Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T05:06:28.627Z Has data issue: false hasContentIssue false

Synthesis, Structure, and Ferroelectricity of a Kaolinite-p--Aminobenzamide Intercalation Compound

Published online by Cambridge University Press:  01 January 2024

Shun-Ping Zhao*
Affiliation:
Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
Yu Guo
Affiliation:
School of Physics and Electrical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
Miao-Miao Zhu
Affiliation:
Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
Jie Wang
Affiliation:
Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
Xiao-Liang Feng
Affiliation:
Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
Qiao Qiao
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People's Republic of China
Heng Xu
Affiliation:
Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
*
*E-mail address of corresponding author: zsp200109@163.com

Abstract

The construction of organic-inorganic hybrid ferroelectric materials with larger, high-polarity guest molecules intercalated in kaolinite (K) faces difficulties in terms of synthesis and uncertainty of structure-property relationships. The purpose of the present study was to optimize the synthesis method and to determine the mechanism of ferroelectric behavior of kaolinite intercalated with p-aminobenzamide (PABA), with an eye to improving the design of intercalation methods and better utilization of clay-based ferroelectric materials. The K-PABA intercalation compound (chemical formula Al2Si2O5(OH)4∙(PABA)0.7) was synthesized in an autoclave and then characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The experimental results showed that PABA expanded the kaolinite interlayer from 7.2 Å to 14.5 Å, and the orientation of the PABA molecule was ~70° from the plane of the kaolinite layers. The amino group of the PABA molecule was close to the Si sheet. The presence of intermolecular hydrogen bonds between kaolinite and PABA and among PABA molecules caused macro polarization of K-PABA and dipole inversion under the external electric field, resulting in K-PABA ferroelectricity. Simulation calculations using the Cambridge Sequential Total Energy Package (CASTEP) and the ferroelectricity test revealed the optimized intercalation model and possible ferroelectric mechanism.

