Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T19:36:19.388Z Has data issue: false hasContentIssue false

6 - Applications

Published online by Cambridge University Press:  26 October 2017

Guillaume Baffou
Affiliation:
Institut Fresnel, CNRS, University of Aix-Marseille
Get access

Summary

This chapter is intended to present all the applications based on the use of metal nanoparticles as nanosources of heat, namely protein denaturation, photothermal cancer therapy, drug and gene delivery, heat-assisted magnetic recording, photoacoustic imaging, plasmonic-induced nanochemistry, photothermal imaging, solar steam generation generation and single living cell experiments. For each application, particular attention will be paid to (i) the pioneering works and how the thematics were born, (ii) the subsequent pivotal works that introduced the variants and new concepts and (iii) the current state of the art and remaining challenges. For each application, I shall also adopt a chronological, story-like description, and occasionally propose various reading templates (chronological, experimental, theoretical, …), even if it yields redundancy.

Protein Denaturation: The Very First Application of Thermoplasmonics (1999)

Although one usually presents photothermal cancer therapy (2003) and photothermal imaging (2002) as the two very first applications of thermoplasmonics, there exists a pioneer article published in 1999 by Hüttmann and Birngruber [87]. This work benefited from the photothermal effects of gold nanoparticles and I believe this work can be considered as the very first article reporting on an application of thermoplasmonics. This is the reason why I dedicate a full section to this article, although protein denaturation cannot be considered as an important application of thermoplasmonics today. The last section of this chapter, dedicated to the application in biology, will be the occasion to recall this work.

The idea of this article was to study the thermal-induced denaturation of proteins using a pulsed laser to heat gold nanoparticles. At that time, the authors already understood that the temporal and spatial confinement achieved when heating nanoparticles with a subnanosecond laser could help achieve temperature as high as 470 K without boiling. The authors evidenced the denaturation of chymotrypsin proteins within 300 ps at temperatures below 380 K. This work was carried out in the context of photothermal treatment of vessels or pigmented cells.

At that time, I do not think the authors realized that most of the problems they raised in this article were about to be the subject of a large number of forthcoming articles. The authors also made correct predictions, for instance when saying: “It is expected that only solid-state absorbing particles (e.g., metal spheres, melanin, graphite, or iron oxide particles) can be used as such an energy acceptor for thermal microeffects.

Type
Chapter
Information
Thermoplasmonics
Heating Metal Nanoparticles Using Light
, pp. 223 - 281
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] 2013. Seagate Press Release. Seagate To Demo Its Revolutionary Heat Assisted Magnetic Recording Storage Technology At CEATEC 2013. http://www.seagate.com/about/newsroom/press-releases/HMR-demo-ceatec-2013-pr-master/.
[2] 2013. WD Press Release. WD Demonstrates Heat Assisted Magnetic Recording Hard Drive Technology at 2013 China (Ningbo) International Forum on Advanced Materials and Commercialization.
[3] apps.webofknowledge.com, 2016.
[4] Absil, E., Tessier, G., Gross, M., Atlan, M., Warnasooriya, N., Suck, S., Coppey- Moisan, M., and Fournier, D. 2010. Photothermal Heterodyne Holography of Gold Nanoparticles. Opt. Express, 18, 780–786.Google Scholar
[5] Adleman, J.R., Boyd, D.A., Goodwin, D.G., and Psaltis, D. 2009. Heterogenous Catalysis Mediated by Plasmon Heating. Nano Lett., 9(12), 4417–4423.Google Scholar
[6] Agarwal, A., Huang, S.W., O'Donnell, M., Day, K.C., Day, M., Kotov, N., and Ashkenazi, S. 2007. Targeted Gold Nanorod Contrast Agent for Prostate Cancer Detection by Photoacoustic Imaging. J. Appl. Phys., 102, 064701.Google Scholar
[7] Anderson, L.J.E., Hansen, E., Lukianova-Hleb, E.Y., Hafner, J.H., and Lapotko, D.O. 2010. Optically Guided Controlled Release from Liposomes with Tunable Plasmonic Nanobubbles. J. Control. Release, 144, 151–158.Google Scholar
[8] Arnfield, M.R., Mathew, R.P., Tulip, J., and McPhee, M.S. 1992. Analysis of Tissue Optical Coefficients Using an Approximate Equation Valid for comparable absorption and scattering. Phys. Med. Biol., 37, 1219.Google Scholar
[9] Atlan, M., Gross, M., Desbiolles, P., Absil, E., Tessier, G., and Coppey-Moisan, M. 2008. Heterodyne Holographic Microscopy of Gold Particles. Opt. Lett., 33, 500–502.Google Scholar
[10] Ba, H., Rodríguez-Fernández, J., Stefani, F.D., and Feldmann, J. 2010. Immobilization of Gold Nanoparticles on Living Cell Membranes upon Controlled Lipid Binding. Nano Lett., 10, 3006–3012.Google Scholar
[11] Baffou, G., and Quidant, R. 2013. Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat. Laser & Photon. Rev., 7(2), 171–187.Google Scholar
[12] Baffou, G., and Quidant, R. 2014. Nanoplasmonics for Chemistry. Chem. Soc. Rev., 43, 3898–3907.Google Scholar
[13] Baffou, G., Rigneault, H.,Marguet, D., and Jullien, L. 2014a. A Critque of Methods for Temperature Imaging in Single Cells. Nature Methods, 11, 899–901.Google Scholar
[14] Baffou, G., Polleux, J., Rigneault, H., and Monneret, S. 2014b. Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination. J. Phys. Chem. C, 118, 4890.Google Scholar
