We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
American silk moth, Antheraea polyphemus Cramer 1775 (Lepidoptera: Saturniidae), native to North America, has potential significance in sericulture for food consumption and silk production. To date, the phylogenetic relationship and divergence time of A. polyphemus with its Asian relatives remain unknown. To end these issues, two mitochondrial genomes (mitogenomes) of A. polyphemus from the USA and Canada respectively were determined. The mitogenomes of A. polyphemus from the USA and Canada were 15,346 and 15,345 bp in size, respectively, with only two transitions and five indels. The two mitogenomes both encoded typical mitochondrial 37 genes. No tandem repeat elements were identified in the A+T-rich region of A. polyphemus. The mitogenome-based phylogenetic analyses supported the placement of A. polyphemus within the genus Antheraea, and revealed the presence of two clades for eight Antheraea species used: one included A. polyphemus, A. assamensis Helfer, A. formosana Sonan and the other contained A. mylitta Drury, A. frithi Bouvier, A. yamamai Guérin-Méneville, A. proylei Jolly, and A. pernyi Guérin-Méneville. Mitogenome-based divergence time estimation further suggested that the dispersal of A. polyphemus from Asia into North America might have occurred during the Miocene Epoch (18.18 million years ago) across the Berling land bridge. This study reports the mitogenome of A. polyphemus that provides new insights into the phylogenetic relationship among Antheraea species and the origin of A. polyphemus.
Nutrition intervention is an effective way to improve flesh qualities of fish. The effect of feed supplementation with glutamate (Glu) on flesh quality of gibel carp (Carassius gibelio) was investigated. In trial 1, the fish (initial weight: 37.49 ± 0.08 g) were fed two practical diets with 0 and 2% Glu supplementation. In trial 2, the fish (37.26 ± 0.04 g) were fed two purified diets with 0 and 3% Glu supplementation. The results after feeding trials showed that dietary Glu supplementation increased the hardness and springiness of muscle, whether using practical or purified diets. Glu-supplemented diets increased the thickness and density of myofibres and collagen content between myofibres. Furthermore, Glu promoted muscle protein deposition by regulating the IGF-1-AKT-mTOR signalling pathway, and enhanced the myofibre hypertrophy by upregulating genes related to myofibre growth and development (mef2a, mef2d, myod, myf5, mlc, tpi and pax7α). The protein deposition and myofibre hypertrophy in turn improved the flesh texture. In addition, IMP content in flesh increased when supplementing Glu whether to practical or to purified diet. Metabolomics confirmed that Glu promoted the deposition of muscle-flavoured substances and purine metabolic pathway most functioned, echoed by the upregulation of key genes (ampd, ppat and adsl) in purine metabolism. The sensory test also clarified that dietary Glu improved the flesh quality by enhancing the muscle texture and flavour. Conclusively, dietary Glu supplementation can improve the flesh quality in this fish, which can further support evidence from other studies more generally that improve flesh quality of cultured fish.
The rising cost of oncology care has motivated efforts to quantify the overall value of cancer innovation. This study aimed to apply the MACBETH approach to the development of a value assessment framework (VAF) for lymphoma therapies.
Methods
A multi-attribute value theory methodological process was adopted. Analogous MCDA steps developed by the International Society for Health Economics and Outcomes Research (ISPOR) were carried out and a diverse multi-stakeholder group was recruited to construct the framework. The criteria were identified through a systematic literature review and selected according to the importance score of each criterion given by stakeholders, related research and expert opinions. The MACBETH method was used to score the performance of alternatives by establishing value functions for each criterion and to assign weight to criteria.
Results
Nine criteria were included in the final framework and a reusable model was built: quality adjusted life years (QALYs), median progression-free survival, objective response rate, the incidence of serious adverse events (grade 3–4), rates of treatment discontinuation due to adverse events, annual direct medical costs, dosage and administration, the number of alternative medicines with the same indication and mechanism, mortality of the disease. The weights of each criterion in the order presented above are 17.43 percent, 16.11 percent, 14.39 percent,13.54 percent,11.83 percent,11.30 percent,7.08 percent,4.59 percent, and 3.73 percent.
