We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Parents have significant genetic and environmental influences, which are known as intergenerational effects, on the cognition, behavior, and brain of their offspring. These intergenerational effects are observed in patients with mood disorders, with a particularly strong association of depression between mothers and daughters.
Objectives
The main purpose of our study was to investigate female-specific intergenerational transmission patterns in the human brain among patients with depression and their never-depressed offspring.
Methods
We recruited 78 participants from 34 families, which included remitted parents with a history of depression and their never-depressed biological offspring. We used source-based and surface-based morphometry analyses of magnetic resonance imaging data to examine the degree of associations in brain structure between four types of parent-offspring dyads (i.e. mother-daughter, mother-son, father-daughter, and father-son).
Results
Using independent component analysis, we found a significant positive correlation of gray matter structure between exclusively the mother-daughter dyads within brain regions located in the default mode and central executive networks, such as the bilateral anterior cingulate cortex, posterior cingulate cortex, precuneus, middle frontal gyrus, middle temporal gyrus, superior parietal lobule, and left angular gyrus. These similar observations were not identified in other three parent-offspring dyads.
Conclusions
The current study provides biological evidence for greater vulnerability of daughters, but not sons, in developing depression whose mothers have a history of depression. Our findings extend our knowledge on the pathophysiology of major psychiatric conditions that show sex biases and may contribute to the development of novel interventions targeting high-risk individuals.
For low-grade intraepithelial neoplasia cases, pharyngolaryngeal lesions equal to or less than 5 mm in size do not generally progress to invasive carcinoma. However, micro-superficial lesions equal to or less than 5 mm that showed rapid growth have been recently encountered. This study aimed to identify the characteristics of preferential progression of lesions equal to or less than 5 mm in size.
Method
Gross findings, endoscopic findings and pathological results of 55 lesions measuring equal to or less than 5 mm in diameter were retrospectively reviewed to identify factors that distinguish squamous cell carcinoma or high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia or non-atypia lesions.
Results
The overall sensitivity, specificity, accuracy, and positive and negative predictive value of background colouration and intrapapillary capillary loop pattern in differentiation of squamous cell carcinoma or high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia or non-atypia lesions were all 100 per cent.
Conclusion
Diagnosis based on background colouration and the intrapapillary capillary loop pattern on narrow-band imaging facilitates the pathological examination of lesions measuring equal to or less than 5 mm.
Severe acute respiratory syndrome coronavirus-2 uses angiotensin-converting enzyme-2 as a primary receptor for invasion. This study investigated angiotensin-converting enzyme-2 expression in the sinonasal mucosa of patients with chronic rhinosinusitis, as this could be linked to a susceptibility to severe acute respiratory syndrome coronavirus-2 infection.
Methods
Ethmoid sinus specimens were obtained from 27 patients with eosinophilic chronic rhinosinusitis, 18 with non-eosinophilic chronic rhinosinusitis and 18 controls. The angiotensin-converting enzyme-2 and other inflammatory cytokine and chemokine messenger RNA levels were assessed by quantitative reverse transcription polymerase chain reaction. Angiotensin-converting enzyme-2 positive cells were examined immunohistologically.
Results
The eosinophilic chronic rhinosinusitis patients showed a significant decrease in angiotensin-converting enzyme-2 messenger RNA expression. In the chronic rhinosinusitis patients, angiotensin-converting enzyme-2 messenger RNA levels were positively correlated with tumour necrosis factor-α and interleukin-1β (r = 0.4971 and r = 0.3082, respectively), and negatively correlated with eotaxin-3 (r = −0.2938). Angiotensin-converting enzyme-2 immunoreactivity was mainly localised in the ciliated epithelial cells.
Conclusion
Eosinophilic chronic rhinosinusitis patients with type 2 inflammation showed decreased angiotensin-converting enzyme-2 expression in their sinus mucosa. Angiotensin-converting enzyme-2 regulation was positively related to pro-inflammatory cytokines, especially tumour necrosis factor-α production, in chronic rhinosinusitis patients.
N-acetylaspartate (NAA) levels and serum brain-derived neurotrophic factor (BDNF) levels in patients with first-episode schizophrenia psychosis and age- and sex-matched healthy control subjects were investigated. In addition, plasma levels of homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were compared between the two groups.
Method:
Eighteen patients (nine males, nine females; age range: 13–52 years) were enrolled in the study, and 18 volunteers (nine males, nine females; age range: 15–49 years) with no current or past psychiatric history were also studied by magnetic resonance spectroscopy (MRS) as sex- and age-matched controls.