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M., Reid, P. I., Thomas, J. M., & Walters, M. J. (1976). On the hydrogen atom positions in a kaolinite: formamide intercalate. Clays and Clay Minerals, 24, 267269.CrossRefGoogle Scholar
Alléaume, M. (1967) Etude cristallographique de composés sulfamidés. (Doctoral dissertation, Université de Bordeaux).Google Scholar
Almeida, A. R., Monte, M. J., Matos, M. A. R., & Morais, V. M. (2013). Experimental and computational thermodynamic study of ortho-meta-and para-aminobenzamide. The Journal of Chemical Thermodynamics, 59, 222232.CrossRefGoogle Scholar
Ayodele, O. B., & Hameed, B. H. (2013). Development of kaolinite supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo-Fenton process. Applied Clay Science, 83, 171181.CrossRefGoogle Scholar
Balan, E., Delattre, S., Guillaumet, M., & Salje, E. K. (2010). Low-temperature infrared spectroscopic study of OH-stretching modes in kaolinite and dickite. American Mineralogist, 95, 12571266.CrossRefGoogle Scholar
Barrios, J. (1977). Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite-relationship with the infrared spectra. Clays and Clay Minerals, 25, 422429.CrossRefGoogle Scholar
Benco, L., Tunega, D., Hafner, J., & Lischka, H. (2001). Upper limit of the O-H... O hydrogen bond. Ab initio study of the kaolinite structure. The Journal of Physical Chemistry B, 105, 1081210817.CrossRefGoogle Scholar
Berkovitch-Yellin, Z., Van Mil, J., Addadi, L., Idelson, M., Lahav, M., & Leiserowitz, L. (1985). Crystal morphology engineering by “tailor-made” inhibitors; a new probe to fine intermolecular interactions. Journal of the American Chemical Society, 107, 31113122.CrossRefGoogle Scholar
Braga, D., & Grepioni, F. (1999). Crystal engineering: from molecules and crystals to materials. In: (D. Braga, F. Grepioni, and F. Orpen, Eds) Crystal Engineering: From Molecules and Crystals to Materials, Springer, Dordrecht, 421441.CrossRefGoogle Scholar
Braggs, B., Fornasiero, D., Ralston, J., & Smart, R. S. (1994). The effect of surface modification by an organosilane on the electrochemical properties of kaolinite. Clays and Clay Minerals, 42, 123136.CrossRefGoogle Scholar
Breen, C., D'Mello, N., & Yarwood, J. (2002). The thermal stability of mixed phenylphosphonic acid/water intercalates of kaolin and halloysite. A TG-EGA and VT-DRIFTS study. Journal of Materials Chemistry, 12, 273278.CrossRefGoogle Scholar
Carretero, M. I., & Pozo, M. (2009). Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Applied Clay Science, 46, 7380.CrossRefGoogle Scholar
Chen, B., Shi, J., Zheng, X., Zhou, Y., Zhu, K., & Priya, S. (2015). Ferroelectric solar cells based on inorganic-organic hybrid perovskites. Journal of Materials Chemistry A, 3, 76997705.CrossRefGoogle Scholar
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 220, 567570.CrossRefGoogle Scholar
Cornelissen, T. D., Biler, M., Urbanaviciute, I., Norman, P., Linares, M., & Kemerink, M. (2019). Kinetic Monte Carlo simulations of organic ferroelectrics. Physical Chemistry Chemical Physics, 21, 13751383.CrossRefGoogle ScholarPubMed
Croteau, T., Bertram, A. K., & Patey, G. N. (2010). Observations of high-density ferroelectric ordered water in kaolinite trenches using Monte Carlo simulations. The Journal of Physical Chemistry A, 114, 83968405.CrossRefGoogle ScholarPubMed
Cruz, M. D. R., & Franco, F. (2000). Thermal behavior of the kaolinitehydrazine intercalation complex. Clays and Clay Minerals, 48, 6367.CrossRefGoogle Scholar
Dedzo, G. K., & Detellier, C. (2013). Ionic liquid-kaolinite nanohybrid materials for the amperometric detection of trace levels of iodide. Analyst, 138, 767770.CrossRefGoogle ScholarPubMed
Dedzo, G. K., Letaief, S., & Detellier, C. (2012). Kaolinite-ionic liquid nanohybrid materials as electrochemical sensors for size-selective detection of anions. Journal of Materials Chemistry, 22, 2059320601.CrossRefGoogle Scholar
Desiraju, G. R. (2007). Crystal engineering: a holistic view. Angewandte Chemie International Edition, 46, 83428356.CrossRefGoogle ScholarPubMed
Desiraju, G. R., & Parshall, G. W. (1989). Crystal engineering: the design of organic solids. Materials Science Monographs, 54.Google Scholar
Desiraju, G. R. & Steiner, T. (2001) The Weak Hydrogen Bond: in Structural Chemistry and Biology. Monograph, 9, International Union of Crystallography, 507 pp.Google Scholar
Fabbrizzi, L., & Poggi, A. (1995). Sensors and switches from supra-molecular chemistry. Chemical Society Reviews, 24, 197202.CrossRefGoogle Scholar
