Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T09:35:05.005Z Has data issue: false hasContentIssue false

5 - Thermal-Induced Processes

Published online by Cambridge University Press:  26 October 2017

Guillaume Baffou
Affiliation:
Institut Fresnel, CNRS, University of Aix-Marseille
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Thermoplasmonics
Heating Metal Nanoparticles Using Light
, pp. 143 - 222
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] apps.webofknowledge.com, 2016.
[2] Alaulamie, A.A., Baral, S., Johnson, S.C., and Richardson, H.H. 2016. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs. Small, 13, DOI: 10.1002/smll.201601989.CrossRefGoogle Scholar
[3] Alper, J., and Hamad-Schifferli, K. 2010. Effect of Ligands on Thermal Dissipation from Gold Nanorods. Langmuir, 26(6), 3786.Google Scholar
[4] Alvers, S., Bourdon, A., and Figueiredo Neto, A.M. 2003. Generalization of the Thermal Lens Model Formalism to Account for Thermodiffusion in a Single-Beam Z-Scan Experiment: Determination of the Soret coefficient. J. Opt. Soc. Am. B, 20(4), 713–718.Google Scholar
[5] Baffou, G., and Quidant, R. 2014. Nanoplasmonics for Chemistry. Chem. Soc. Rev., 43, 3898–3907.Google Scholar
[6] Baffou, G., and Rigneault, H. 2011. Femtosecond-Pulsed Optical Heating of Gold Nanoparticles. Phys. Rev. B, 84, 035415.Google Scholar
[7] Baffou, G., Polleux, J., Rigneault, H., and Monneret, S. 2014. Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination. J. Phys. Chem. C, 118, 4890.Google Scholar
[8] Ball, P. 2012. Nanobubbles are not Superficial Matter. Chem. Phys. Chem., 13, 2173–2177.Google Scholar
[9] Bashkatov, A.N., and Genina, E.A. 2002. Water Refractive Index in Dependence on Temperature and Wavelength: A Simple Approximation. SPIE, 5068, 393–395.Google Scholar
[10] Bielenberg, J.R., and Brenner, H. 2005. A Hydrodynamic/Brownian Motion Model of Thermal Diffusion in Liquids. Physica A, 356, 279–293.Google Scholar
[11] Boulais, E., Lachaine, R., and Meunier, M. 2012. Plasma Mediated off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation. Nano Lett., 12, 4763. 4769.Google Scholar
[12] Braibanti, M., Vigolo, D., and Piazza, R. 2008. Does Thermophoretic Mobility Depend on Particle Size?? Phys. Rev. Lett., 100, 108303.Google Scholar
[13] Braun, D., and Libchaber, A. 2002. Trapping of DNA Thermophoretic Depletion and Convection. Phys. Rev. Lett., 89(18), 188103.Google Scholar
[14] Braun, M., and Cichos, F. 2013. Optically Controlled Thermophoretic Trapping of Single Nano-objects. ACS Nano, 7(12), 11200–11208.Google Scholar
[15] Braun, M., Würger, A., and Cichos, F. 2014. Trapping of Single Nano-objects in Dynamic Temperature Fields. Phys. Chem. Chem. Phys., 16, 15207.Google Scholar
[16] Braun, M., Bregulla, A.P., K., Günther, Mertig, M., and Cichos, F. 2015. Single Molecules Trapped by Dynamic Inhomogeneous Temperature. Nano Lett., 15, 5499–5505.Google Scholar
[17] Brenner, H. 2006. Elementary Kinematical Model of Thermal Diffusion in Liquids and Gases. Phys. Rev. E, 74, 036306.Google Scholar
[18] Brujan, E.A. 2011. Numerical Investigation on the Dynamics of Cavitation Nanobubbles. Microfluid Nanofluid, 11, 511–517.Google Scholar
[19] Brujan, E.A. 2017. Stress Wave Emission from Plasmonic Nanobubbles. J. Phys. D: Appl. Phys., 50, 015304.Google Scholar
