We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two-dimensional simulations incorporating detailed chemistry are conducted for detonation initiation induced by dual hot spots in a hydrogen/oxygen/argon mixture. The objective is to examine the transient behaviour of detonation initiation as facilitated by dual hot spots, and to elucidate the underlying mechanisms. Effects of hot spot pressure and distance on the detonation initiation process are assessed; and five typical initiation modes are identified. It is found that increasing the hot spot pressure promotes detonation initiation, but the impact of the distance between dual hot spots on detonation initiation is non-monotonic. During the initiation process, the initial hot spot autoignites, and forms the cylindrical shock waves. Then, the triple-shock structure, which is caused by wave collisions and consists of the longitudinal detonation wave, transverse detonation wave and cylindrical shock wave, dominates the detonation initiation behaviour. A simplified theoretical model is proposed to predict the triple-point path, whose curvature quantitatively indicates the diffraction intensity of transient detonation waves. The longitudinal detonation wave significantly diffracts when the curvature of the triple-point path is large, resulting in the failed detonation initiation. Conversely, when the curvature is small, slight diffraction effects fail to prevent the transient detonation wave from developing. The propagation of the transverse detonation wave is affected not only by the diffraction effects but also by the mixture reactivity. When the curvature of the triple-point trajectory is large, a strong cylindrical shock wave is required to compress the mixture, enhancing its reactivity to ensure the transverse detonation wave can propagate without decoupling.
This study investigates the effects of fat emulsion-based early parenteral nutrition in patients following hemihepatectomy, addressing a critical gap in clinical knowledge regarding parenteral nutrition after hemihepatectomy. We retrospectively analysed clinical data from 274 patients who received non-fat emulsion-based parenteral nutrition (non-fatty nutrition group) and 297 patients who received fat emulsion-based parenteral nutrition (fatty nutrition group) after hemihepatectomy. Fat emulsion-based early parenteral nutrition significantly reduced levels of post-operative aspartate aminotransferase, total bilirubin and direct bilirubin, while minor decreases in red blood cell and platelet counts were observed in the fatty nutrition group. Importantly, fat emulsion-based early parenteral nutrition shortened lengths of post-operative hospital stay and fasting duration, but did not affect the incidence of short-term post-operative complications. Subgroup analyses revealed that the supplement of n-3 fish oil emulsions was significantly associated with a reduced inflammatory response and risk of post-operative infections. These findings indicate that fat emulsion-based early parenteral nutrition enhances short-term post-operative recovery in patients undergoing hemihepatectomy.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
The intrinsic uncertainty of fluid properties, including the equation-of-state, viscosity and thermal conductivity, on boundary layer stability has scarcely been addressed. When a fluid is operating in the vicinity of the Widom line (defined as the maximum of isobaric specific heat) in supercritical state, its properties exhibit highly non-ideal behavior, which is an ongoing research field leading to refined and more accurate fluid property databases. Upon crossing the Widom line, new mechanisms of flow instability emerge, feasibly leading to changes in dominating modes that yield turbulence. The present work investigates the sensitivity of three-dimensional boundary layer modal instability to these intrinsic uncertainties in fluid properties. The uncertainty, regardless of its source and the fluid regimes, gives rise to distortions of all profiles that constitute the inputs of the stability operator. The effect of these distortions on flow stability is measured by sensitivity coefficients, which are formulated with the adjoint operator and validated against linear modal stability analysis. The results are presented for carbon dioxide at a representative supercritical pressure of approximately 80 bar. The sensitivity to different inputs of the stability operator across various thermodynamic regimes shows an immense range of sensitivity amplitude. A balancing relationship between the density gradient and its perturbation leads to a quadratic effect across the Widom line, provoking significant sensitivity to distortions of the second derivative of the pressure with respect to the density, $\partial ^2 p/\partial \rho ^2$. From an application-oriented point of view, one important question is whether the correct baseflow profiles can be meaningfully analysed by the simplified ideal-fluid model. The integrated modal disturbance growth – the N factor calculated with different partly idealised models – indicates that the answer depends strongly on the thermodynamic regime investigated.
This study investigates the spatial distribution of inertial particles in turbulent Taylor–Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian–Lagrangian approach, with a fixed inner-wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number ($St$) varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer-wall region. Employing two-dimensional Voronoï analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of Johnson et al. (J. Fluid Mech., vol. 883, 2020, A27), to examine the particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration toward the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them toward the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared with the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications.
