar
[57] Pozzi, E.A., Zrimsek, A.B., Lethiec, C.M., Schatz, G.C., Hersam, M.C., and Van Duyne, P. 2015. Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry. J. Phys. Chem. C, 119, 21116–21124.Google Scholar
[58] Robert, H., Kundrat, F., Bermúdez Ureña, E., Rigneault, H., Monneret, S., Quidant, R., Polleux, J., and Baffou, G. 2016. Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles. ACS Omega, 1, 2–8.Google Scholar
[59] Rocha, U., Jacinto da Silva, C., Ferreira Silva, W., Guedes, I., Benayas, A., Martínez Maestro, L., Acosta, Elias, M., Bovero, E., van Veggel, F.C.J.M., García Solé, J.A., and Jaque, D. 2013. Thermal Sensing Based on Neodymium-Doped LaF3 Nanoparticles. ACS Nano, 7(2), 1188–1199.Google Scholar
[60] Rodríguez-Sevilla, P., Zhang, Y., Haro-González, P., Sanz-Rodríguez, F., Jaque, F., García Solé, J., Liu, X., and Jaque, D. 2016. Thermal Scanning at the Cellular Level by an Optically Trapped Upconverting Fluorescent Particle. Adv. Mater., 28, 2421. 2426.Google Scholar
[61] Rohani, S., Quintanilla, M., Tuccio, S., De Angelis, F., Cantelar, E., Govorov, A.O., Razzari, L., and Vetrone, F. 2015. Enhanced Luminescence, Collective Heating, and Nanothermometry in an Ensemble System Composed of Lanthanide-Doped Upconverting Nanoparticles and Gold Nanorods. Adv. Opt. Mater., 3(11), 1606–1613.Google Scholar
[62] Rondin, L., Tetienne, J.P., Hingant, T., Roch, J.F., Maletinsky, and Jacques, V. 2014. Magnetometry with Nitrogen-Vacancy Defects in Diamond. Rep. Prog. Phys., 77, 056503.Google Scholar
[63] Rycenga, M., Wang, Z., Gordon, E., Cobley, C.M., Schwartz, A.G., Lo, C.S., and Xia, Y. 2009. Probing the Photothermal Effect of Gold-Based Nanocages with Surface-Enhanced Raman Scattering (SERS). Angew. Chem. Int. Ed., 48, 9924–9927.Google Scholar
[64] Savchuk, O.A., Carvajal, J.J., Pujol, M.C., Barrera, W., Massons, J., Aguilo, M., and Diaz, F. 2015. Ho,Yb:KLu(WO4)2 Nanoparticles: A Versatile Material for Multiple Thermal Sensing Purposes by Luminescent Thermometry. J. Phys. Chem. C, 119, 18546–18558.Google Scholar
[65] Schiebener, P., Straub, J., Levelt Sengers, J.M.H., and Gallagher, J.S. 1990. Refractive Index of Water and Steam as Function of Wavelength, Temperture and Density. J. Phys. Chem. Ref. Data, 19(3), 677.Google Scholar
[66] Schirhagl, R., Chang, K., Loretz, M., and Degen, C.L. 2014. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem., 65, 83–105.Google Scholar
[67] Schmid, S., Wu, K., Larsen, P.E., Rindzevicius, T., and Boisen, A. 2014. Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators. Nano Lett., 14(5), 2318–2321.Google Scholar
[68] Setoura, K., Werner, D., and Hashimoto, S. 2012. Optical Scattering Spectral Thermometry and Refractometry of a Single Gold Nanoparticle under CW Laser Excitation. J. Phys. Chem. C, 116, 15458–15466.Google Scholar
[69] Setoura, K., Okada, Y., Werner, D., and Hashimoto, S. 2013. Observation of Nanoscale Cooling Effects by Substrates and the Surrounding Media for Single Gold Nanoparticles under CW-Laser Illumination. ACS Nano, 7(9), 7874–7885.Google Scholar
[70] Tetienne, J.P., A., Lombard, Simpson, D.A., Ritchie, C., Lu, J., Mulvaney, P., and Hollenberg, C.L. 2016. Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging. Nano Lett., 16, 326–333.Google Scholar
[71] Toshimitsu, M., Matsumura, Y., Shoji, T., Kitamura, N., Takase, M., Murakoshi, K., Yamauchi, H., Ito, S., Miyasaka, H., Nobuhiro, A., Mizumoto, Y., Ishihara, H., and Tsuboi, Y. 2012. Metallic-Nanostructure-Enhanced Optical Trapping of Flexible Polymer Chains in Aqueous Solution as Revealed by Confocal Fluorescence Microspectroscopy. J. Phys. Chem. C, 116, 14610–14618.Google Scholar
[72] Tzeng, Y.K., Tsai, P.C., Liu, H.Y., Chen, O.Y., Hsu, H., Yee, F.G., Chang, M.S., and Chang, H.C. 2015. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. Nanolett., 15, 3945–3952.Google Scholar
[73] Vaijayanthimala, V., Keun Lee, D., Kim, S.V., Yen, A., Tsai, N, Ho, D., Chang, H.C., and Shenderova, O. 2015. Nanodiamond-Mediated Drug Delivery and Imaging: Challenges and Opportunities. Expert Opin. Drug Deliv., 5, 735–749.Google Scholar
[74] Valeur, Bernard. 2007. Molecular Fluorescence: Principles and Applications . Wiley- VCH.