[20] Carlson, M.T., Khan, A., and Richardson, H.H. 2011. Local Temperature Determination of Optically Excited Nanoparticles and Nanodots. Nano Lett., 11, 1061–1069.Google Scholar
[21] Carlson, M.T., Green, A.J., and Richardson, H.H. 2012. Superheating Water by CW Excitation of Gold Nanodots. Nano Lett., 12, 1534.Google Scholar
[22] Carome, E.F., Moeller, C.A., and Clark, N.A. 1964. Generation of Acoustic Signals in Liquids by Ruby Laser-Induced Thermal Stress Gradients. Appl. Phys. Lett., 4, 95–97.Google Scholar
[23] Carome, E.F., Moeller, C.A., and Clark, N.A. 1966. Intense Ruby-Laser-Induced Acoustic Impulses in Liquids. J. Acoust. Soc. Am., 40, 1462–1466.Google Scholar
[24] Cavicchi, R.E., Meier, D.C., Presser, C., Prabhu, V.M., and Guha, S. 2013. Single Laser Pulse Effects on Suspended-Au-Nanoparticle Size Distributions and Morphology. J. Phys. Chem. C, 117, 10866–10875.Google Scholar
[25] Chang, S.S., Shih, C.W., Chen, C.D., Lai, W.C., and Wang, C.R.C. 1999. The Shape Transition of Gold Nanorods. Langmuir, 15, 701–709.Google Scholar
[26] Chapman, S. 1912. The Kinetic Theory of a Gas Constituted of Spherically Symmetrical Molecules. Phil. Trans.R. Soc., 211, 433.Google Scholar
[27] Chen, H., and Diebold, G. 1995. Chemical Generation of Acoustic Waves: A Giant Photoacoustic Effect. Science, 270(5238), 963–966.Google Scholar
[28] Chen, Y.S., Frey, W., Kim, S., Homan, K., Kruizinga, P., Sokolov, K., and Emilianov, S. 2010. Enhanced Thermal Stability of Silica-Coated Gold Nanorods for Photoacoustic Imaging and Image-Guided Therapy. Opt. Express, 18(9), 8867-8877.Google Scholar
[29] Craig, V.S.J. 2011. Very Small Bubbles at Surfaces – The Nanobubble Puzzle. Soft Matter, 7, 40.Google Scholar
[30] Debuschewitz, C., and Köhler, W. 2001. Molecular Origin of Thermal Diffusion in Benzene + Cyclohexane Mixtures. Phys. Rev. Lett., 87(5), 055901.Google Scholar
[31] Donner, J.S., Morales-Dalmau, J., Alda, I., Marty, R., and Quidant, R. 2015. Fast and Transparent Adaptive Lens Based on Plasmonic heating. ACS Photonics, 2, 355–360.Google Scholar
[32] Doukas, A.G., and Flotte, T.J. 1996. Physical Characteristics and Biological Effects of Laser-induced Stress Waves. Ultrasound in Med. & Biol., 22(2), 151–164.Google Scholar
[33] Duhr, S., and Braun, D. 2006. WhyMolecules Move Along a Temperature Gradient. Proc. Natl. Acad. Sci.U.S.A., 103, 19678.Google Scholar
[34] Duhr, S., Arduini, S., and Braun, D. 2004. Thermophoresis of DNA Determined by Microfluidic Fluorescence. Eur. Phys.J. E, 15, 277–286.Google Scholar
[35] Egerev, S., Ermilov, S., Ovchinnikov, O., Fokin, A., Guzatov, D., Klimov, V., Kanavin, A., and Oraevsky, A. 2009. Acoustic Signals Generated by Laser- Irradiated Metal Nanoparticles. Appl. Opt., 48(7), C38–C45.Google Scholar
[36] Einstein, A. 1905. Über die von der Molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 332(8), 549–560.Google Scholar
[37] Enders, M., Mukai, S., Uwada, T., and Hashimoto, S. 2016. Plasmonic Nanofabrication through Optical Heating. J. Phys. Chem. C, 120, 6723–6732.Google Scholar
[38] Fang, Z., Zhen, Y.R., Neumann, O., Polman, A., García de Abajo, F.J., Nordlander, P., and Halas, N.J. 2013. Evolution of Light-Induced Vapor Generation at a Liquid- Immersed Metallic Nanoparticle. Nano Lett., 13, 1736–1742.Google Scholar
[39] Faraggi, E., Gerstman, B.S., and Sun, J. 2005. Biophysical Effects of Pulsed Lasers in the Retina and other Tissues Containing Strongly Absorbing Particles: Shockwave and Explosive Bubble Generation. J. Biomed. Opt., 10(6), 064029.Google Scholar