Fafard, J., Terskikh, V., & Detellier, C. (2017). Solid-state 1H and 27Al NMR studies of DMSO-kaolinite intercalates. Clays and Clay Minerals, 65, 206219.CrossRefGoogle Scholar
Frost, R. L., Kloprogge, J. T., Kristof, J., & Horvath, E. (1999). Deintercalation of hydrazine-intercalated low-defect kaolinite. Clays and Clay Minerals, 47, 732741.CrossRefGoogle Scholar
Frost, R. L., Kristof, J., Schmidt, J. M., & Kloprogge, J. T. (2001). Raman spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57, 603609.CrossRefGoogle ScholarPubMed
Gardolinski, J. E., Ramos, L. P., de Souza, G. P., & Wypych, F. (2000). Intercalation of benzamide into kaolinite. Journal of Colloid and Interface Science, 221, 284290.CrossRefGoogle ScholarPubMed
Guloy, A. M., Tang, Z., Miranda, P. B., & Srdanov, V. I. (2001). A new luminescent organic-inorganic hybrid compound with large optical nonlinearity. Advanced Materials, 13, 833837.3.0.CO;2-T>CrossRefGoogle Scholar
He, H. P., Guo, J. G., Zhu, J. X., & Yang, D. (2001). An experimental study of adsorption capacity of montmorillonite, kaolinite and illite for heavy metals. Acta Petrologica et Mineralogica, 4, 574578.Google Scholar
Horiuchi, S., & Tokura, Y. (2008). Organic ferroelectrics. Nature Materials, 7, 357366.CrossRefGoogle ScholarPubMed
Huang, B., Sun, L. Y., Wang, S. S., Zhang, J. Y., Ji, C. M., Luo, J. H., Zhang, W. X., & Chen, X. M. (2017). A near-room-temperature organic-inorganic hybrid ferroelectric: [C6H5CH2CH2NH3]2[CdI4]. Chemical Communications, 53, 57645766.CrossRefGoogle ScholarPubMed
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding (Vol. 12, p. 228). New York: Oxford University Press.Google Scholar
Ji, C., Liu, S., Han, S., Tao, K., Sun, Z., & Luo, J. (2018). Towards a spectrally customized photoresponse from an organic-inorganic hybrid ferroelectric. Angewandte Chemie International Edition, 57, 1676416767.CrossRefGoogle ScholarPubMed
Kloprogge, J. T. (2019). The Kaolin Group: Hydroxyl Groups. In: Spectroscopic Methods in the Study of Kaolin Minerals and Their Modifications. Springer, Berlin, pp. 4196.CrossRefGoogle Scholar
Kristof, J., Frost, R., Kloprogge, J., Horváth, E., & Gábor, M. (1999). Thermal behaviour of kaolinite intercalated with formamide, dimethyl sulphoxide and hydrazine. Journal of Thermal Analysis and Calorimetry, 56, 885891.CrossRefGoogle Scholar
Kristof, J., Mink, J., Horvath, E., & Gábor, M. (1993). Intercalation study of clay minerals by Fourier transform infrared spectrometry. Vibrational Spectroscopy, 5, 6167.CrossRefGoogle Scholar
Ledoux, R. L., & White, J. L. (1964). Infrared study of the OH groups in expanded kaolinite. Science, 143, 244246.CrossRefGoogle ScholarPubMed
Lehn, J. M. (1985). Supramolecular chemistry: receptors, catalysts, and carriers. Science, 227, 849856.CrossRefGoogle ScholarPubMed
Letaief, S., & Detellier, C. (2009). Functionalization of the interlayer surfaces of kaolinite by alkylammonium groups from ionic liquids. Clays and Clay minerals, 57, 638648.CrossRefGoogle Scholar
Letaief, S., Tonle, I. K., Diaco, T., & Detellier, C. (2008). Nanohybrid materials from interlayer functionalization of kaolinite. Application to the electrochemical preconcentration of cyanide. Applied Clay Science, 42, 95101.CrossRefGoogle Scholar
Lines, M. E., & Glass, A. M. (2001) Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, UK.CrossRefGoogle Scholar
Liu, P. (2007). Polymer modified clay minerals: A review. Applied Clay Science, 38, 6476.CrossRefGoogle Scholar
Martorell, B., Kremleva, A., Krüger, S., & Rösch, N. (2010). Density functional model study of uranyl adsorption on the solvated (001) surface of kaolinite. The Journal of Physical Chemistry C, 114, 1328713294.CrossRefGoogle Scholar
Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51, 102109.CrossRefGoogle Scholar
Murray, H.H., & Keller, W.D. (1993) Kaolins, kaolins and kaolins. Pp. 124 in: Kaolin Genesis and Utilization (Murray, H.H., Bundy, W., & Harvey, C., editors). Special Publication, 1. The Clay Minerals Society, Boulder, Colorado, USA.CrossRefGoogle Scholar
Nakagaki, S., Benedito, F. L., & Wypych, F. (2004). Anionic iron (III) porphyrin immobilized on silanized kaolinite as catalyst for oxidation reactions. Journal of Molecular Catalysis A: Chemical., 217 121131.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M., & Quirk, J. P. (1968). Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. The Journal of Physical Chemistry, 72, 241249.CrossRefGoogle Scholar
Orzechowski, K., Słonka, T., & Głowinski, J. (2006). Dielectric properties of intercalated kaolinite. Journal of Physics and Chemistry of Solids, 67, 915919.CrossRefGoogle Scholar