Conclusions
A criterion-based valuation framework was constructed using multiple perspectives to provide a quantitative assessment tool in facilitating the delivery of affordable and valuable lymphoma treatment. Further research is needed to optimize its use as part of policy-making.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated. The overall blastocyst formation and good-quality blastocyst rates in 1PN zygotes were 22.94 and 16.24%, significantly lower than those of 2PN zygotes (63.25 and 50.23%, respectively, P = 0.000). The pronuclear characteristics were found to be correlated with the developmental potential. When comparing 1PN zygotes that developed into blastocysts to those that arrested, the former exhibited a significantly larger area (749.49 ± 142.77 vs. 634.00 ± 119.05, P = 0.000), a longer diameter of pronuclear (29.81 ± 3.08 vs. 27.30 ± 3.00, P = 0.000), and a greater number of nucleolar precursor body (NPB) (11.56 ± 3.84 vs. 7.19 ± 2.73, P = 0.000). Among the tested embryos, the diploidy euploidy rate was significantly higher in blastocysts in comparison with the arrested embryos (66.67 vs. 11.76%, P = 0.000), which was also significantly higher in IVF-1PN blastocysts than in ICSI-1PN blastocysts (75.44 vs. 25.00%, P = 0.001). However, the pronuclear characteristics were not found to be linked to the chromosomal ploidy once they formed blastocysts.
In summary, while the developmental potential of 1PN zygotes is reduced, our study shows that, in addition to the reported pronuclear area and diameter, the number of NPB is also associated with their developmental potential. The 1PN blastocysts exhibit a high diploidy euploidy rate, are recommend to be clinically used post genetic testing, especially for patients who do not have other 2PN embryos available.
This paper presents a numerical study on the flow around two tandem circular cylinders beneath a free surface at a Reynolds number of $180$. The free-surface effects on the wake dynamics and hydrodynamic forces are investigated through a parametric study, covering a parameter space of gap ratios from $0.20$ to $2.00$, spacing ratios from $1.50$ to $4.00$ and Froude numbers from $0.2$ to $0.8$. A jet-like flow accompanied by a shear layer of positive vorticity separating from the free surface is formed in the wake at small gap ratios, which significantly alters the wake pattern through its dynamic behaviours. At shallow submergence depths, the three-dimensional wake transitions from mode B to mode A as the distance between the cylinders increases. As submergence depth increases, the wavy deformation of the primary vortex cores disappears in the wake, and the flow transitions to a two-dimensional state. Higher Froude numbers can extend the effect of the free surface to deeper submergence depths. The critical spacing ratio tends to be larger at higher Froude numbers. Furthermore, the free-surface deformation is examined. The free-surface profile typically comprises a hydraulic jump immediately ahead of the upstream cylinder, trapped waves in the vicinity of the two tandem cylinders and well-defined travelling waves on the downstream side. The frequencies of the waves cluster around the vortex shedding frequency, indicating a close association between the generation of waves and the vortex shedding process.
This study aimed to assess the relationship between COVID-19 infection-related conditions and depressive symptoms among medical staff after easing the zero-COVID policy in China, and to further examine the mediating role of professional burnout.
Methods
A total of 1716 medical staff from all levels of health care institutions in 16 administrative districts of Beijing, China, were recruited to participate at the end of 2022 in this cross-sectional study. Several multiple linear regressions and mediating effects tests were performed to analyze the data.
Results
At the beginning of the end of the zero-COVID policy in China, 91.84% of respondents reported infection with COVID-19. After adjusting for potential confounding variables, the severity of infection symptoms was significantly positively associated with high levels of depressive symptoms (β = 0.06, P < 0.001), and this association was partially mediated by professional burnout. Specifically, emotional exhaustion (95% CI, 0.131, 0.251) and depersonalization (95% CI, 0.009, 0.043) significantly mediated the association between the severity of infection symptoms and depressive symptoms.
Conclusions
The mental health of medical staff with more severe symptoms of COVID-19 infection should be closely monitored. Also, interventions aimed at reducing emotional exhaustion and depersonalization may effectively reduce their risk of developing depressive symptoms.
