We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Marine radiocarbon (14C) ages are an important geochronology tool for the understanding of past earthquakes and tsunamis that have impacted the coastline of New Zealand. To advance this field of research, we need an improved understanding of the radiocarbon marine reservoir correction for coastal waters of New Zealand. Here we report 170 new ΔR20 (1900–1950) measurements from around New Zealand made on pre-1950 marine shells and mollusks killed by the 1931 Napier earthquake. The influence of feeding method, living depth and environmental preference on ΔR is evaluated and we find no influence from these factors except for samples living at or around the high tide mark on rocky open coastlines, which tend to have anomalously low ΔR values. We examine how ΔR varies spatially around the New Zealand coastline and identify continuous stretches of coastline with statistically similar ΔR values. We recommend subdividing the New Zealand coast into four regions with different marine reservoir corrections: A: south and western South Island, ΔR20 –113 ± 33 yr, B: Cook Strait and western North Island, ΔR20 –171 ± 29 yr, C: northeastern North Island, ΔR20 –143 ± 18 yr, D: eastern North Island and eastern South Island, ΔR20 –70 ± 39 yr.
Background: Saccade and pupil responses are potential neurodegenerative disease biomarkers due to overlap between oculomotor circuitry and disease-affected areas. Instruction-based tasks have previously been examined as biomarker sources, but are arduous for patients with limited cognitive abilities; additionally, few studies have evaluated multiple neurodegenerative pathologies concurrently. Methods: The Ontario Neurodegenerative Disease Research Initiative recruited individuals with Alzheimer’s disease (AD), mild cognitive impairment (MCI), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, progressive supranuclear palsy, or Parkinson’s disease (PD). Patients (n=274, age 40-86) and healthy controls (n=101, age 55-86) viewed 10 minutes of frequently changing video clips without instruction while their eyes were tracked. We evaluated differences in saccade and pupil parameters (e.g. saccade frequency and amplitude, pupil size, responses to clip changes) between groups. Results: Preliminary data indicates low-level behavioural alterations in multiple disease cohorts: increased centre bias, lower overall saccade rate and reduced saccade amplitude. After clip changes, patient groups generally demonstrated lower saccade rate but higher microsaccade rate following clip change to varying degrees. Additionally, pupil responses were blunted (AD, MCI, ALS) or exaggerated (PD). Conclusions: This task may generate behavioural biomarkers even in cognitively impaired populations. Future work should explore the possible effects of factors such as medication and disease stage.
Background: Eye movements reveal neurodegenerative disease processes due to overlap between oculomotor circuitry and disease-affected areas. Characterizing oculomotor behaviour in context of cognitive function may enhance disease diagnosis and monitoring. We therefore aimed to quantify cognitive impairment in neurodegenerative disease using saccade behaviour and neuropsychology. Methods: The Ontario Neurodegenerative Disease Research Initiative recruited individuals with neurodegenerative disease: one of Alzheimer’s disease, mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson’s disease, or cerebrovascular disease. Patients (n=450, age 40-87) and healthy controls (n=149, age 42-87) completed a randomly interleaved pro- and anti-saccade task (IPAST) while their eyes were tracked. We explored the relationships of saccade parameters (e.g. task errors, reaction times) to one another and to cognitive domain-specific neuropsychological test scores (e.g. executive function, memory). Results: Task performance worsened with cognitive impairment across multiple diseases. Subsets of saccade parameters were interrelated and also differentially related to neuropsychology-based cognitive domain scores (e.g. antisaccade errors and reaction time associated with executive function). Conclusions: IPAST detects global cognitive impairment across neurodegenerative diseases. Subsets of parameters associate with one another, suggesting disparate underlying circuitry, and with different cognitive domains. This may have implications for use of IPAST as a cognitive screening tool in neurodegenerative disease.
Acid-alkali-acid (AAA) pretreatment is widely used to clean terrestrial plant macrofossil samples for radiocarbon (14C) dating. There is wide variation amongst laboratories in the AAA method details and less rigorous AAA pretreatment is often used on fragile or small samples. Yet there is little evidence as to the efficacy of the different methods and whether the use of less rigorous methods is justified. We investigated four variations of AAA pretreatment: acid only (no alkali wash); room temperature AAA; “standard” AAA at 85°C; and “aggressive” AAA at 85°C with alkali washes repeated until no discoloration was detected. We tested six different terrestrial macrofossils from four different locations and ranging in age from mid-Holocene to the Last Glacial Maximum. Our results demonstrate that while acid only is not always sufficient to remove young material, there is no difference in 14C age of samples pretreated by any of the AAA variants. We also observed mass loss of 85–90% in the standard and aggressive AAA pretreatments, and much more modest mass loss in the room temperature AAA pretreatment. Therefore, we conclude that room temperature AAA pretreatment is optimal to remove contaminating material from fragile terrestrial macrofossils while retaining the majority of the authentic sample material.