[40] Fayolle, S., Bickel, T., and Würger, A. 2008. Thermophoresis of Charged Colloidal Particles. Phys. Rev. E, 77, 041404.Google Scholar
[41] Fine, S., Klein, E., and Nowak, W. 1965. Interaction of Laser Radiation with Biological Systems. Proc. Fed. Am. Soc. Exp. Biol., 24, S35–S45.Google Scholar
[42] François, L., Mostafavi, M., Belloni, J., and Delaire, J.A. 2001. Optical Limitation Induced by Gold Clusters: Mechanism and Efficiency. Phys. Chem. Chem. Phys., 3, 4965–4971.Google Scholar
[43] Gaiduk, A., Yorulmaz, M., Ruijgrok, P.V., and Orrit, M. 2010. Room-Temperature Detection of a Single Molecule's Absorption by Photothermal Contrast. Science, 330, 353–356.Google Scholar
[44] Ge, Z., Cahill, D.G., and Braun, P.V. 2006. Thermal Conductance of Hydrophilic and Hydrophobic Interfaces. Phys. Rev. Lett., 96, 186101.Google Scholar
[45] Ghasemi, H., Ni, G., Marconnet, A.M., Loomis, J., Yerci, S., Miljkovic, N., and Chen, G. 2014. Solar Steam Generation by Heat Localization. Nature Commun., 5(4449).Google Scholar
[46] Giglio, M., and Vendramini, A. 1974. Thermal Lens Effect in a Binary Liquid Mixture: A New Effect. Appl. Phys. Lett., 25(10), 555–558.Google Scholar
[47] Giglio, M., and Vendramini, A. 1975. Thermal-Diffusion Measurements near a Consolute Critical Point. Phys. Rev. Lett., 34(10), 561–564.Google Scholar
[48] Giglio, M., and Vendramini, A. 1977. Soret-Type Motion of Macromolecules in Solution. Phys. Rev. Lett., 38(1), 26.Google Scholar
[49] González, M.G., Liu, X., Niessner, R., and Haisch, C. 2010. Strong Size-Dependent Photoacoustic Effect on Gold Nanoparticles by Laser-Induced Nanobubbles. Appl. Phys. Lett., 96, 174104.Google Scholar
[50] Guthrie, G., Wilson, J.N., and Schomaker, V. 1949. Theory of the Thermal Diffusion of Electrolytes in a Clusius Column. J. Chem. Phys., 17, 310.Google Scholar
[51] Heber, A., Selmke, M., and Cichos, F. 2015. Thermal Diffusivity Measured using a Single Plasmonic Nanoparticle. Phys. Chem. Chem. Phys., 17, 20868.Google Scholar
[52] Hleb, E.Y., and Lapotko, D.O. 2008. Photothermal Properties of Gold Nanoparticles under Exposure to High Optical Energies. Nanotechnology, 19, 355702.Google Scholar
[53] Hou, L., Yorulmaz, M., Verhart, N.R., and Orrit, M. 2015. Explosive Formation and Dynamics of Vapor Nanobubbles Around a Continuously Heated Gold Nanosphere. New.J. Phys., 17, 013050.Google Scholar
[54] Iacopini, S., and Piazza, R. 2003. Thermophoresis in Protein Solutions. Europhys. Lett., 63(2), 247–253.Google Scholar
[55] Jerabek-Willemsen, M., Wienken, C.J., Braun, D., Baaske, P., and Duhr, S. 2011. Molecular Interaction Studies using Microscale Thermophoresis. Assay Drug Dev. Technol., 9(4), 342–353.Google Scholar
[56] Kallel, H., Carminati, R., and Joulain, K. 2017. Temperature of a Nanoparticle above a Substrate under Radiative Heating and Cooling. Phys. Rev. B, 95, 115402.Google Scholar
[57] Katayama, T., Setoura, K., Werner, D., Miyasaka, H., and Hashimoto, S. 2014. Picosecond-to-Nanosecond Dynamics of Plasmonic Nanobubbles from Pump Probe Spectral Measurements of Aqueous Colloidal Gold Nanoparticles. Langmuir, 30, 9504–9513.Google Scholar
[58] Köhler, W. 1993. Thermodiffusion in Polymer Solutions as Observed by Forced Rayleigh Scattering. J. Chem. Phys., 98, 660–668.Google Scholar