Predicting epidemic trends of coronavirus disease 2019 (COVID-19) remains a key public health concern globally today. However, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection rate in previous studies of the transmission dynamics model was mostly a fixed value. Therefore, we proposed a meta-Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model by adding a time-varying SARS-CoV-2 reinfection rate to the transmission dynamics model to more accurately characterize the changes in the number of infected persons. The time-varying reinfection rate was estimated using random-effect multivariate meta-regression based on published literature reports of SARS-CoV-2 reinfection rates. The meta-SEIRS model was constructed to predict the epidemic trend of COVID-19 from February to December 2023 in Sichuan province. Finally, according to the online questionnaire survey, the SARS-CoV-2 infection rate at the end of December 2022 in Sichuan province was 82.45%. The time-varying effective reproduction number in Sichuan province had two peaks from July to December 2022, with a maximum peak value of about 15. The prediction results based on the meta-SEIRS model showed that the highest peak of the second wave of COVID-19 in Sichuan province would be in late May 2023. The number of new infections per day at the peak would be up to 2.6 million. We constructed a meta-SEIRS model to predict the epidemic trend of COVID-19 in Sichuan province, which was consistent with the trend of SARS-CoV-2 positivity in China. Therefore, a meta-SEIRS model parameterized based on evidence-based data can be more relevant to the actual situation and thus more accurately predict future trends in the number of infections.
Coccidiosis is a parasitic disease caused by Eimeria spp., and the emergence of drug resistance has seriously affected the control of the disease. Using RNA-seq, we previously found that phosphoglycerate kinase of Eimeria tenella (EtPGK) was differentially downregulated in diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains compared with drug-sensitive (DS) strain. In this study, we further analysed the characteristics and functions of EtPGK to find the possible mechanism of drug resistance of E. tenella. Quantitative real-time PCR (qRT-PCR) and western blot found that EtPGK was highly expressed in sporulated oocysts, followed by sporozoites and second-generation merozoites of E. tenella. Indirect immunofluorescence localization showed that EtPGK was located mainly in the cytoplasm and on the surface of the parasites. Invasion inhibition assays showed that anti-rEtPGK antibody significantly inhibited the invasion of parasites. Further studies using qRT-PCR and western blot found that the transcription and translation levels of EtPGK were downregulated in both resistant (DZR and MRR) strains compared with the DS strain, and the transcription level correlated negatively with the drug concentration. The enzyme activity assay revealed that EtPGK enzyme activity was decreased in the DZR strain compared with the DS strain. qRT-PCR revealed that the mRNA transcription level of EtPGK was significantly downregulated in the field DZR strain and salinomycin-resistant strain compared with the DS strain. These results suggested that EtPGK has other important roles that are separate and distinct from its function in glycolysis, and it might be involved in the development of drug resistance of E. tenella.
An experimental investigation is conducted to study the flow patterns, spectral properties and energy fluxes in thin-layer turbulence with varying system sizes and damping rates. It is found that although a system-size vortex (an indicator of spectral condensation) occurs for small system sizes and does not for large ones, the spectra for different system sizes consistently exhibit a scaling close to $k^{-3}$ in inverse cascade (another indicator of spectral condensation). On the other hand, under a fixed system size larger than the friction-dominated length scale, the energy spectrum in the inverse cascade range changes from $k^{-3}$ to $k^{-5/3}$ as the damping rate increases, suggesting that the friction-dominated length scale may not be a suitable parameter for predicting spectral transition. At lower damping rates and large system sizes, turbulent structures grow larger via inverse cascade, manifesting as long streamers, and the small-scale vortices are suppressed. This suppression leads to a reduction of energy flux at intermediate scales and a change in the spectral shape. The dimensionless Taylor microscale is found to exhibit a monotonic dependence on the damping rate. With the reduction in the damping rate, the Taylor microscale increases to become comparable with the forcing scale, and the spectrum in inverse cascade transits to a steeper scaling, $k^{-3}$, indicating that the dimensionless Taylor microscale may be used as a diagnostic parameter for spectral transition.