On 29 April 2015, four beacons were deployed onto an ice island in the Strait of Belle Isle to record positional data. The ice island later broke up into many fragments, four of which were tracked by the beacons. The relative influences of wind drag, current drag, Coriolis force, sea surface height gradient and sea-ice force on the drift of the tracked ice island fragments were analyzed. Using atmospheric and oceanic model outputs, the sea-ice force was calculated as the residual of the fragments' net forces and the sum of all other forces. This was compared against the force obtained through ice concentration-dependent relationships when sea ice was present. The sea-ice forces calculated from the residual approach and concentration-dependent relationships were significant only when sea ice was present at medium-high concentrations in the vicinity of the ice island fragments. The forces from ocean currents and sea surface tilt contributed the most to the drift of the ice island fragments. Wind, however, played a minimal role in the total force governing the drift of the four ice island fragments, and Coriolis force was significant when the fragments were drifting at higher speeds.
Apolipoprotein E (APOE) E4 is the main genetic risk factor for Alzheimer’s disease (AD). Due to the consistent association, there is interest as to whether E4 influences the risk of other neurodegenerative diseases. Further, there is a constant search for other genetic biomarkers contributing to these phenotypes, such as microtubule-associated protein tau (MAPT) haplotypes. Here, participants from the Ontario Neurodegenerative Disease Research Initiative were genotyped to investigate whether the APOE E4 allele or MAPT H1 haplotype are associated with five neurodegenerative diseases: (1) AD and mild cognitive impairment (MCI), (2) amyotrophic lateral sclerosis, (3) frontotemporal dementia (FTD), (4) Parkinson’s disease, and (5) vascular cognitive impairment.
Methods:
Genotypes were defined for their respective APOE allele and MAPT haplotype calls for each participant, and logistic regression analyses were performed to identify the associations with the presentations of neurodegenerative diseases.
Results:
Our work confirmed the association of the E4 allele with a dose-dependent increased presentation of AD, and an association between the E4 allele alone and MCI; however, the other four diseases were not associated with E4. Further, the APOE E2 allele was associated with decreased presentation of both AD and MCI. No associations were identified between MAPT haplotype and the neurodegenerative disease cohorts; but following subtyping of the FTD cohort, the H1 haplotype was significantly associated with progressive supranuclear palsy.
Conclusion:
This is the first study to concurrently analyze the association of APOE isoforms and MAPT haplotypes with five neurodegenerative diseases using consistent enrollment criteria and broad phenotypic analysis.
Colorectal cancer (CRC) is the third most common cancer globally. CRC risk is increased by obesity, and by its lifestyle determinants notably physical inactivity and poor nutrition. Obesity results in increased inflammation and oxidative stress which cause genomic damage and contribute to mitochondrial dysregulation and CRC risk. The mitochondrial dysfunction associated with obesity includes abnormal mitochondrial size, morphology and reduced autophagy, mitochondrial biogenesis and expression of key mitochondrial regulators. Although there is strong evidence that increased adiposity increases CRC risk, evidence for the effects of intentional weight loss on CRC risk is much more limited. In model systems, energy depletion leads to enhanced mitochondrial integrity, capacity, function and biogenesis but the effects of obesity and weight loss on mitochondria in the human colon are not known. We are using weight loss following bariatric surgery to investigate the effects of altered adiposity on mitochondrial structure and function in human colonocytes. In summary, there is strong and consistent evidence in model systems and more limited evidence in human subjects that over-feeding and/or obesity result in mitochondrial dysfunction and that weight loss might mitigate or reverse some of these effects.
We present a study of the energy levels in a FTO/TiO2/CH3NH3PbI3/Spiro solar cell device. The measurements are performed using a novel ambient pressure photoemission (APS) technique alongside Contact Potential Difference data from a Kelvin Probe. The Perovskite Solar Cell energy band diagram is demonstrated for the device in dark conditions and under illumination from a 150W Quartz Tungsten Halogen lamp. This approach provides useful information on the interaction between the different materials in this solar cell device. Additionally, non-destructive macroscopic DC and AC Surface Photovoltage Spectroscopy (SPS) studies are demonstrated of different MAPBI3 device structures to give an indication of overall device performance. AC-SPS measurements, previously used on traditional semiconductors to study the mobility, are used in this case to characterise the ability of a perovskite solar cell device to respond rapidly to chopped light. Two different device structures studied showed very different characteristics: Sample A (without TiO2): (ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/PCBM) had ∼4 times the magnitude of AC-SPS response compared to Sample B (including TiO2): (ITO/TiO2/ CH3NH3PbI3/Spiro). This demonstrates that the carrier speed characteristics of device architecture A is superior to device architecture B. The TiO2 layer has been associated with carrier trapping which is illustrated in this example. However, the DC-SPV performance of sample B is ∼5 times greater than that of sample A. The band gap of the MAPBI3 layer was determined through DC-SPS (1.57 ± 0.07 eV), Voc of the devices measured and qualitative observations made of interface trapping by DC light pulsing. The combination of these (APS, KP, AC/DC-SPV/SPS) techniques offers a more general method for measuring the energy level alignments and performance of Organic and Hybrid Solar Cell Devices.