[15] Baffou, G., Rigneault, H., Marguet, D., and Jullien, L. 2015. Reply to: “Validating Subcellular Thermal Changes Revealed by Fluorescent Thermosensors” and “The 105 Gap Issue Between Calculation and Measurement in Single-Cell Thermometry.”? Nature Methods, 12, 803.Google Scholar
[16] Bahadori, A., Oddershede, L.B., and Bendix, P.M. 2017. Hot-Nanoparticle- Mediated Fusion of Selected Cells. Nano Research, doi: 10.1007/s12274–016– 1392–3.CrossRef
[17] Bao, C, Beziere, N, del Pino, P, Pelaz, B, Estrada, G, Tian, F.R., Ntziachristos, V., de la Fuente, J.M., and Cui, D.X. 2013. Gold Nanoprisms as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Gastrointestinal Cancers. Small, 9(1), 68–74.Google Scholar
[18] Barreto, J.A., O'Malley, W., Kubeil, M., Graham, B., and Stephan, H. 2011. Nanomaterials: Applications in Cancer Imaging and Therapy. Adv. Mater., 23, H18–H40.Google Scholar
[19] Bäuerle, D., Irsigler, P., Leyendecker, G., Noll, H., and Wagner, D. 1982. Ar+ Laser Induced Chemical Vapor Deposition of Si from SiH4. Appl. Phys. Lett., 40, 819–821.Google Scholar
[20] Bendix, P.M., Reihani, S.N.S., and Oddershede, L.B. 2010. Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256.Google Scholar
[21] Berciaud, S., Cognet, L., Blab, G.A., and Lounis, B. 2004. Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals. Phys. Rev. Lett., 93, 257402.Google Scholar
[22] Berciaud, S., Cognet, L., and Lounis, B. 2005. Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals. Nano Lett., 5(11), 2160–2163.Google Scholar
[23] Berciaud, S., Lasne, D., Blab, G.A., Cognet, L., and Lounis, B. 2006. Photothermal Heterodyne Imaging of Individual Metallic Nanoparticles: Theory Versus Experiment. Phys. Rev. B, 73, 045424.Google Scholar
[24] Berciaud, S., Cognet, L., Poulin, P., Weisman, R.B., and Lounis, B. 2007. Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes. Nano Lett., 7(5), 1203–1207.Google Scholar
[25] Betzig, E., Trautman, J.K., Wolfe, R., Gyorgy, E.M., Finn, P.L., Kryder, M.H., and Chang, C.H. 1992. Near-Field Magneto-Optics and High Density Data Storage. Appl. Phys. Lett., 61, 142–144.Google Scholar
[26] Boccara, A.C., Fournier, D., and Badoz, J. 1980. Thermooptical Spectroscopy: Detection by the “Mirage Effect.”? Appl. Phys. Lett., 36, 130–132.Google Scholar
[27] Boisselier, E., and Astruc, D. 2009. Gold Nanoparticles in Nanomedicine: Preparations, Imaging, Diagnostics, Therapies and Toxicity. Chem. Soc. Rev., 38, 1759–1782.Google Scholar
[28] Bora, T., Zoepfl, D., and Dutta, J. 2016. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods. Sci. Rep., 6, 26913.Google Scholar
[29] Boyd, D.A., Greengard, L., Brongersma, M., El-Naggar, M.Y., and Goodwin, D.G. 2006. Plasmon-Assisted Chemical Vapor Deposition. Nanolett., 6(11), 2592–2597.Google Scholar
[30] Boyer, D., Tamarat, P., Maali, A., Lounis, B., and Orrit, M. 2002. Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers. Science, 297, 1160.Google Scholar
[31] Cao, L., Barsic, D.N., Guichard, A.R., and Brongersma, M.L. 2007. Plasmon- Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes. Nano Lett., 7(11), 3523–3527.Google Scholar
[32] Carregal-Romero, S., Ochs, M., Rivera-Gil, P., Ganas, C., Pavlov, A.M., Sukhorukov, G.B., and Parak, W.J. 2012. NIR-Light Triggered Delivery of Macromolecules into the Cytosol. J. Control. Release, 159, 120–127.Google Scholar
[33] Challener, W.A., McDaniel, T.W., Mihalcea, C.D., Mountfield, K.R., Pehlos, K., and Sendur, I.K. 2003. Light Delivery Techniques for Heat-Assisted Magnetic Recording. Jpn.J. Appl. Phys., 42, 981–988.Google Scholar
[34] Challener, W.A., Peng, C., Itagi, A.V., Karns, D., Peng, W., Peng, Y., Yang, X.M., Zhu, X., Gokemeijer, N.J., Hsia, Y.-T., Ju, G., Rottmayer, R.E., Seigler, M.A., and Gage, E.C. 2009. Heat-Assisted Magnetic Recording by a Near-Field Transducer with Efficient Optical Energy Transfer. Nat. Photon., 3, 220–224.Google Scholar
[35] Chamberland, D.L., Agarwal, A., Kotov, N., Fowlkes, J.B., Carson, P.L., and Wang, X. 2008. Photoacoustic Tomograph of Joints Aided by an Etanercept- Conjugated Gold Nanoparticle Contrast Agent – an ex vivo Preliminary Rat Study. Nanotechnology, 19, 095101.Google Scholar
[36] Chen, C.C., Lin, Y.P., and Wang, C.W. 2006. DNA-Gold Nanorod Conjuates for Remote Control of Localized Gene Expression by Near Infrared Irradiation. J. Am. Chem. Soc., 11(3709–3715).Google Scholar
[37] Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., Li, Z.Y., Zhang, H., Xia, Y., and Li, X. 2007. Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells. Nano Lett., 7(5), 1318–1322.Google Scholar
[38] Chen, J., Glaus, C., Laforest, R., Zhang, Q., Yang, M., Gidding, M., Welch, M.J., and Xia, Y. 2010a. Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small, 6(7), 811.Google Scholar
[39] Chen, X., Zhu, H.Y., Zhao, J.C., Zheng, Z.F., and Gao, X.P. 2008. Visible-Light- Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angew. Chem. Int. Ed., 47, 5353–5356.Google Scholar
[40] Chen, Y.S., Frey, W., Kim, S., Homan, K., Kruizinga, P., Sokolov, K., and Emilianov, S. 2010b. Enhanced Thermal Stability of Silica-Coated Gold Nanorods for Photoacoustic Imaging and Image-Guided Therapy. Opt. Express, 18(9), 8867–8877.Google Scholar
[41] Chen, Y.S., Frey, W., Kim, S., Kruizinga, P., Homan, K., and Emilianov, S.Y. 2011. Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers. Nano Lett., 11(2), 348–354.Google Scholar
[42] Cheng, K., Kothapalli, S.R., Liu, H., Leen Koh, A., Jokerst, J.V., Jiang, H., Yang, M., Li, J., Levi, J.,Wu, J.C., Gambhir, S.S., and Cheng, Z. 2014. Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects. J. Am. Chem. Soc., 136, 3560–3571.Google Scholar