[59] Köhler, W., and Rossmanith, P. 1995. Aspects of Thermal Diffusion Forced Rayleigh Scattering: Heterodyne Detection, Active Phase Tracking, and Experimental Constraints. J. Phys. Chem., 99, 5838.Google Scholar
[60] Kotaidis, V., and Plech, A. 2005. Cavitation on the Nanoscale. Appl. Phys. Lett., 87, 213102.Google Scholar
[61] Kotaidis, V., Dahmen, C., von Plessen, G., Springer, F., and Plech, A. 2006. Excitation of Nanoscale Vapor Bubbles at the Surface of Gold Nanoparticles in Water. J. Chem. Phys., 124, 184702.Google Scholar
[62] Lachaine, R., Boulais, E., and Meunier, M. 2014. From Thermo- to Plasma- Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles. ACS Photonics, 1(4), 331–336.Google Scholar
[63] Lapotko, D. 2009a. Optical Excitation and Detection of Vapor Bubbles around Plasmonic Nanoparticles. Opt. Express, 17, 2538.Google Scholar
[64] Lapotko, D. 2009b. Pulsed Photothermal Heating of the Media During Bubble Generation around Gold Nanoparticles. Int.J. Heat Mass Tran., 52, 1540–1543.Google Scholar
[65] Lauterborn, W., and Kurz, T. 2010. Physics of Bubble Oscillations. Rep. Prog. Phys., 73, 106501.Google Scholar
[66] Lee, S., Anderson, T., Zhang, H., Flotte, T.J., and Doukas, A.G. 1996. Alteration of Cell Membrane by Stress Waves in Vitro. Ultrasound in Med. & Biol., 22(9), 1285–1293.Google Scholar
[67] Lewis, L.J. 1997. Melting, Freezing, and Coalescence of Gold Nanoclusters. Phys. Rev. B, 56(4), 2248–2257.Google Scholar
[68] Lin, C.P., and Kelly, M.W. 1998. Cavitation and Acoustic Emission around Laser- Heated Microparticles. Appl. Phys. Lett., 72(22), 2800–2802.Google Scholar
[69] Lin, L., Peng, X., Wang, M., Scarabelli, L., Mao, Z., Liz-Marzán, L.M., Becker, M.F., and Zheng, Y. 2016. Light-Directed Reversible Assembly of Plasmonic Nanoparticles using Plasmon-Enhanced Thermophoresis. ACS Nano, 10, 9659. 9668.Google Scholar
[70] Link, S., Wang, Z.L., and El-Sayed, M.A. 2000. How Does a Gold Nanorod Melt?? J. Phys. Chem. B, 104(7867-7870).Google Scholar
[71] Lippok, S., Seidel, S.A.I., Duhr, S., Uhland, K., Hothoff, H.P., Jenne, D., and Braun, D. 2012. Direct Detection of Antibody Concentration and Affinity in Human Serum using Microscale Thermophoresis. Anal. Chem., 84, 3523–2530.Google Scholar
[72] Liu, B., Gong, W., Yu, B., Li, P., and Shen, S. 2017. Perfect Thermal Emission by Nanoscale Transmission Line Resonators. Nano Lett., 17(2), 666–672.Google Scholar
[73] Ljunggren, S., and Eriksson, J.C. 1997. The Lifetime of a Colloid-Sized Gas Bubble in Water and the Cause of the Hydrophobic Attraction. Colloids Surf. A, 129–130, 151–155.Google Scholar
[74] Lombard, J., Biben, T., and Merabia, S. 2014. Kinetics of Nanobubble Generation around Overheated Nanoparticles. Phys. Rev. Lett., 112, 105701.Google Scholar
[75] Lombard, J., Biben, T., and Merabia, S. 2015. Nanobubbles around Plasmonic Nanoparticles: Thermodynamic Analysis. Phys. Rev. E, 91, 043007.Google Scholar
[76] Löwen, H., and Madden, P.A. 1992. A Microscopic Mechanism for Shock- Wave Generation in Pulsed-Laser-Heated Colloidal Suspensions. J. Chem. Phys., 97(8760).Google Scholar
[77] Ludwig, C. 1856. Diffusion zwischen ungleich erwwärmten orten gleich zusammengestzter lösungen. Sitz. Ber. Akad. Wiss. Wien Math-Naturw. Kl., 20, 539.Google Scholar
[78] Ludwig, R. 2001. Water: From Clusters to the Bulk. Angew. Chem. Int. Ed., 40(10), 1808–1827.Google Scholar