Results:
Levels of NAA/Cr in the left basal ganglia (p = 0.0065) and parieto-occipital lobe (p = 0.00498), but not in the frontal lobe, were significantly lower in patients with first-episode schizophrenia psychosis than in control subjects. No difference was observed between the serum BDNF levels of patients with first-episode schizophrenia psychosis and control subjects. In regard to the plasma levels of catecholamine metabolites, plasma MHPG, but not HVA, was significantly lower in the patients with first-episode psychosis than in control subjects. In addition, a significantly positive correlation was observed between the levels of NAA/Cr of the left basal ganglia and plasma MHPG in all subjects.
Conclusions:
These results suggest that brain NAA levels in the left basal ganglia and plasma MHPG levels were significantly reduced at the first episode of schizophrenia psychosis, indicating that neurodegeneration via noradrenergic neurons might be associated with the initial progression of the disease.
Cognitive deficits as well as affective and physical symptoms are common after traumatic brain injury (TBI). However, little is known about how these deficits affect functional outcomes. The purpose of this study was to investigate the relationship between neuropsychological, affective and physical sequelae and outcomes such as social function and quality of life in patients with TBI. We studied these relationships in 57 patients with TBI over the course of 6 months post-injury. The patients completed neuropsychological assessments, including the Wechsler Adult Intelligence Scale-III, the Rivermead Behavioural Memory Test, and verbal fluency test. Affective and physical symptoms were assessed by beck depression inventory-II, Chalder fatigue scale, and Pittsburgh sleep quality index. Functional outcomes were assessed using the world health organization (WHO) disability assessment rated by others and the WHO quality of life assessment (WHO/QOL 26). The patients showed impairments in executive function assessed by verbal fluency test. The affective and physical assessments showed mild depressive mood and fatigue problem. Multiple regression analysis revealed that executive function and depressive mood were the best predictors of social function and quality of life, respectively. The findings of this study suggest that executive function and depressive mood are important factors to predict functional outcomes in patients with TBI.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Optical properties of infrared-bright (IR-bright) dust-obscured galaxies (DOGs) are reported. DOGs are faint in optical but very bright in mid-IR, which are powered by active star formation (SF) or active galactic nucleus (AGN), or both. The DOGs is a candidate population that are evolving from a gas-rich merger to a quasar. By combining three catalogs of optical (Subaru Hyper Suprime-Cam), near-IR (VIKING), and mid-IR (ALLWISE), we have discovered 571 IR-bright DOGs. Using their spectral energy distributions, we classified the selected DOGs into the SF-dominated DOGs and the AGN-dominated DOGs. We found that the SF-dominated DOGs show a redder optical color than the AGN-dominated DOGs. Interestingly, some DOGs shows extremely blue color in optical (blue-excess DOGs: bluDOGs). A possible origin for this blue excess is either the leaked AGN light or stellar UV light from nuclear starbursts. The BluDOGs may be in the transition phase from obscured AGNs to unobscured AGNs.
The ALMA twenty-six arcmin2 survey of GOODS-S at one millimeter (ASAGAO) is a deep (1σ ∼ 61μJy/beam) and wide area (26 arcmin2) survey on a contiguous field at 1.2 mm. By combining with archival data, we obtained a deeper map in the same region (1σ ∼ 30μJy/beam−1, synthesized beam size 0.59″ × 0.53″), providing the largest sample of sources (25 sources at 5σ, 45 sources at 4.5σ) among ALMA blank-field surveys. The median redshift of the 4.5σ sources is 2.4. The number counts shows that 52% of the extragalactic background light at 1.2 mm is resolved into discrete sources. We create IR luminosity functions (LFs) at z = 1–3, and constrain the faintest luminosity of the LF at 2 < z < 3. The LFs are consistent with previous results based on other ALMA and SCUBA-2 observations, which suggests a positive luminosity evolution and negative density evolution.
A large fraction of the AGN output power is emitted in the X-rays, in a region very close to the supermassive black hole (SMBH). The most distinctive feature of the X-ray spectra of AGN is the iron Kα line, often observed as the superposition of a broad and a narrow component. While the broad component is found in only ~ 35–45% of bright nearby AGN, the narrow component has been found to be ubiquitous. The narrow Fe Kα line is thought to be produced in the circumnuclear material, likely in the molecular torus. Given its origin, this feature is possibly the most important tracer of neutral matter surrounding the SMBH. One of the most interesting characteristics of the narrow Fe Kα line is the decrease of its equivalent width with the continuum luminosity, the so-called X-ray Baldwin effect (Iwasawa & Taniguchi 1993). This trend has been found by many studies of large samples of type-I AGN, and very recently also in type-II AGN (Ricci et al. 2013c, submitted to ApJ). The slope of the X-ray Baldwin effect in type-II AGN is the same of their unobscured counterparts, which implies that the mechanism at work is the same. Several hypothesis have been put forward in the last decade to explain the X-ray Baldwin effect: i) a luminosity-dependent variation in the ionisation state of the iron-emitting material (Nandra et al. 1997); ii) the decrease of the number of continuum photons in the iron line region with the Eddington ratio, as an effect of the well known correlation between the photon index and the Eddington ratio (Ricci et al. 2013b, submitted to MNRAS); iii) the decrease of the covering factor of the torus with the luminosity (e.g., Page et al. 2004, Ricci et al. 2013a A&A 553, 29) as expected by luminosity-dependent unification models (e.g., Ueda et al. 2003). In my talk I will review the main characteristics of the narrow Fe K? line, and present the results of our recent works aimed at explaining the X-ray Baldwin effect using iron-line emitting physical torus models (Ricci et al. 2013a, b), and at understanding the origin of the Fe K? line (Ricci et al. 2013c). I will focus in particular on the importance of the Fe Kα line as a probe of the evolution of the physical characteristics of the molecular torus with the luminosity.