[43] Cheng, Y., Samia, A.C., Meyers, J.D., Panagopoulos, I., Fei, B., and Burda, C. 2008. Highly Efficient Drug Delivery with Gold Nanoparticle Vectors for in Vivo Photodynamic Therapy of Cancer. J. Am. Chem. Soc., 130, 10643–10647.Google Scholar
[44] Cherukuri, P., Glazer, E.S., and Curley, S.A. 2010. Targeted Hyperthermia Using Metal Nanoparticles. Adv. Drug Deliv. Rev., 62, 339–345.Google Scholar
[45] Cho, A. 2003. Connecting the Dots to Custom Catalysts. Science, 299(5613), 1684-1685.Google Scholar
[46] Choi, C.H.J., Alabi, C.A., Webster, P., and Davis, M.E. 2010. Mechanism of Active Targeting in Solid Tumors with Transferrin-Containing Gold Nanoparticles. Proc. Natl. Acad. Sci.U.S.A., 107(3), 1235–1240.Google Scholar
[47] Christopher, P., Ingram, D.B., and Linic, S. 2010. Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons. J. Phys. Chem. C, 114, 9173–9177.Google Scholar
[48] Christopher, P., Xin, H., and Linic, S. 2011. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nature Chem., 3, 467–472.Google Scholar
[49] Cognet, L., Tardin, C., Boyer, D., Choquet, D., Tamarat, P., and Lounis, B. 2003. Single Metallic Nanoparticle Imaging for Protein Detection in Cells. Proc. Natl. Acad. Sci.U.S.A., 100, 11350–11355.Google Scholar
[50] Cognet, L., Berciaud, S., Lasne, D., and Lounis, B. 2008. Photothermal Methods for Single Nonluminescent Nano-Objects. Anal. Chem., 80(7), 2288–2294.Google Scholar
[51] Copland, J.A., Eghtedari, M., Popov, V.L., Kotov, N., Mamedova, N., Motamedi, M., and Oraevsky, A. 2004. Bioconjugated Gold Nanoparticles as a Molecular Based Contrast Agent: Implications for Imaging of Deep Tumors Using Optoacoustic Tomography. Mol. Imaging Biol., 6(5), 341–349.Google Scholar
[52] Crozier, K.B., Sundaramuerthy, A., Kino, G.S., and Quate, C.F. 1993. Surface Enhancement of Local Optical Fields and the Lightning-Rod Effect. Quantum Electron, 23, 435–440.Google Scholar
[53] Day, E.C., Thompson, P. A, Zhang, L., Lewinski, N.A., Ahmed, N., Drezek, R.A., Blaney, S.M., and West, J.L. 2011. Nanoshell-Mediated Photothermal Therapy Improves Survival in a Murine Glioma Model. J. Neuro-Oncol., 104(1), 55–63.Google Scholar
[54] Delcea, M, Sternberg, N., Yashchenok, A.M., Georgieva, R., Bäumler, H., Möhwald, H., and Skirtach, A.G. 2012. Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells. ACS Nano, 6(5), 4169–4180.Google Scholar
[55] Dickerson, E.B., Dreaden, E.C., Huang, X., El-Sayed, I.H., Chu, H., Pushpanketh, S., McDonald, J.F., and El-Sayed, M.A. 2008. Gold Nanorod Assisted Near- Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinoma in Mice. Cancer Letters, 269, 57–66.Google Scholar
[56] Ding, T.X., Hou, L., van der Meer, H., Alivisatos, A.P., and Orrit, M. 2016. Hundreds-fold Sensitivity Enhancement of Photothermal Microscopy in Near- Critical Xenon. J. Phys. Chem. Lett., 7, 2524–2529.Google Scholar
[57] Doane, T.L., and Burda, C. 2012. The Unique Role of Nanoparticles in Nanomedicine: Imaging, Drug Delivery and Therapy. Chem. Soc. Rev., 41, 2885. 2911.Google Scholar
[58] Dou, Y., Zhigilei, L.V., Winograd, N., and Garrison, B.J. 2001. Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description. J. Phys. Chem. A, 105, 2748–2755.Google Scholar
[59] Dykman, L., and Khlebtsov, N. 2012. Gold Nanoparticles in Biomedical Applications: Recent Advances and Perspectives. Chem. Soc. Rev., 41, 2256–2282.Google Scholar
[60] Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., and Wolff, P.A. 1997. Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays. Nature, 391, 667–669.Google Scholar
[61] Eghtedari, M., Oraevsky, A., Copland, J.A., Kotov, N.A., Conjusteau, A., and Motamedi, M. 2007. High Intensity of in vivo Detection of Gold Nanorods using a Laser Optoacoustic Imaging System. Nano Lett., 7(7), 1914–1918.Google Scholar
[62] Eghtedari, M.A., Copland, J.A., Popov, V.L., Kotov, N.A., Motamedi, M., and Oraevsky, A.A. 2003. Bioconjugated Gold Nanoparticles as a Contrast Agent for Optoacoustic Detection of Small Tumors. Proc. SPIE, 4960, 76–85.Google Scholar
[63] El-Sayed, I.H., Huang, X., and El-Sayed, M.A. 2006. Selective Laser Photo- Thermal Therapy of Epithelial Carcinoma Using anti-EGFR Antibody Conjugate Gold Nanoparticles. Cancer Letters, 239, 129–135.Google Scholar
[64] Fasciani, C., BuenoAlejo, C.J., Grenier, M., Netto-Ferreira, J.C., and Scaiano, J.C. 2011. High-Temperature Organic Reactions at Room Temperature Using Plasmon Excitation: Decomposition of Dicumyl Peroxide. Org. Lett., 2, 204–207.Google Scholar
[65] Fedoruk, M., Meixner, M., Carretero-Palacios, S., Lohmüller, T., and Feldmann, J. 2013. Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles. ACS Nano, 7, 7648–7653.Google Scholar
[66] Field, S.B., and Bleehen, N.M. 1979. Hyperthermia in the Treatment of Cancer. Cancer Treat. Rev., 6, 63–94.Google Scholar
[67] Fisher, J.W., Sarkar, S., Buchanan, C.F., Szot, C.S., Whitney, J., Hatcher, H.C., Torti, S.V., Rylander, C.G., and Rylander, M.N. 2010. Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes After Laser Irradiation. Cancer Res., 70(23), 9855–9864.Google Scholar
[68] Fournier, D., Lepoutre, F., and Boccara, A. 1983. Tomographic Approach for Photothermal Imaging Using the Mirage Effect. J. Phys. Coll., 44, C6–479–C6–482.Google Scholar
[69] Gaiduk, A., Ruijgrok, P.V., Yorulmaz, M., and Orrit, M. 2010a. Detection Limits in Photothermal Microscopy. Chem. Sci., 1, 343.Google Scholar
[70] Gaiduk, A., Yorulmaz, M., Ruijgrok, P.V., and Orrit, M. 2010b. Room-Temperature Detection of a Single Molecule's Absorption by Photothermal Contrast. Science, 330, 353–356.Google Scholar