[79] Lugli, F., and Zerbetto, F. 2007. An Introduction to Bubble Dynamics. Phys. Chem. Chem. Phys., 9, 2447–2456.Google Scholar
[80] Lukianova-Hleb, E., Hu, Y. and Latterini, L., Tarpani, L., Lee, S., Drezek, R.A., Hafner, J.H., and Lapotko, D.O. 2010. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles. ACS Nano, 4, 2109.Google Scholar
[81] Lukianova-Hleb, E.Y., and Lapotko, D.O. 2009. Influence of Transient Environmental Photothermal Effects on Optical Scattering by Gold Nanoparticles. Nano Lett., 9(5), 2160–2166.Google Scholar
[82] Lukianova-Hleb, E.Y., Sassaroli, E., Jones, A., and Lapotko, D.O. 2012. Transient Photothermal Spectra of Plasmonic Nanobubbles. Langmuir, 28, 4858–4866.Google Scholar
[83] Lukianova-Hleb, E.Y., Volkov, A.N., and Lapotko, D.O. 2015. Laser Pulse Duration is Critical for the Generation of Plasmonic Nanobubbles. Langmuir, 30, 7425–7434.Google Scholar
[84] Mast, C.B., and Braun, D. 2010. Thermal Trap for DNA Replication. Phys. Rev. Lett., 104, 188102.Google Scholar
[85] McEwan, K.J., and Madden, P.A. 1992. Transient Grating Effects in Absorbing colloidal suspensions. J. Chem. Phys., 97, 8748.Google Scholar
[86] Merabia, S., Keblinski, P., Joly, L., Lewis, L.J., and Barrat, J.L. 2009. Critical Heat Flux around Strongly Heated Nanoparticles. Phys. Rev. B, 79, 021404.Google Scholar
[87] Metwally, K., Mensah, S., and Baffou, G. 2015. Fluence Threshold for Photothermal Bubble Generation using Plasmonic Nanoparticles. J. Phys. Chem. C, 119, 28586. 28596.Google Scholar
[88] Muir, T.G., and Cartensen, E.L. 1980. Prediction of Nonlinear Acoustic Effects at Biomedical Frequencies and Intensities. Ultrasound in Med. & Biol., 6, 345–357.Google Scholar
[89] Neumann, O., Feronti, C., Neumann, A.D., Dong, A., Schell, K., Lu, B., Kim, E., Quinn, M., Thompson, S., Grady, N., Nordlander, P., Oden, M., and J., Halas, N. 2013a. Compact Solar Autoclave Based on Steam Generation using Broadband Light-Harvesting Nanoparticles. Proc. Natl. Acad. Sci.U.S.A., 110(29), 11677. 11681.Google Scholar
[90] Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P., and Halas, N.J. 2013b. Solar Vapor Generation Enabled by Nanoparticles. ACS Nano, 7(1), 42–49.Google Scholar
[91] Ni, G., Miljkovic, N., Ghasemi, H., Huang, X., Boriskina, S.V., Lin, C.T.,Wang, J., Xu, Y., Mahfuzur Rahman, M., Zhang, T.J., and Chen, G. 2015. Volumetric Solar Heating of Nanofluids for Direct Vapor Generation. Nano Energy, 17, 290–301.Google Scholar
[92] Ning, H., Buitenhuis, J., Dhont, J.K.G., and Wiegand, S. 2006. Thermal Diffusion Behavior of Hard-Sphere Suspensions. J. Chem. Phys., 125(20), 204911.Google Scholar
[93] Oraevsky, A.A., Karabutov, A.A., and Savateeva, E.V. 2001. Enhancement of Optoacoustic Tissue Contrast with Absorbing Nanoparticles. Proc. SPIE, 4434, 60–69.Google Scholar
[94] Petrova, H., Perez Juste, J., Pastoriza-Santos, I., Hartland, G.V., Liz-Marzán, L.M., and Mulvaney, P. 2006. On the Temperature Stability of Gold Nanorods: Comparison between Thermal and Ultrafast Laser-Induced Heating. Phys. Chem. Chem. Phys., 8, 814–821.Google Scholar
[95] Piazza, R. 2008. Thermophoresis: Moving Particles with Thermal Gradients. Soft Matter, 4, 1740–1744.Google Scholar
[96] Piazza, R., and Guarino, A. 2002. Soret Effect in Interacting Micellar Solutions. Phys. Rev. Lett., 88(20), 208302.Google Scholar