We explore the relationships between the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at E ≲ 10 keV. These X-ray spectra provide measurements of the neutral hydrogen column density (NH) towards the AGNs. We use the 3.3 μm PAH luminosity (L3.3μm) as a proxy for star formation activity and hard X-ray luminosity (L14-195keV) as an indicator of the AGN activity. We searched for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. Our regression analysis of log L14-195keV versus log L3.3μm shows a positive correlation and the slope seems steeper for type 1/unobscured AGNs than that of type 2/obscured AGNs. The same trend has been found for the log (L14-195keV/MBH) versus log (L3.3μm/MBH) correlation. Our analysis show that the circum-nuclear star-formation is more enhanced in type 2/absorbed AGNs than type 1/un-absorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs.
We show that the dispersion in the Schmidt-Kennicutt (SK) law in galaxies is affected significantly by the evolutionary stage of star forming molecular gas, using narrow band Paα imaging of Taffy I, an interacting pair of galaxies. Star forming regions in the system show very uniform ages except for the bridge region, and the SK law of regions at the same age show a exceptionally tight SK law.
The derailment accident occurred on 25 April 2005. 562 passengers were injured and 107 people died. Based on our periodic training in mass disaster triage, we accepted 113 wounded victims regardless of the severity of their condition. Initially, Simple Triage and Rapid Treatment was supposed to be performed by an emergency physician as a triage officer but START is not the most effective method for this case because patients of different severity levels were admitted to our hospital. Therefore, we performed triage by inspection and palpation based on our experience and intuition. Patient's facial color, breathing patterns, and trauma were processed for inspection. Furthermore, palpation was carried on without counting pulse and we diagnosed victims based upon strength of pulse and sensation of cold. From inspirational and sensuous diagnosis, the severity was determined. Comparing START with experiential and intuitive triage, differences between level of consciousness, the severity of trauma, and vital sign were examined. In addition, which components were necessary for primary survey was also reviewed.
Method
Severe or moderate, which were evaluated from ISS, vital sign, and Revised Trauma Score: RTS, Probability of survival: PS, were classified and then agreement rate, sensitivity, and specificity between START (S model) and triage (D model) were assessed. For START, data was extracted from clinical records.
Result
Agreement rate between the S model and the D model was 76.9%. Moreover, at the percentage of questions answered, the S model showed 84.2% and the D model showed 68.4%. Thus the experiment showed significant difference. 5 over triage cases appeared when the D model was operated. RTS, vital sign, and PS did not show great differences.
Conclusion
It could be difficult and insufficient to use START when a mass disaster occurs, however experiential and intuitive triage is also effective as START.
Chagas' disease is a debilitating but comparatively neglected illness that affects about 15 million people. There is an urgent need to develop new, more effective, and less-toxic compounds. In this study, we assessed the in vitro anti-trypanosomal activity of the sesquiterpene elatol from the Brazilian red seaweed Laurencia dendroidea. We used electron microscopy to evaluate the effect of elatol on the morphology and ultrastructure of the parasite. Elatol showed a dose-dependent effect against the epimastigote, trypomastigote, and amastigote forms, with IC50 values of 45·4, 1·38, and 1·01 μm, respectively. Observation of treated intracellular amastigotes by light microscopy demonstrated a total elimination of the infection at a dose of 3·0 μm. In addition, the compound did not affect the red blood cells, and the CC50 value for LLCMK2 cells was 27·0 μm. Transmission and scanning electron micrographs showed aberrant-shaped cells and breaks in the plasma membrane, prominent swollen mitochondria, and extensive formation of cytoplasmic vacuoles in all the forms. This is the first report of the anti-trypanosomal effect of the sesquiterpene elatol.