[71] Ghosh, P., Han, G., De, M., Kim, C.K., and Rotello, V.M. 2008. Gold Nanoparticles in Delivery Applications. Adv. Drug Deliv. Rev., 60, 1307–1315.Google Scholar
[72] Gleyzes, P., Boccara, A.C., and Saint-Jalmes, H. 1997. Multichannel Nomarski Microscope with Polarization Modulation: Performance and Applications. Opt. Lett., 22(20), 1529–1531.Google Scholar
[73] Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., and West, J.L. 2007. Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy. Nano Lett., 7(7), 1929–1934.Google Scholar
[74] Gu, Frank X., Karnik, Rohit, Wang, Andrew Z., Alexis, Frank, Levy-Nissenbaum, Etgar, Hong, Seungpyo, Langer, Robert S., and Farokhzad, Omid C. 2007. Targeted Nanoparticles for Cancer Therapy. Nano Today, 2(3), 14.Google Scholar
[75] Hahn, M.A., Singh, A.K., Sharma, P., Brown, S.C., and Moudgil, B.M. 2011. Nanoparticles as Contrast Agents for in-vivo Bioimaging: Current Status and Future Perspectives. Anal. Bioanal. Chem., 399, 3–27.Google Scholar
[76] Hamann, H.F., Martin, Y.C., and Wickramasinghe, H.K. 2004. Thermally Assisted Recording Beyond Traditional Limits. Appl. Phys. Lett., 84, 810.Google Scholar
[77] Harada, M., Iwamoto, K., Kitamori, T., and Sawada, T. 1993. Photothermal Microscopy with Excitation and Probe Beams Coaxial under the Microscope and its Application to Microparticle Analysis. Anal. Chem., 65, 2938–2940.Google Scholar
[78] Haruta, M., Kobayashi, T., Sano, H., and Yamada, N. 1987. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0◦C. Chem. Lett., 16(2), 405–408.Google Scholar
[79] Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., and West, J.L. 2003. Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci.U.S.A., 100(23), 13549–13554.Google Scholar
[80] Hrelescu, C., Stehr, L., Ringler, M., Sperling, R.A., Parak, W.J., Klar, T.A., and Feldmann, J. 2010. DNA Melting in Gold Nanostove Clusters. J. Phys. Chem. C, 114, 7401–7411.Google Scholar
[81] Hsuan Hung, W., Hsu, I.K., Bushmaker, A., Kumar, R., Theiss, J., and Cronin, S.B. 2008. Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition. Nanolett., 8(10), 3278–3282.Google Scholar
[82] Hsun Hung, W., Aykol, M., Valley, D., Hou, W., and Cronin, S.B. 2010. Plasmon Resonant Enhancement of Carbon Monoxide Catalysis. Nanolett., 10, 1314–1318.Google Scholar
[83] Huang, X., El-Sayed, I.H., Qian, W., and El-Sayed, M.A. 2006a. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc., 128(6), 2115.Google Scholar
[84] Huang, X., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A. 2006b. Determination of the Minimum Temperature Required for Selective Phothtermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochemistry and photobiology, 82, 412–417.Google Scholar
[85] Huang, X., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A. 2008. Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles. Laser Med. Sci., 23, 217–228.Google Scholar
[86] Huang, X.H., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A. 2007. Gold Nanoparticles: Interesting Optical Properties and Recent Applications in Cancer Diagnostic and Therapy. Nanomedecine, 2(5), 681–693.Google Scholar
[87] Hüttmann, G., and Birngruber, R. 1999. On the Possibility of High-Precision Photothermal Microeffects and the Measurement of Fast Thermal Denaturation of Proteins. IEEE J. Sel. Top. Quant., 5(4), 954–962.Google Scholar
[88] Hwang, D.J., Ryu, S.G., and Grigoropoulos, C.P. 2011. Multi-Parametric Growth of Silicon Nanowires in a Single Platform by Laser-Induced Localized Heat Sources. Nanotechnology, 22, 385303.Google Scholar
[89] Iwaki, M., Iwane, A.H., Ikezaki, K., and Yanagida, T. 2015. Local Heat Activation of Single Myosins Based on Optical Trapping of Gold Nanoparticles. Nano Lett., 15, 2456–2461.Google Scholar
[90] Jackson, W.B., Amer, N.M., Boccara, A.C., and Fournier, D. 1981. Photothermal Deflection Spectroscopy and Detection. Appl. Opt., 20(8), 1333–1344.Google Scholar
[91] Jain, P.K., Qian, W., and El-Sayed, M.A. 2006. Ultrafast Cooling of Photoexcited Electrons in Gold Nanoparticle-Thiolated DNA Conjugates Involves the Dissociation of the Gold-Thiol Bond. J. Am. Chem. Soc., 128(7), 2426–2433.Google Scholar
[92] Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A. 2007a. Au Nanoparticles Target Cancer. Nano Today, 2(1), 18.Google Scholar
[93] Jain, P.K., Huang, X., El-Sayed, I.H., and El-Sayed, M.A. 2007b. Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and their Applications to Biosystems. Plasmonics, 2(3), 107–118.Google Scholar
[94] Jain, P.K., Huang, X., El-Sayed, I.H., and A., M. 2008. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res., 41(12), 1578–1586.Google Scholar
[95] Jaque, D., Martinez Maestro, L., del Rosal, B., Haro-González, P., Benayas, A., Plaza, J.L., MartínRodriguez, E., and García Solé, J. 2014. Nanoparticles for Photothermal Therapies. Nanoscale, 6, 9494–9530.Google Scholar
[96] Jaramillo, T.F., Baeck, S.H., Roldan Cuenya, B., and McFarland, E.W. 2003. Catalytic Activity of Supported Au Nanoparticles Deposited from Block Copolymer Micelles. J. Am. Chem. Soc., 125, 7148–7149.Google Scholar
[97] Ji, X., Shao, R., Elliott, A.M., Stafford, J., Esparza-Coss, E., Bankson, J.A., Liang, G., Luo, Z.P., Park, K., Markert, J.T., and Li, C. 2007. Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide–Silica Core Suitable for Both MR Imaging and Photothermal Therapy. J. Phys. Chem. C, 111, 6245–6251.Google Scholar
[98] Kasiraj, P., Robertson, N.L., and Wickramasinghe, H.K. 2002. Thermally-Assisted Magnetic Recording System with Head Having Resistive Heater in Write Gap . US Patent 6,493,183 B1.