[97] Piazza, R., and Parola, A. 2008. Thermophoresis in Colloidal Suspensions. J. Phys.: Condens. Matter, 20, 153102.Google Scholar
[98] Piazza, R., Iacopini, S., and Triulzi, B. 2004. Thermophoresis as a Probe of Particle- Solvent Interactions: The Case of Protein Solutions. Phys. Chem. Chem. Phys., 6, 1616–1622.Google Scholar
[99] Platten, J.K. 2006. The Soret Effect: A Review of Recent Experimental Results. J. Appl. Mech., 73, 5–15.Google Scholar
[100] Plech, A., Kotaidis, V., Grésillon, S., Dahmen, C., and von Plessen, G. 2004. Laser- Induced Heating and Melting of Gold Nanoparticles Studied by Time-Resolved XRay Scattering. Phys. Rev. B, 70, 195423.Google Scholar
[101] Plech, A., Kotaidis, V., Lorenc, M., and Boneberg, J. 2006. Femtosecond Laser Near-Field Ablation from Gold Nanoparticles. Nature Phys., 2, 44–47.Google Scholar
[102] Polman, A. 2013. Solar Steam Nanobubbles. ACS Nano, 7(1), 15–18.Google Scholar
[103] Putnam, S.A., and Cahill, D.G. 2004. Micron-Scale Apparatus for Measurements of Thermodiffusion in Liquids. Rev. Sci. Instrum., 75(7), 2368–2372.Google Scholar
[104] Putnam, S.A., and Cahill, D.G. 2005. Transport of Nanoscale Latex Beads in a Temperature Gradient. Langmuir, 21, 5317–5323.Google Scholar
[105] Putnam, S.A., Cahill, D.G., and Wong, G.C.L. 2007. Temperature Dependence of Thermodiffusion in Aqueous Suspensions of Charged Nanoparticles. Langmuir, 23, 9221–9228.Google Scholar
[106] Reichl, M., Herzog, M., Götz, A., and Braun, D. 2014. Why Charged Molecules Move Across a Temperature Gradient: The Role of the Electric Field. Phys. Rev. Lett., 112, 198101.Google Scholar
[107] Reineck, P., Wienken, C.J., and Braun, D. 2010. Thermophoresis in Single Stranded DNA. Electrophoresis, 31, 279–286.Google Scholar
[108] Righini, M., Zelenina, A.S., Girard, C., and Quidant, R. 2007. Parallel and Selective Trapping in a Patterned Plasmonic Landscape. Nat. Phys., 3, 477.Google Scholar
[109] Ruckenstein, E. 1981. Can Phoretic Motions Be Treated as Interfacial Tension Gradient Driven Phenomena?? J. Coll. Interf. Sci., 83, 77–81.Google Scholar
[110] Rusconi, R., Isa, L., and Piazza, R. 2004. Thermal-LensingMeasurement of Particle Thermophoresis in Aqueous Dispersions. J. Opt. Soc. Am. B, 21(3), 605–616.Google Scholar
[111] Schmidt, A.J., Alper, J.D., Chiesa, M., Chen, G., Das, S.K., and Hamad-Schifferli, K. 2008. Probing the Gold Nanorod–Ligand–Solvent Interface by Plasmonic Absorption and Thermal Decay. J. Phys. Chem. C, 112, 13320.Google Scholar
[112] Seidel, S.A.I., Wienken, C.J., Geissler, S., Jerabek-Willemsen, M., Duhr, S., Reiter, A., Trauner, D., Braun, D., and Baaske, P. 2012. Label-FreeMicroscale Thermophoresis Discriminates Sites and Affinity of Protein–Ligand Binding. Angew. Chem. Int. Ed., 51, 10656–10659.Google Scholar
[113] Seidel, S.A.I., Dijkman, P.M., Lea, W.A., van den Bogaart, G., Jerabek- Willemsen, M., Lazic, A., Joseph, J.S., Srinivasan, P., Baaske, P., Simeonov, A., Katritch, I., Melo, F.A., Ladbury, J.E., Schreiber, G., Watts, A., Braun, D., and Duhr, S. 2013. Microscale Thermophoresis Quantifies Biomolecular Interactions under Previously Challenging Conditions. Methods, 59, 301–315.Google Scholar
[114] Seidel, S.A.I., Markwardt, N.A., Lanzmich, S.A., and Braun, D. 2014. Thermophoresis in Nanoliter Droplets to Quantify Aptamer Binding. Angew. Chem. Int. Ed., 53, 7948–7951.Google Scholar