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
Microplastics (MPs) are carbon-rich polymers that are ubiquitous in the environment. With the increase of plastic production, microplastic pollution may be exacerbated and result in significant changes in microbial communities and biogeochemical processes such as carbon cycling, eventually impacting greenhouse gas emission and carbon storage in terrestrial ecosystems. However, current research on the effect of MPs on soil carbon cycling is still limited, and there is a lack of systematic review of the scattered information obtained from previous studies. Accordingly, this review provides a systematic overview of the current knowledge on the effects of MPs on soil carbon cycling and gives future research suggestions. Emerging evidence indicates that MPs could affect soil carbon stability and CO2 and CH4 emission by modifying soil physicochemical and microbiological properties; though biodegradable MPs often exhibit a greater effect than nonbiodegradable ones, the specific effects are highly dependent on plastic type, size and concentration. The specific mechanisms of MPs’ impact on soil carbon cycles remain elusive, which are discussed mainly from the perspective of microbial changes, including microbial biomass, microbial community composition, and key enzymes and functional genes associated with carbon metabolism. Further research is needed to elucidate whether MPs have a positive priming effect on soil carbon decomposition and the biotic and abiotic mechanisms involved. This review paper helps researchers gain a clearer picture of how and through which way MPs impact carbon cycling in soil ecosystems.
Aimed at the challenges of wide-angle mobile robot visual perception for diverse field applications, we present the spherical robot visual system that uses a 360° field of view (FOV) for realizing real-time object detection. The spherical robot image acquisition system model is developed with optimal parameters, including camera spacing, camera axis angle, and the distance of the target image plane. Two 180$^{\circ}$-wide panoramic FOVs, front and rear view, are formed using four on-board cameras. The speed of the SURF algorithm is increased for feature extraction and matching. For seamless fusion of the images, an improved fade-in and fade-out algorithm is used, which not only improves the seam quality but also improves object detection performance. The speed of the dynamic image stitching is significantly enhanced by using a cache-based sequential image fusion method. On top of the acquired panoramic wide FOVs, the YOLO algorithm is used for real-time object detection. The panoramic visual system for the spherical robot is then tested in real time, which outputs panoramic views of the scene at an average frame rate of 21.69 fps and panoramic views with object detection at an average of 15.39 fps.
Direct numerical simulations are performed to study temporal variations of the wall shear stresses and flow dynamics in the turbulent pulsatile pipe flow. The mechanisms, responsible for the paradoxical phenomenon for which the amplitude of the oscillating wall shear stress in the turbulent flow is smaller than that in the laminar flow for the same pulsation conditions, are investigated. It is shown that the delayed response of turbulence in the buffer layer generates a large magnitude of the radial gradient of the Reynolds shear stress near the wall, which counteracts the effect of the oscillating pressure gradient on the change of the streamwise velocity and hence reduces the amplitude of the wall shear stress. Such a delayed response consists of two processes: the delayed development of near-wall streaks and the subsequent energy redistribution from the streamwise velocity fluctuation to the other two co-existing components. This is a dynamical manifestation of the viscoelasticity of turbulent eddies. As the frequency is reduced, the variation of the friction Reynolds number results in a phase-wise variation of the time scale and intensity of the turbulence response, causing the hysteresis of the wall shear stress. Such a phase asymmetry is amplified by the increase of the pulsation amplitude. An examination of the energy spectra reveals that the near-wall streaks are stretched in the streamwise direction during the acceleration phase, and then break up into small-scale structures in the deceleration phase, accompanied by the enhanced dissipation that transforms the turbulent kinetic energy into heat.
The book offers a succinct overview of the technical components of blockchain networks, also known as distributed digital ledger networks. Written from an academic perspective, it surveys ongoing research challenges as well as existing literature. Several chapters illustrate how the mathematical tools of game theory and algorithmic mechanism design can be applied to the analysis, design, and improvement of blockchain network protocols. Using an engineering perspective, insights are provided into how the economic interests of different types of participants shape the behaviors of blockchain systems. Readers are thus provided with a paradigm for developing blockchain consensus protocols and distributed economic mechanisms that regulate the interactions of system participants, thus leading to desired cooperative behaviors in the form of system equilibria. This book will be a vital resource for students and scholars of this budding field.
Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supervised semantic segmentation algorithms have achieved state-of-the-art performance but rely on a large number of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially underactivated class activation regions degrade segmentation performance. In this paper, we propose a weakly supervised semantic segmentation method, continuous gradient class activation mapping (CAM) and its nonlinear multiscale fusion (continuous gradient fusion CAM). The method redesigns backpropagating gradients and nonlinearly activates multiscale fused heatmaps to generate more fine-grained class activation maps with an appropriate activation degree for different damage site sizes. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully supervised algorithms.