[99] Kharlamov, A.N., Tyurnina, A.E., Veselova, V.S., Kovtun, O.P., Shur, V.Y., and Gabinsky, J.L. 2015. Silica-Gold Nanoparticles for Atheroprotective Management of Plaques: Results of the NANOM-FIM Trial. Nanoscale, 7, 8003–8015.Google Scholar
[100] Kim, C., Cho, E.C., Chen, J., Song, K.H., Au, L., Favazza, C., Zhang, Q., Cobley, C.M., Gao, F., Xia, Y., and Wang, L.V. 2010. In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages. ACS Nano, 4, 4559–4564.Google Scholar
[101] Kim, K., Huang, S.W., Ashkenazi, S., O'Donnell, M., Agarwal, A., and Kotov, N.A. and. 2007. Photoacoustic Imaging of Early Inflammatory Response Using Gold Nanorods. Appl. Phys. Lett., 90, 223901.Google Scholar
[102] Kirpotin, D.B., Drummond, D.C., Shao, Y., Shalaby, M.R., Hong, K., Nielsen, U.B., Marks, J.D., Benz, C.C., and Park, J.W. 2006. Antibody Targeting of Long- Circulating Lipidic Nanoparticles does not Increase Tumor Localization but Does Increase Internalization in Animal Models. Cancer Res., 66(13), 6732–6740.Google Scholar
[103] Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.-T., and Erden, M.F. 2008. Heat Assisted Magnetic Recording. Proc. IEEE, 96, 1810–1835.Google Scholar
[104] Kyrsting, A., Bendix, P.M., Stamou, D.G., and Oddershede, L.B. 2011. Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release. Nano Lett., 11, 888–892.Google Scholar
[105] Lal, S., Clare, S.E., and Halas, N.J. 2008. Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact. Acc. Chem. Res., 41, 1842.Google Scholar
[106] Lalisse, A., Tessier, G., Plain, J., and Baffou, G. 2016. Plasmonic Efficiencies of Nanoparticles Made of Metal Nitrides (TiN, ZrN) Compared with Gold. Sci. Rep., 6, 38647.Google Scholar
[107] Lapotko, D. 2011. Plasmonic Nanobubbles as Tunable Cellular Probes for Cancer Theranostics. Cancers, 3(1), 802–840.Google Scholar
[108] Lasne, D., Blab, G.A., Berciaud, S., Heine, M., Groc, L., Choquet, D., Cognet, L., and Lounis, B. 2006. Single Nanoparticle Photothermal Tracking (SNaPT) of 5-nm Gold Beads in Live Cells. Biophys.J., 91, 4598–4604.Google Scholar
[109] Lasne, D., Blab, G.A., De Giorgi, F., Ichas, F., Lounis, B., and Cognet, L. 2007. Label-Free Optical Imaging of Mitochondria in Live Cells. Opt. Express, 15(21), 14184–14193.Google Scholar
[110] Lehmann, O., and Stuke, M. 1995. Laser-Driven Movement of Three-Dimensional Microstructures Generated by Laser Rapid Prototyping. Science, 270, 1644–1646.Google Scholar
[111] Leung, S.J., Kachur, X.M., Bobnick, M.C., and Romanowski, M. 2011. Wavelength-Selective Light-Induced Release from Plasmon Resonant Liposomes. Adv. Funct. Mater., 21, 1113–1121.Google Scholar
[112] Lévy, R., Shaheen, U., Cesbron, Y., and Sée, V. 2010. Gold Nanoparticles Delivery in Mammalian Live Cells: a Critical Review. Nano Reviews, 1, 4889.Google Scholar
[113] Li, M., Lohmüller, T., and Feldmann, J. 2015. Optical Injection of Gold Nanoparticles into Living Cells. Nano Lett., 15, 770–775.Google Scholar
[114] Li, W., and Chen, X. 2015. Gold Nanoparticles for Photoacoustic Imaging. Nanomedicine, 10(2), 299–320.Google Scholar
[115] Li, W., Brown, P.K., Wang, L.V., and Xia, Y. 2011. Gold Nanocages as Contrast Agents for Photoacoustic Imaging. Contrast Media Mol. Imaging, 6, 370–377.Google Scholar
[116] Lim, Z.Z.J., Li, J.E.J., Ng, C.T., Yung, L.Y.L., and Bay, B.H. 2011. Gold Nanoparticles in Cancer Therapy. Acta Pharmacol. Sin., 32, 983–990.Google Scholar
[117] Lin, C.P., and Kelly, M.W. 1998. Cavitation and Acoustic Emission around Laser- Heated Microparticles. Appl. Phys. Lett., 72(22), 2800–2802.Google Scholar
[118] Lin, C.P., Kelly, M.W., Sibayan, S.A.B., Latina, M.A., and Anderson, R.R. 1999. Selective Cell Killing by Microparticle Absorption of Pulsed Laser Radiation. IEEE J. Sel. Top. Quant., 5, 963–968.Google Scholar
[119] Long, M.E., Swofford, R.L., and Albrecht, A.C. 1976. Thermal Lens Technique: A New Method of Absorption. Science, 191, 183–185.Google Scholar
[120] Loo, C., Lowery, A., Halas, N., West, J., and Drezek, R. 2005. Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Lett., 5(4), 709–711.Google Scholar
[121] Lu, W., Xiong, C., Zhang, G., Huang, Q., Zhang, R., Zhang, J.Z., and Li, C. 2009. Targeted Photothermal Ablation of Murine Melanomas with Melanocyte- Stimulating Hormone Analog – Conjugated Hollow Gold Nanospheres. Clin. Cancer Res., 15(3), 876–886.Google Scholar
[122] Lu, W., Kumar Singh, A., Afrin Khan, S., Senapati, D., Yu, H., and Chandra Ray, P. 2010. Gold Nano-Popcorn-Based Targeted Diagnosis, Nanotherapy Treatment, and In Situ Monitoring of Photothermal Therapy Response of Prostate Cancer Cells Using Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc., 132(51), 18103-18114.Google Scholar
[123] Lukianova-Hleb, E., Ren, X., Townley, D.,Wu, X., Kupferman, M.E., and Lapotko, D.O. 2012. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors. Theranostics, 2(10), 976–987.Google Scholar