[115] Setoura, K., Ito, S., and Miyasaka, H. 2017. Stationary Bubble Formation and Marangoni Convection Induced by cw Laser Heating of a Single Gold Nanoparticle. Nanoscale, 9, 719–730.Google Scholar
[116] Siems, A., Weber, S.A.L., Boneberg, J., and Plech, A. 2011. Thermodynamics of Nanosecond Nanobubble Formation at Laser-Excited Metal Nanoparticles. New J. Phys., 13, 043018.Google Scholar
[117] Soret, C. 1879. Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogène dont deux parties sont portées à des températures différentes. Arch. Sci. Phys. Nat., 2, 48–61.Google Scholar
[118] Sun, J.M., Gerstman, B.S., and Li, B. 2000. Bubble Dynamics and Shock Waves Generated by Laser Absorption of a Photoacoustic Sphere. J. Appl. Phys., 88(5), 2352–2362.Google Scholar
[119] Thormählen, I., Straub, J., and Grigull, U. 1985. Refractive Index of Water and its Dependence on Wavelength, Temperature and Density. J. Phys. Chem. Ref. Data, 14(4), 933–945.Google Scholar
[120] Tyrrell, J.W.G., and Attard, P. 2001. Images of Nanobubbles on Hydrophobic Surfaces and their Interactions. Phys. Rev. Lett., 87(17), 176104.Google Scholar
[121] Vigolo, D., Brambilla, G., and Piazza, R. 2007. Thermophoresis of Microemulsion Droplets: Size Dependence of the Soret Effect. Phys. Rev. E, 75, 040401.Google Scholar
[122] Vogel, A., and Venugopalan, V. 2003. Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem. Rev., 103, 577.Google Scholar
[123] Vogel, A., Noack, J., Hüttman, G., and Paltauf, G. 2005. Mechanisms of Femtosecond Laser Nanosurgery of Cells and Tissues. Appl. Phys. B, 81, 1015.Google Scholar
[124] Volkov, A.N., Sevilla, C., and Zhigilei, L.V. 2007. Numerical Modeling of Short Pulse Laser Interaction with Au Nanoparticle Surrounded byWater. Appl. Surf. Sci., 253, 6394.Google Scholar
[125] Wang, Y., Zaytsev, M.E., Le The, H., ECornelis Titus Eikel, J., Zandvliet, H.J.W., Zhang, X., and Lohse, D. 2017. Vapor and Gas Bubble Growth Dynamics around Laser-Irradiated Water-Immersed Plasmonic Nanoparticles. ACS Nano, 11(2), 2045–2051.Google Scholar
[126] Wiegand, S. 2004. Thermal Diffusion in Liquid Mixtures and Polymer Solutions. J. Phys.: Condens. Matter.
[127] Wienken, C.J., Baaske, P., Rothbauer, U., Braun, D., and Duhr, S. 2010. Protein- Binding Assays in Biological Liquids using Microscale Thermophoresis. Nature Commun., 1, 100.Google Scholar
[128] Würger, A. 2008. Transport of Charged Colloids Driven by Thermoelectricity. Phys. Rev. Lett., 101, 108302.Google Scholar
[129] Würger, A. 2010. Thermal Non-Equilibrium Transport in Colloids. Rep. Prog. Phys., 73(12), 126601.Google Scholar
[130] Würger, A. 2016. Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids. Phys. Rev. Lett., 116, 138302.Google Scholar
[131] Zhao, C., Liu, Y., Zhao, Y., Fang, N., and Huang, T.J. 2013. A Reconfigurable Plasmofluidic Lens. Nature Commun., 4, 2305.Google Scholar
[132] Zielinski, M.S., Choi, J.W., La Grange, T., Modestino, M., Hashemi, S.M.H., Pu, Y., Birkhold, S., Hubbell, J.A., and Psaltis, D. 2016. Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation. Nano Lett., 16, 2159–2167.Google Scholar
[133] Zijlstra, P., Chon, J.W.M., and Gu, M. 2009. White Light Scattering Spectroscopy and Electron Microscopy of Laser Induced Melting in Single Gold Nanorods. Phys. Chem. Chem. Phys., 11, 5915–5921.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×