The previous study indicated that ubiquitination is involved in the freezing tolerance of hydrated seeds. Parthenolide (PN), inducing the ubiquitination of MDM2, an E3 ring-finger ubiquitin ligase, adversely affects the freezing tolerance of hydrated lettuce seeds. Therefore, a proteomics analysis was conducted to identify PN's targets in hydrated seeds exposed to cooling conditions. Several pathways, including oxidative phosphorylation (KEGG00190), amino sugar and nucleotide sugar metabolism (KEGG00520), and biosynthesis of nucleotide sugars (KEGG01250), were enriched in the PN treatment under slow-cooling conditions (3°C h−1, P < 0.05). Among the proteins in oxidative phosphorylation, the expression of NADH dehydrogenases and ATP synthases (ATPsyn) decreased in PN treatment. In contrast, uncoupling proteins increased after PN treatment, which led to the dissociation of the electron transport chain from ATP synthesis. Treatments with rotenone, dicoumarol, and oligomycin (i.e., oxidative phosphorylation inhibitors) decreased the survival rate of hydrated seeds under freezing conditions, which indicated that energy metabolism was related to the freezing tolerance of hydrated seeds. The predicted interactions between PN and MDM2-like proteins of Lactuca indicated that LsMDM2-5 forms two potential hydrogen bonds with PN. Furthermore, based on AlphaFold predictions and yeast 2-hybrid results, MDM2-5 might interact directly with NADH2. The knockdown of MDM2-5 by RNAi caused a higher level of NADH2 and ATPsyn and a higher freezing tolerance of hydrated seeds. This indicated that MDM2 played negative roles in regulating ATP synthesis and freezing tolerance of hydrated seeds.
Rhopalosiphum padi is an important grain pest, causing severe losses during crop production. As a systemic insecticide, flonicamid can control piercing-sucking pests efficiently. In our study, the lethal effects of flonicamid on the biological traits of R. padi were investigated via a life table approach. Flonicamid is highly efficiently toxic to R. padi, with an LC50 of 9.068 mg L−1. The adult longevity and fecundity of the R. padi F0 generation were markedly reduced under the LC25 and LC50 concentrations of flonicamid exposure. In addition, negative transgenerational effects on R. padi were observed under exposure to lethal concentrations of flonicamid, with noticeable decreases in the reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation under the LC25 concentration of flonicamid. Furthermore, the third nymph stage (N3), preadult stage, duration of the adult pre-reproductive period, duration of the total pre-reproductive period, reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation were significantly lower under treatment with the LC50 concentration of flonicamid. The life table parameters were subsequently analysed, revealing that the intrinsic rate of increase (rm) and the net reproductive rate (R0) were significantly lower but that the finite rate of increase (λ) and the mean generation time (T) were not significantly different under the LC25 and LC50 concentrations of flonicamid. These data are beneficial for grain aphid control and are critical for exploring the role of flonicamid in the integrated management of this key pest.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
Nonlinear compression experiments based on multiple solid thin plates are conducted in an ultra-high peak power Ti:sapphire laser system. The incident laser pulse, with an energy of 80 mJ and a pulse width of 30.2 fs, is compressed to 10.1 fs by a thin-plate based nonlinear compression. Significant small-scale self-focusing is observed as ring structures appear in the near-field of the output pulse at high energy. Numerical simulations based on the experimental setup provide a good explanation for the observed phenomena, offering quantitative predictions of the spectrum, pulse width, dispersion and near- and far-field distributions of the compressed laser pulse.
Stimulated Raman scattering is a third-order nonlinear optical effect that is not only effective for wavelength converting laser output, but also for single longitudinal-mode output due to the absence of spatial hole burning. Diamond is a prominent Raman-active medium that has significant potential for linewidth narrowing and wavelength converting lasers at high power levels due to its high thermal conductivity, long Raman frequency shift and wide spectral transmission range. In this work we utilize diamond in a resonantly mode-matched external cavity to achieve cascaded Raman conversion of a 1064 nm laser. By fine-tuning the length of this external cavity, we can obtain narrow linewidth emission at 1240 and 1485 nm. When operating at maximum power, the measured linewidths were more than twofold narrower than the linewidth of the fundamental field. In addition, the noise levels of the Stokes fields are lower than that of the fundamental field throughout the entire noise frequency range, and the intrinsic linewidth of the second Stokes field, which is expressed at the hertz level (~3.6 Hz), is decreased by approximately three orders of magnitude compared to that of the pump. This work represents the first measurement and analysis of the linewidth and noise characteristics of cascaded diamond Raman lasers and, significantly, offers a new means by which high-power, narrow linewidth laser output can be produced from wavelength-converted laser systems.