[124] Maier-Hauff, K., Rothe, R., Scholz, R., Gneveckow, U., Wust, P., Thiesen, B., Freussner, Annelie, von Deimling, Andreas, Waldoefner, N., Felix, R., and Jordan, A. 2007. Intracranial Thermotherapy Using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme. J. Neuro-Oncol., 81, 53.Google Scholar
[125] Mallidi, S., Larson, T., Aaron, J., Sokolov, K., and Emelianov, S. 2007. Molecular Specific Optoacoustic Imaging with Plasmonic Nanoparticles. Opt. Express, 15, 6583.Google Scholar
[126] Mallidi, S.T., Larson Tam, J., Joshi, P.P., Karpiouk, A., Sokolov, K., and Emelianov, S. 2009. Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer. Nano Lett., 9(8), 2825.Google Scholar
[127] Matsumoto, T., Shimano, T., Saga, H., Sukeda, H., and Kiguchi, M. 2004. Highly Efficient Probe with a Wedge-Shaped Metallic Plate for High Density Near-Field Optical Recording. Appl. Phys. Lett., 95(8), 3901–3906.Google Scholar
[128] Matsumoto, T., Anzai, Y., Shintani, T., Nakamura, K., and Nishida, T. 2006. Writing 40 nm Marks by Using a Beaked Metallic Plate Near-Field Optical Probe. Opt. Lett., 31(2), 259–261.Google Scholar
[129] Matsumoto, T., Nakamura, K., Nishida, T., Hieda, H., Kikitsu, A., Naito, K., and Koda, T. 2008. Thermally Assisted Magnetic Recording on a Bit-Patterned Medium by Using a Near-Field Optical Head with a Beaked Metallic Plate. Appl. Phys. Lett., 93, 031108.Google Scholar
[130] McDaniel, T.W. 2005. Ultimate Limits of Thermally Assisted Magnetic Recording. J. Phys.: Condens. Matter, 17, R315–R332.Google Scholar
[131] McLaughlan, J.R., Roy, R.A., Ju, H., and Murray, T.W. 2010. Ultrasonic Enhancement of Photoacoustic Emissions by Nanoparticle-Targeted Cavitation. Opt. Lett., 35(13), 2127–2129.Google Scholar
[132] Melancon, M.P., Lu, W., Yang, Z., Zhang, R., Cheng, Z., Elliot, A.M., Stafford, J., Olson, T., Zhang, J.Z., and Li, C. 2008. In Vitro and In Vivo Targeting of Hollow Gold Nanoshells Directed at Epidermal Growth Factor Receptor for Photothermal Ablation Therapy. Mol. Cancer Ther., 7(6), 1730–1739.Google Scholar
[133] Miyazaki, J., Tsurui, H., Kawasumi, K., and Kobayashi, T. 2014. Optimal Detection Angle in sub-Diffraction Resolution Photothermal Microscopy: Application for High Sensitivity Imaging of Biological Tissues. Opt. Express, 22(16), 18833–18842.Google Scholar
[134] Nam, J., Won, N., Jin, H., Chung, H., and Kim, S. 2009. pH-Induced Aggregation of Gold Nanoparticles for Photothermal Cancer Therapy. J. Am. Chem. Soc., 131(38), 13639.Google Scholar
[135] Ni, W., Ba, H., Lutich, A.A., Jäckel, F., and Feldmann, J. 2012. Enhancing Single-Nanoparticle Surface-Chemistry by Plasmonic Overheating in an Optical Trap. Nano Lett., 12, 4647–4650.Google Scholar
[136] Nie, L., Wang, S.,Wang, X., Rong, P., Bhirde, A.,Ma, Y., Liu, G., Huang, P., Lu, G., and Chen, X. 2014. In Vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars. Small, 10(8), 1585-1593.Google Scholar
[137] O'Connor, D., and Zayats, A.V. 2010. The Third Plasmonic Revolution. Nature Nanotech., 5, 482.Google Scholar
[138] Octeau, V., Cognet, L., Duschene, L., Lasne, D., Schaeffer, N., Fernig, D.G., and Lounis, B. 2009. Photothermal Absorption Correlation Spectroscopy. ACS Nano, 3(2), 345–350.Google Scholar
[139] Oleson, J.R., and Dewhirst, M.W. 1983. Hyperthermia: An Overview of Current Progress and Problems. Current Problems in Cancer, 8(6), 1–62.Google Scholar
[140] Oraevsky, A.A., Karabutov, A.A., and Savateeva, E.V. 2001. Enhancement of Optoacoustic Tissue Contrast with Absorbing Nanoparticles. Proc. SPIE, 4434, 60–69.Google Scholar
[141] Overgaard, J., and Suit, H.D. 1979. Time-Temperature Relationship in Hyperthermic Treatment of Malignant and Normal Tissue in Vivo. Cancer Res., 39, 3248–3253.Google Scholar
[142] Paasonen, L., Laaksonen, T., Johans, C., Yliperttula, M., Kontturi, K., and Urtti, A. 2007. Gold Nanoparticles Enable Selective Light-Induced Contents Release from Liposomes. J. Control. Release, 122, 86–93.Google Scholar
[143] Paithankar, D.Y., Sakamoto, F.H., Farinelli, W.A., Kositratna, G., Blomgren, R.D., Meyer, T.J., Faupel, L.J., Kauvar, A.N.B., Lloyd, J.R., Cheung, W.L., Owczarek, W.D., Suwalska, A.M., Kochanska, K.B., Nawrocka, A.K., Paluchowska, E.B., Podolec, K.M., Pirowska, M.M., Wojas-Pelc, A.B., and Anderson, R.R. 2015. Acne Treatment Based on Selective Photothermolysis of Sebaceous Follicles with Topically Delivered Light-Absorbing Gold Microparticles. J. Invest. Dermatol., 135, 1727–1734.Google Scholar
[144] Paulo, P.M.R., Gaiduk, A., Kulzer, F., Krens, S.F.G., Spaink, H.P., Schmidt, T., and Orrit, M. 2009. Photothermal Correlation Spectroscopy of Gold Nanoparticles in Solution. J. Phys. Chem. C, 113, 11451–11457.Google Scholar
[145] Pedrosa, P., Vinhas, R., Fernandes, A., and Baptista, P.V. 2015. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?? Nanomaterials, 5, 1853–1879.Google Scholar
[146] Peng Qian, L., Han Zhou, L., Too, H.T., and Chow, G.M. 2011. Gold Decorated NaYF4:Yb,Er/NaYF4/Silica (Core/Shell/Shell) Upconversion Nanoparticles for Photothermal Destruction of BE(2)-C Neuroblastoma Cells. J. Nanopart. Res., 13, 499–510.Google Scholar