[75] Van de Broek, B., Grandjean, D., Trekker, J., Ye, J., Verstreken, K., Maes, G., Borghs, G., Nikitenko, S., Lagae, L., Bartic, C., Temst, K., and Van Bael, M.J. 2011. Temperature Determination of Resonantly Excited Plasmonic Branched Gold Nanoparticles by X-Ray Absorption Spectroscopy. Small, 7(17), 2498–2506.Google Scholar
[76] Velghe, S., Primot, J., Guérineau, N., Cohen, M., and Wattellier, B. 2005. Wavefront Reconstruction from Multidirectional Phase Derivatives Generated by Multilateral Shearing Interferometers. Opt. Lett., 30(3), 245–247.Google Scholar
[77] Vetrone, F., Naccache, R., Zamarrón, A., Juarranz de la Fuente, A., Sanz-Rodríguez, F., Martinez Maestro, L., Martín Rodriguez, E., Jaque, D., García Solé, J., and Capobianco, J.A. 2010. Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano, 4(6), 3254.Google Scholar
[78] Šiler, M., Ježek, J., Jákl, P., Zdenˇek, P., and Zemánek, P. 2016. Direct Measurement of the Temperature Profile Close to an Optically Trapped Absorbing Particle. Opt. Lett., 41(5), 870–873.Google Scholar
[79] Weinert, F.M., and Braun, D. 2009. An Optical Conveyor for Molecules. Nano Lett., 9(12), 4264–4267.Google Scholar
[80] Williams, C.C., and Wickramasinghe, H.K. 1986. Scanning Thermal Profiler. Appl. Phys. Lett., 49, 1587–1589.Google Scholar
[81] Xie, X., and Cahill, D.G. 2016. Thermometry of Plasmonic Nanostructures by Anti- Stokes Electronic Raman Scattering. Appl. Phys. Lett., 109, 183104.Google Scholar
[82] Yamauchi, H., Ito, S., Yoshida, K., Itoh, T., Tsuboi, Y., Kitamura, N., and Miyasaka, H. 2013. Temperature near Gold Nanoprticles under Phtotexcitation: Evaluation Using a Fluorescence Correlation Technique. J. Phys. Chem. C, 117, 8388–8396.Google Scholar
[83] Yashchenok, A., Masic, A., Gorin, D., Inozemtseva, O., Sup Shim, B., Kotov, N., Skirtach, A., and Möhwald, H. 2015. Optical Heating and Temperature Determination of Core–Shell Gold Nanoparticles and Single-Walled Carbon Nanotube Microparticles. Small, 11(11), 1320–1327.Google Scholar
[84] Yokota, Y., Ueno, K., and Misawa, H. 2011. Highly Controlled Surface-Ehnaced Raman Scattering Chips using Nanoengineered Gold Blocks. Small, 2, 252–258.Google Scholar
[85] Zhou, J., Liu, Q., Feng, W., Sun, Y., and Li, F. 2015. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev., 115, 395–465.Google Scholar
[86] Zhu, M., Baffou, G., Meyerbröker, N., and Polleux, J. 2012. Micropatterning Thermoplasmonics Gold Nanoarrays to Manipulate Cell Adhesion. ACS Nano, 6(8), 7227–7233.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×