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.CrossRefGoogle ScholarPubMed
Prasad, L. G., Krishnakumar, V., Nagalakshmi, R., & Manohar, S. (2011). Physicochemical properties of highly efficient organic NLO crystal: 4-Aminobenzamide. Materials Chemistry and Physics, 128, 9095.CrossRefGoogle Scholar
Qiao, Q., Ding, Y. N., Zhao, S. P., Li, L., Liu, J. L., & Ren, X. M. (2017). Design and preparation of a hybrid ferroelectric material through ethylene glycol covalently grafted to Kaolinite. Inorganic Chemistry Frontiers, 4, 14051412.CrossRefGoogle Scholar
Radhakrishnan, T. P. (2008). Molecular structure, symmetry, & shape as design elements in the fabrication of molecular crystals for second harmonic generation and the role of molecules-in-materials. Accounts of Chemical Research, 41, 367376.CrossRefGoogle ScholarPubMed
Schuster, P., Zundel, G., & Sandorfy, C. (1976) Hydrogen Bond; Recent Developments in Theory and Experiments. North-Holland Publishing Company, Amsterdam, The Netherlands.Google Scholar
Segall, M. D., Lindan, P. J., Probert, M. A., Pickard, C. J., Hasnip, P. J., Clark, S. J., & Payne, M. C. (2002). First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14, 2717.Google Scholar
Seifi, S., Diatta-Dieme, M. T., Blanchart, P., Lecomte-Nana, G. L., Kobor, D., & Petit, S. (2016). Kaolin intercalated by urea. Ceramic applications. Construction and Building Materials, 113, 579585.CrossRefGoogle Scholar
Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41, 4876.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Szafrański, M., & Katrusiak, A. (2008). Giant dielectric anisotropy and relaxor ferroelectricity induced by proton transfers in NH+ · · · N-bonded supramolecular aggregates. The Journal of Physical Chemistry B, 112, 67796785.CrossRefGoogle ScholarPubMed
Takenawa, R., Komori, Y., Hayashi, S., Kawamata, J., & Kuroda, K. (2001). Intercalation of nitroanilines into kaolinite and second harmonic generation. Chemistry of Materials, 13, 37413746.CrossRefGoogle Scholar
Theng, B. (1984). Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 241248.CrossRefGoogle Scholar
Valasek, J. (1921). Piezo-electric and allied phenomena in Rochelle salt[J]. Physical Review, 17, 475481.CrossRefGoogle Scholar
Wang, Y., Zhou, S., & Du, H. (2018). Investigation of dielectric properties of polymer composites with kaolin. Journal of Materials Science: Materials in Electronics, 29, 1236012365.Google Scholar
Williams, H. C. W. L., & Moore, M. A. (1972). Theory of hydrogen-bonded ferroelectrics: I. Journal of Physics C: Solid State Physics, 5, 3168.CrossRefGoogle Scholar
Xiong, C., Pernice, W. H., Ngai, J. H., Reiner, J. W., Kumah, D., Walker, F. J., & Tang, H. X. (2014). Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Letters, 14, 14191425.CrossRefGoogle ScholarPubMed
Xu, C., Zhang, W., Gao, L., Gan, X., Sun, X., Cui, Z., Zepeng, C., Cai, H., & Wu, X. S. (2017). A high-temperature organic-inorganic ferroelectric with outstanding switchable dielectric characteristics. RSC Advances, 7, 4793347937.CrossRefGoogle Scholar
Yariv, S., Lapides, I., Nasser, A., Lahav, N., Brodsky, I., & Michaelian, K. H. (2000). Infrared study of the intercalation of potassium halides in kaolinite. Clays and Clay Minerals, 48, 1018.CrossRefGoogle Scholar
Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G., & Huang, S. D. (2008). Hydrogen-bonded ferroelectrics based on metal-organic coordination. Journal of the American Chemical Society, 131, 4243.CrossRefGoogle Scholar
Zhang, S., Liu, Q., Gao, F., Li, X., Liu, C., Li, H., Boyd, S. A., Johnston, C. T., & Teppen, B. J. (2016). Mechanism associated with kaolinite intercalation with urea: combination of infrared spectroscopy and molecular dynamics simulation studies. The Journal of Physical Chemistry C, 121, 402409.CrossRefGoogle ScholarPubMed
Zhao, H. R., Li, D. P., Ren, X. M., Song, Y., & Jin, W. Q. (2009). Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3] chains directed organic cations aggregation to Kagomé-shaped tubular architecture. Journal of the American Chemical Society, 132, 1819.CrossRefGoogle Scholar
Zhao, S. P., Gao, H., Ren, X. M., Yuan, G. J., & Lu, Y. N. (2012). A facile and efficient strategy for the design of ferroelectric and giant dielectric hybrids via intercalating polar molecules into noncentrosymmetric layered inorganic compounds. Journal of Materials Chemistry, 22, 447453.CrossRefGoogle Scholar
Supplementary material: File

Zhao et al. supplementary material
Download undefined(File)
File 290.7 KB