Modern fluvial sediments provide important information about source-to-sink process and regional tectono-magmatic events in the source area, but many factors, e.g., chemical weathering, sedimentary cycles and source-rock types, can interfere with the establishment of the source-sink system. The Lalin River (LR) and the Jilin Songhua River (JSR) are two important tributaries of the Songhua River in the Songnen Plain in NE China. They have similar flow direction, topography and identical climate backgrounds, but have notably different parent-rock types in the headwater, which provides an opportunity to explore the influencing factors of river sediment composition. To this end, the point bar sediments in the two rivers were sampled for an analysis of geochemistry (including element and Sr-Nd isotopic ratios), heavy mineral and detrital zircon U-Pb dating. The results are indicative of the fact that the two rivers have the similar geochemical composition (e.g., elements and Sr isotopes) as well as chemical weathering (CIA = 51.41–57.60, CIW = 59.68–66.11, PIA = 51.95–60.23, WIP = 56.00–65.47, Rb/Sr = 0.38–0.42) and recycling (SiO2/Al2O3 = 5.79 and 5.03, ICV = 1.0 and 1.2, CIA/WIP = 0.81–1.03) characteristics, showing a major control of climate on the low-level weathering and recycling of the river sediments. However, there are significant differences in the detrital zircon U-Pb age (a significant Mesozoic age peak for the LR but an additional Precambrian peak for the JSR), Nd isotope ratio (−6.2812–8.5830 and −8.1149–10.2411 for the LR and the JSR, respectively) and to a certain extent heavy mineral composition (e.g., for the < 63 μm fraction, a dominance of hornblende and magnetite in the LR, but haematite-limonite in the JSR) in the two river sediments, indicating that source rocks largely control the composition of the river sediments. Some of the major tectono-magmatic events (e.g., crustal growth and cratonisation of the North China Craton, closure of the Paleo-Asian Ocean, subduction and rollback of the Paleo-Pacific plate) occurring in the eastern Songnen Plain are well documented in the JSR sediments but not in the LR, the difference of which is largely regulated by the source rocks in the source area.
This study aimed to develop a predictive tool for identifying individuals with high antibody titers crucial for recruiting COVID-19 convalescent plasma (CCP) donors and to assess the quality and storage changes of CCP. A convenience sample of 110 plasma donors was recruited, of which 75 met the study criteria. Using univariate logistic regression and random forest, 6 significant factors were identified, leading to the development of a nomogram. Receiver operating characteristic curves, calibration plots, and decision curve analysis (DCA) evaluated the nomogram’s discrimination, calibration, and clinical utility. The nomogram indicated that females aged 18 to 26, blood type O, receiving 1 to 2 COVID-19 vaccine doses, experiencing 2 symptoms during infection, and donating plasma 41 to 150 days after symptom onset had higher likelihoods of high antibody titres. Nomogram’s AUC was 0.853 with good calibration. DCA showed clinical benefit within 9% ~ 90% thresholds. CCP quality was qualified, with stable antibody titres over 6 months (P > 0.05). These findings highlight developing predictive tools to identify suitable CCP donors and emphasize the stability of CCP quality over time, suggesting its potential for long-term storage.
The path planning and obstacle-crossing motion planning of cable trench inspection robots are essential for achieving automated inspection. To improve path planning efficiency and obstacle navigation in complex environments, an enhanced global path planning algorithm based on the A* algorithm has been developed, combined with an improved Dynamic Window Approach (DWA) for local path planning. For unavoidable obstacles, a specific obstacle-crossing motion planning strategy has been formulated. The enhanced A* algorithm improves efficiency and safety through adaptive neighborhood expansion and the elimination of redundant path points. The improved DWA algorithm enables real-time dynamic obstacle avoidance in local path planning. The simulation results on a $20 \times 20$ grid map indicate that the improved A* algorithm reduces the number of nodes by 58.4% and shortens the path length by 6.1% compared to the traditional A* algorithm, demonstrating significant advantages over other conventional path planning algorithms. In the simulation experiments integrating global and local path planning, the enhanced A* algorithm combined with the improved DWA algorithm reduces the path length by 3.2% on the $20 \times 20$ grid map compared to the integration with the traditional DWA algorithm. On the $30 \times 30$ grid maps with different obstacle configurations, the path lengths are reduced by 3.5% and 3.6%, respectively. In the obstacle-crossing experiments, the robot successfully overcame obstacles of 10 cm and 20 cm in height. The proposed path planning algorithm and obstacle-crossing motion planning strategy hold substantial application potential in complex environments, offering reliable technical support for cable trench inspection robots.
Fe2+-catalyzed transformation of poorly crystalline ferrihydrite into highly crystalline forms is critical in the biogeochemical cycles of Fe, nutrients, and trace elements. The co-existence of ferrihydrite and kaolinite is widespread in soils of tropical and subtropical regions. In this investigation, three associations of ferrihydrite–kaolinite with ratios of 10, 30, and 50% (10% Fhy–Kln, 30% Fhy–Kln, and 50% Fhy–Kln) were examined to study the impact of the initial Fe2+ concentration and pH on Fe2+-catalyzed transformation under anoxic conditions. The findings reveal that the ferrihydrite in the 10% Fhy–Kln associations has the smallest particle size and the largest number of surface hydroxyl groups. At 0.5 mM Fe2+ and pH 7.5, ferrihydrite underwent transformation into lepidocrocite, with the presence of kaolinite promoting the formation of goethite. Moreover, the presence of kaolinite influenced the morphology of the resulting transformation products. A decrease in pH hindered the transformation of ferrihydrite, while an increase in Fe2+ concentration resulted in the formation of magnetite. The impact of kaolinite in the association system on the transformations of ferrihydrite occurs primarily through alteration of the properties of ferrihydrite during its formation process.