Protective immunity of homologous challenge infection was examined in jirds after drug-abbreviated infection with Brugia pahangi. Mebendazole (MBZ) treatment at the early prepatent (5–7 weeks of post infection) or the late prepatent (7–9 weeks of post infection) period was highly effective in causing almost complete eradication of the primary infection. After challenge infection, the worm burden was significantly reduced 19% (31·1 in average) and 77% (9·5) to that of the controls (38·8 and 41·7), respectively. The magnitude of eosinophil response paralleled the degree of protection. No or only a few microfilariae were seen after challenge infection in jirds treated during the prepatent periods. They were also resistant to intravenous challenge with the microfilariae of B. pahangi. MBZ treatment at the patent period was, on the contrary, incomplete against primarily infected adult worms, and was not able to induce either significant protection (30·1 vs 33·1 in control) or eosinophil response to the challenge infection.
Measurements on nonlinear processes caused by multiphoton absorption and electron avalanche in optical thin films have been carried out using KrF lasers of 20-ns and 1.7-ps pulse duration. Multiphoton absorption of the order of 10-7 J was detected by a photoacoustic signal, and the nonlinear growth of photo-induced current due to the electron avalanche was analyzed dynamically. The correlation between damage threshold and carrier lifetime was investigated for oxide and fluoride coatings.
Bandwidth effects on laser-plasma interaction were investigated with a ¼-μm laser. Planar targets were irradiated with a 1- to 40-cm–1 bandwidth laser at I = 1 × 1013–4 × 1015 W/cm2. Above 3 × 1013 W/cm2, stimulated Brillouin scattering (SBS) was observed with 1 cm–1 light. This process was strongly reduced with a 40-cm–1 light. Evolution of the convective SBS was studied with 1-D fluid simulation code. Bandwidth effect on the SBS growth was discussed to compare the theoretical prediction and experimental results. The scalelength dependence exists for the SBS reduction with a broadband laser.
An atomic model of the laser-produced Al plasma has been developed and used to analyze excitation processes of recombination pumping soft X-ray lasers. A soft X-ray gain for H-like Balmer-α line and He-like 3d-2p transition in short-pulse intense KrF laser (IL = 1014–1015 W/cm2, T = 10–100 ps)-produced Al plasmas are calculated for various laser temporal pulse shapes to find the condition for efficient production of population inversion. Results from different models are compared and requirements for the atomic model for X-ray laser design are discussed.
Two aluminosilicate oxyfluoride glass systems, a lead-cadmium-aluminosilicate oxyfluoride and a lithium-lanthanum-aluminosilicate oxyfluoride, doped with different TbF3 concentrations, have been fabricated and investigated. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics (TGC) were obtained. The glass-ceramics contain Tb:Pb(Cd)F2 or Tb:LaF3 nano-crystals in the glass-matrix. Differential scanning calorimetry, Raman scattering, and luminescence under both UV and β-particle excitation have been investigated on as-prepared glasses and glass-ceramics. It has been found that the terbium-doped lithium-lanthanum-aluminosilicate oxyfluoride glass exhibits good UV excited luminescence and β-induced luminescence. The luminescence yield increases for glass-ceramic compared to that of the as-prepared glass. The including of LaF3 in the glass-matrix is beneficial for a higher Tb-doping concentration and a high light yield. The light yield of lithium-lanthanum-aluminosilicate oxyfluoride glass and glass-ceramic is comparable to that of Schott IQI-301 product. However, the terbium-doped lead-cadmium-aluminosilicate oxyfluoride glass and glass-ceramic have a detrimental luminescence performance. The lead cations in the glass-matrix may create non-bridging oxygen defects, which are a strong source of charge traps, and correlated to a strong Raman “Boson” peak.
Photoluminescence (PL) of Er-doped ZnO nanoparticle films was studied. The films were fabricated using e-beam evaporation. The films were subsequently annealed at 700 °C in air for an hour. The atomic force microscopy (AFM) image revealed nano-sized ZnO particles. PL was measured at two excitation wavelengths, 325 and 514.5 nm. The 325 nm is used for exciting the ZnO host semiconductor and 514.5 nm is used for directly exciting Er3+ ions in the ZnO films. Er3+ luminescence was observed from the annealed film using either indirect (325 nm) or direct (514.5 nm) excitations. It has been found that the indirect excitation is about 40 times more efficient than the direct excitation in producing 1.54 μm PL. With indirect excitation, the Er3+ luminescence observed is attributed to energy transfer from ZnO host to the Er3+ ions doped. Energy transfer from e-h pairs resulting from ZnO host excitation may provide efficient routes for exciting Er3+ ions inside nano-crystalline particles of the films.
The telescope geometry of JASMINE should be stabilized and monitored with the accuracy of about 10 to 100 pm or 10 to 100 prad of rms over about 10 hours. For this purpose, a high-precision interferometric laser metrology system is employed. Useful techniques for measuring displacements on extremely small scales are the wave-front sensing method and the heterodyne interferometrical method. Experiments for verification of measurement principles are well advanced.