[147] Pitsillides, C.M., Joe, E.K., Anderson, R.R., and Lin, C.P. 2003. Selective Cell Targeting with Light Absorbing Microparticles and Nanoparticles. Biophys.J., 84, 4023.Google Scholar
[148] Polleux, J., Rasp, M., Louban, I., Plath, N., Feldhoff, A., and Spatz, J.P. 2011. Benzyl Alcohol and Block Copolymer Micellar Lithography: A Versatile Route to Assembling Gold and in Situ Generated Titania Nanoparticles into Uniform Binary Nanoarrays. ACS Nano, 5(8), 6355–6364.Google Scholar
[149] Quek, C.H., and Leong, K.W. 2012. Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging. Nanomaterials, 2, 92–112.Google Scholar
[150] Richter, H.R., Lyberatos, A., Nowak, U., Evans, R.F.L., and Chantrell, R.W. 2012. The Thermodynamic Limits of Magnetic Recording. J. Appl. Phys., 111, 033909.Google Scholar
[151] Robert, H., Kundrat, F., Bermúdez Ureña, E., Rigneault, H., Monneret, S., Quidant, R., Polleux, J., and Baffou, G. 2016. Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles. ACS Omega, 1, 2–8.Google Scholar
[152] Robinson, J.T., Tabakman, S.M., Liang, Y., Wang, H., Sanchez Casalongue, H., Vinh, D., and Dai, H. 2011. Ultrasmall Reduced Graphene Oxide with High Near- Infrared Absorbance for Photothermal Therapy. J. Am. Chem. Soc., 133, 6825–6831.Google Scholar
[153] Roger, J., Fournier, D., Boccara, A., and Lepoutre, F. 1989. Coatings Characterization by the Mirage Effect and the Photothermal Microscope. J. Phys. Coll., 50, C5–295–C5–310.Google Scholar
[154] Sapareto, S.A., and Dewey, W.C. 1984. Thermal Dose Determination in Cancer Therapy. Int.J. Radiation Oncology Biol. Phys., 10, 787–800.Google Scholar
[155] Selmke, M., and Cichos, F. 2013a. Photonic Rutherford Scattering: A Classical and Quantum Mechanical Analogy in Ray andWave Optics. Am.J. Phys., 81, 405–413.Google Scholar
[156] Selmke, M., and Cichos, F. 2013b. Photothermal Single Particle Rutherford Scattering Microscopy. Phys. Rev. Lett., 110, 103901.Google Scholar
[157] Selmke, M., and Cichos, F. 2015. The Physics of the Photothermal Detection of Single Absorbing Nano-Objects: A Review. Arxiv, 1510.08669v1.
[158] Selmke, M., Braun, M., and Cichos, F. 2012a. Gaussian Beam Photothermal Single Particle Microscopy. J. Opt. Soc. Am. A, 29(10), 2237–2241.Google Scholar
[159] Selmke, M., Braun, M., and Cichos, F. 2012b. Nano-Lens Diffraction around a Single Distribution Analysis. Opt. Express, 20(7), 8055–8070.Google Scholar
[160] Selmke, M., Braun, M., and Cichos, F. 2012c. Photothermal Single Particle Microscopy: Detection of a Nanolens. ACS Nano, 6, 2741–2749.Google Scholar
[161] Selmke, M., Heber, A., Braun, M., and Cichos, F. 2014. Photothermal Single Particle Microscopy Using a Single Laser Beam. Appl. Phys. Lett., 105, 013511.Google Scholar
[162] Sershen, S.R., Westcott, S.L., Halas, N.J., and West, J.L. 2000. Temperature- Sensitive Polymer–Nanoshell Composites for Photothermally Modulated Drug Delivery. J. Biomed. Mater. Res., 51, 293–298.Google Scholar
[163] Sharma, P., Brown, S.C., Singh, A., N., Iwakuma, Pyrgiotakis, G., Krishna, V., Knapik, J.A., Barr, K., Moudgil, B.M., and Grobmyer, S.R. 2010. Near-Infrared Absorbing and Luminescent Gold Speckled Silica Nanoparticles for Photothermal Therapy. J. Mater. Chem., 20, 5182–5185.Google Scholar
[164] Shi, X., Thornton, R.L., and Hesselink, L. 2002. A Nano-Aperture with 1000× Power Throughput Enhancement for Very Small Aperture Laser System (VSAL). Proc SPIE, 4342, 320–327.Google Scholar
[165] Skirtach, A.G., Munoz Javier, A., Kreft, O., Köhler, K., PieraAlberola, A., Möhwald, H., Parak, W.J., and Sukhorukov, G.B.—. 2006. Laser-Induced Release of Encapsulated Materials inside Living Cells. Angew. Chem. Int. Ed., 45, 4612–4617.Google Scholar
[166] Smith, A.M., Mancini, M.C., and Nie, S. 2009. Bioimaging: Second Window for in vivo Imaging. Nature Nanotech., 4, 710–711.Google Scholar
[167] Stehr, J., Hrelescy, C., Sperling, R.A., Raschke, G., Wunderlich, M., Nichtl, A., Heindl, D., Kurzinger, K., Parak, W.J., Klar, T.A., and Feldmann, J. 2008. Gold Nanostoves for Microsecond DNA Melting Analysis. Nano Lett., 8(2), 619.Google Scholar
[168] Stern, J.M., Stanfield, J., Kabbani, W., Hsieh, J.T., and Cadeddu, J.A. 2008. Selective Prostate Cancer Thermal Ablation with Laser Activated Gold Nanoshells. J. Urol., 179, 748–753.Google Scholar
[169] Stipe, B.C., Strand, T.C., Poon, C.C., Balamane, H., Boone, T.D., Katine, J.A., Li, J.L., Rawat, V., Nemoto, H., Hirotsune, A., Hellwig, O., Ruiz, R., Dobisz, E., Kercher, D.S., Robertson, N., Albrecht, T.R., and Terris, B.D. 2010. Magnetic Recording at 1.5 Pb m−2 Using an Integrated Plasmonic Antenna. Nat. Photon., 4, 484–488.Google Scholar
[170] Takahashi, H., Niidome, Y., and Yamada, S. 2005. Controlled Release of Plasmid DNA from Gold Nanorods Induced by Pulsed Near-Infrared Light. Chem. Comm., 2247-2249.