Major psychiatric disorders (MPDs) are delineated by distinct clinical features. However, overlapping symptoms and transdiagnostic effectiveness of medications have challenged the traditional diagnostic categorisation. We investigate if there are shared and illness-specific disruptions in the regional functional efficiency (RFE) of the brain across these disorders.
Methods
We included 364 participants (118 schizophrenia [SCZ], 80 bipolar disorder [BD], 91 major depressive disorder [MDD], and 75 healthy controls [HCs]). Resting-state fMRI was used to caclulate the RFE based on the static amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality and corresponding dynamic measures indicating variability over time. We used principal component analysis to obtain static and dynamic RFE values. We conducted functional and genetic annotation and enrichment analysis based on abnormal RFE profiles.
Results
SCZ showed higher static RFE in the cortico-striatal regions and excessive variability in the cortico-limbic regions. SCZ and MDD shared lower static RFE with higher dynamic RFE in sensorimotor regions than BD and HCs. We observed association between static RFE abnormalities with reward and sensorimotor functions and dynamic RFE abnormalities with sensorimotor functions. Differential spatial expression of genes related to glutamatergic synapse and calcium/cAMP signaling was more likely in the regions with aberrant RFE.
Conclusions
SCZ shares more regions with disrupted functional integrity, especially in sensorimotor regions, with MDD rather than BD. The neural patterns of these transdiagnostic changes appear to be potentially driven by gene expression variations relating to glutamatergic synapses and calcium/cAMP signaling. The aberrant sensorimotor, cortico-striatal, and cortico-limbic integrity may collectively underlie neurobiological mechanisms of MPDs.
In this chapter, we selectively present global methods for efficiently solving FPDEs, employing the basis functions introduced in Chapters 2 and 3. Here, we adopt the term global often in the context of space-time, considering time as another (space-like) spectral direction. We examine a number of typical FPDEs, which we introduced and probabilistically interpreted in Chapter 1, including: the subdiffusion equation, tempered fractional diffusion on the half/whole line, in addition to the generalized and unified (1+d)-dimensional sub-to-superdiffusion FPDE model for d≥1, where a single FPDE form can model a range of physical processes by just varying the corresponding temporal/spatial fractional derivatives in the model, hence, rendering the FPDE elliptic, parabolic, and/or hyperbolic on the (1+d)-dimensional space-time hypercube. In this chapter, we employ one-sided, two-sided, constant/variable-order, and fully distributed order fractional operators, introduced in Chapters 1 and 2.
As highlighted in Chapter 1, anomalous transport phenomena can be observed in a wide variety of complex, multi-scale, and multi-physics systems such as: sub-/super-diffusion in subsurface transport, kinetic plasma turbulence, aging polymers, glassy materials, in addition to amorphous semiconductors, biological cells, heterogeneous tissues, and fractal disordered media. In this chapter, we focus on some selective applications of FPDEs and the methods presented in earlier chapters, reporting the scientific evidence of how and why fractional modeling naturally emerges in each case, along with a review of selected nonlocal mathematical models that have been proposed. The applications of interest are: (i) concentration transport in surface/subsurface dynamics, (ii) complex rheology and material damage, and (iii) fluid turbulence and geostrophic transport.
We initially introduce the standard diffusion model solving the PDF of the Brownian motion/process, satisfying the normal scaling property. This happens through a new definition of the process increments, where they are no longer drawn from a normal distribution, leading to α-stable Lévy flights at the microscopic level and correspondingly an anomalous diffusion model with a fractional Laplacian at the macroscopic scale. Next, we show how the Riemann–Liouville fractional derivatives emerge in another anomalous diffusion model corresponding to the asymmetric α-stable Lévy flights at small scales. Subsequently, we introduce the notion of subdiffusion stochastic processes, in which the Caputo time-fractional derivative appears in the anomalous subdiffusion fractional model. We combine the previous two cases, and construct continuous-time random walks, where a space-time fractional diffusion model will solve the evolution of the probability density function of the stochastic process. Next, we motivate and introduce many other types of fractional derivatives that will code more complexity and variability at micro-to-macroscopic scales, including fractional material derivatives, time-variable diffusivity for the fractional Brownian motion, tempered/variable-order/distributed-order/vector fractional calculus, etc.