An explanation is provided for the disruptive instability in diverted tokamaks when the safety factor $q$ at the 95 % poloidal flux surface, $q_{95}$, is driven below 2.0. The instability is a resistive kink counterpart to the current-driven ideal mode that traditionally explained the corresponding disruption in limited cross-sections (Shafranov, Sov. Phys. Tech. Phys., vol. 15, 1970, p. 175) when $q_{edge}$, the safety factor at the outermost closed flux surface, lies just below a rational value $m/n$. Experimentally, external kink modes are observed in limiter configurations as the current in a tokamak is ramped up and $q_{edge}$ decreases through successive rational surfaces. For $q_{edge}<2$, the instability is always encountered and is highly disruptive. However, diverted plasmas, in which $q_{edge}$ is formally infinite in the magnetohydrodynamic (MHD) model, have presented a longstanding difficulty since the theory would predict stability, yet, the disruptive limit occurs in practice when $q_{95}$, reaches 2. It is shown from numerical calculations that a resistive kink mode is linearly destabilized by the rapidly increasing resistivity at the plasma edge when $q_{95}<2$, but $q_{edge}\gg 2$. The resistive kink behaves much like the ideal kink with predominantly kink or interchange parity and no real sign of a tearing component. However, the growth rates scale with a fractional power of the resistivity near the $q=2$ surface. The results have a direct bearing on the conventional edge cutoff procedures used in most ideal MHD codes, as well as implications for ITER and for future reactor options.
Substantial healthcare resources are devoted to panic disorder (PD) and coronary heart disease (CHD); however, the association between these conditions remains controversial. Our objective was to conduct a systematic review of studies assessing the association between PD, related syndromes, and incident CHD.
Method.
Relevant studies were retrieved from Medline, EMBASE, SCOPUS and PsycINFO without restrictions from inception to January 2015 supplemented with hand-searching. We included studies that reported hazard ratios (HR) or sufficient data to calculate the risk ratio and 95% confidence interval (CI) which were pooled using a random-effects model. Studies utilizing self-reported CHD were ineligible. Twelve studies were included comprising 1 131 612 persons and 58 111 incident CHD cases.
Results.
PD was associated with the primary incident CHD endpoint [adjusted HR (aHR) 1.47, 95% CI 1.24–1.74, p < 0.00001] even after excluding angina (aHR 1.49, 95% CI 1.22–1.81, p < 0.00001). High to moderate quality evidence suggested an association with incident major adverse cardiac events (MACE; aHR 1.40, 95% CI 1.16–1.69, p = 0.0004) and myocardial infarction (aHR 1.36, 95% CI 1.12–1.66, p = 0.002). The risk for CHD was significant after excluding depression (aHR 1.64, 95% CI 1.45–1.85) and after depression adjustment (aHR 1.38, 95% CI 1.03–1.87). Age, sex, length of follow-up, socioeconomic status and diabetes were sources of heterogeneity in the primary endpoint.
Conclusions.
Meta-analysis showed that PD was independently associated with incident CHD, myocardial infarction and MACE; however, reverse causality cannot be ruled out and there was evidence of heterogeneity.
We evaluated 222 hospitalized patients whose clinical isolates were tested using standard methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). MALDI-TOF could have reduced time to appropriate therapy for 28.8% and 44.6% patients based on the treating physician's choices and stewardship team recommendations, respectively. Clinicians should be aware of scenarios in which MALDI-TOF can optimize antibiotic therapy.
Eight species of Thanatus are recognized in North America; four are holarctic in range and four nearctic. The holarctic species are T. coloradensis Keyserling, 1880, T. formicinus (Clerck 1757), T. striatus C. L. Koch, 1845, and T. vulgaris Simon, 1870 (=T. peninsulanus Banks, 1898, NEW SYNONYMY). The four nearctic species are T. altimontis Gertsch, 1933, T. arcticus Thorell, 1872, T. patriciae (Lowrie and Gertsch 1955), and T. rubicellus Mello-Leitao, 1929 (=T. rowani Gertsch, 1933, NEW SYNONYMY).
A Berlese–Tullgren funnel is described which features a 600-w heating element, a tray having a single bottom of new design, and ventilating screens below the tray to prevent condensation of moisture on the inner wall of the funnel. The funnel efficiently extracts grassland arthropods from coarse plant matter. Also described is a salt-water flotation separator, which extracts any arthropods from the fine litter and soil that may pass through the funnel screens.
The 40 known species of the genus Xysticus C. L. Koch that occur in Canada are described and illustrated. Keys to both sexes are provided. Three new species, X. ampullatus, X. leechi, and X. winnipegensis, are described, two species, X. lutulentus Gertsch and X. nicholsi Gertsch, are synonymized with previously described ones, and two, X. ellipticus new name and X. alboniger new name, are transferred to Xysticus from another genus.