[171] Takahashi, H., Niidome, T., Nariai, A., Niidome, Y., and Yamada, S. 2006. Gold Nanorod-sensitized Cell Death: Microscopic Observation of Single Living Cells Irradiated by Pulsed Near-infrared Laser Light in the Presence of Gold Nanorods. Chemistry Letters, 35(5), 500–501.Google Scholar
[172] Timko, B.P., Whitehead, K., Gao, W., Kohane, D.S., Farokhzad, O., Anderson, D., and Langer, R. 2011. Advances in Drug Delivery. Annu. Rev. Mater. Res., 41, 1–20.Google Scholar
[173] Urban, A.S., Fedoruk, M., Horton, M.R., Rädler, J.O., Stefani, F.D., and Feldmann, J. 2009. Controlled Nanometric Phase Transitions of Phospholipid Membranes by Plasmonic Heating of Single Gold Nanoparticles. Nano Lett., 9(8), 2903–2908.Google Scholar
[174] Urban, A.S., Pfeiffer, T., Fedoruk, M., Lutich, A.A., and Feldmann, J. 2011. Single Step Injection of Gold Nanoparticles Through Phospholipid Membranes. ACS Nano, 5(5), 3585–3590.Google Scholar
[175] Varela, J.A., Dupuis, J.P., Etchepare, L., Espana, A., Cognet, L., and Groc, L. 2016. Targeting neurotransmitter receptors with nanoparticles in vivo allows singlemolecule tracking in acute brain slices. Nature Commun., 7, 10947.Google Scholar
[176] Vásquez Vásquez, C., Vaz, B., Giannini, V., Pérez-Lorenzo, M., Alvarez-Puebla, R.A., and Correa-Duarte, M.A. 2013. Nanoreactors for Simultaneous Remote Thermal Activation and Optical Monitoring of Chemical Reactions. J. Am. Chem. Soc., 135, 13616–13619.Google Scholar
[177] Vermeulen, P., Cognet, L., and Lounis, B. 2014. Photothermal Microscopy: Optical Detection of Small Absorbers in Scattering Environments. J. Microsc., 254(3), 115-121.Google Scholar
[178] Wang, Y., Xie, X., Wang, X., Ku, G., Gill, K.L., O'Neal, D.P., Stoica, G., and Wang, L.V. 2004. Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain. Nano Lett., 4(9), 1689–1692.Google Scholar
[179] Weller, D., and Moser, A. 1999. Thermal Effect Limits in Ultrahigh-Density Magnetic Recording. IEEE Trans. Magn., 35, 4423–4439.Google Scholar
[180] Wijaya, A., Schaffer, S.B., Pallares, I.G., and Hamad-Schifferli, K. 2008. Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS Nano, 3(1), 80–86.Google Scholar
[181] Wu, A.Q., Kubota, Y., Klemmer, T., Rausch, T., Peng, C., Peng, Y., Karns, D., Zhu, X., Ding, Y., Chang, E.K.C., Zhao, Y., Zhou, H., Gao, K., Thiele, J.U., Seigler, M., Ju, G., and Gage, E. 2013. HAMR Areal Density Demonstration of 1+ Tbpsi Spinstand. IEEE Trans. Magn., 49, 779–782.Google Scholar
[182] Wu, X., Ming, T., Wang, X., Wang, P., Wang, J., and Chen, J. 2010. High- Photoluminescence-Yield Gold Nanocubes: For Cell Imaging and Photothermal Therapy. ACS Nano, 4(1), 113–120.Google Scholar
[183] Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S.T., and Liu, Z. 2010. Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Lett., 10, 3318–3323.Google Scholar
[184] Yang, X., Skrabalak, S.E., Li, Z.Y., Xia, Y., and Wang, V.W. 2007. Photoacoustic Tomography of a Rat Cerebral Cortex in Vivo with Au Nanocages as an Optical Contrast Agent. Nano Lett., 7(12), 3798–3802.Google Scholar
[185] Yang, X., Stein, E.W., Ashkenazi, S., and Wang, L.V. 2009. Nanoparticles for Photoacoustic Imaging. Adv. Rev., 1, 360.Google Scholar
[186] Yen, C.W., and El-Sayed, M.A. 2009. Plasmonic Field Effect on the Hexacyanoferrate (III)-Thiosulfate Electron Transfer Catalytic Reaction on Gold Nanoparticles: Electromagnetic or Thermal?? J. Phys. Chem. C, 113, 19585–19590.Google Scholar
[187] Zhang, W., Guo, Z., Huang, D., Liu, Z., and Zhong, H. 2011. Synergistic Effect of Chemo-Photothermal Therapy Using PEGylated Graphene Oxide. Biomaterials, 32(33), 8555–8561.Google Scholar
[188] Zharov, V.P., and Galitovsky. 2003. Photothermal Detection of Local Thermal Effects During Selectrive Nanophotothermolysis. Appl. Phys. Lett., 83(24), 4897–4899.Google Scholar
[189] Zhou, N., Xu, X., Hammack, A.T., Stipe, B.C., Gao, K., Scholz, W., and Gage, E.C. 2014. Plasmonic Near-Field Transducer for Heat-Assisted Magnetic Recording. Nanophotonics, 3(3), 141–155.Google Scholar
[190] Zhu, M., Baffou, G., Meyerbröker, N., and Polleux, J. 2012. Micropatterning Thermoplasmonics Gold Nanoarrays to Manipulate Cell Adhesion. ACS Nano, 6(8), 7227–7233.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Applications
  • Guillaume Baffou
  • Book: Thermoplasmonics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108289801.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Applications
  • Guillaume Baffou
  • Book: Thermoplasmonics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108289801.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Applications
  • Guillaume Baffou
  • Book: Thermoplasmonics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108289801.008
Available formats
×