We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There is growing evidence that gray matter atrophy is constrained by normal brain network (or connectome) architecture in neuropsychiatric disorders. However, whether this finding holds true in individuals with depression remains unknown. In this study, we aimed to investigate the association between gray matter atrophy and normal connectome architecture at individual level in depression.
Methods
In this study, 297 patients with depression and 256 healthy controls (HCs) from two independent Chinese dataset were included: a discovery dataset (105 never-treated first-episode patients and matched 130 HCs) and a replication dataset (106 patients and matched 126 HCs). For each patient, individualized regional atrophy was assessed using normative model and brain regions whose structural connectome profiles in HCs most resembled the atrophy patterns were identified as putative epicenters using a backfoward stepwise regression analysis.
Results
In general, the structural connectome architecture of the identified disease epicenters significantly explained 44% (±16%) variance of gray matter atrophy. While patients with depression demonstrated tremendous interindividual variations in the number and distribution of disease epicenters, several disease epicenters with higher participation coefficient than randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus were significantly shared by depression. Other brain regions with strong structural connections to the disease epicenters exhibited greater vulnerability. In addition, the association between connectome and gray matter atrophy uncovered two distinct subgroups with different ages of onset.
Conclusions
These results suggest that gray matter atrophy is constrained by structural brain connectome and elucidate the possible pathological progression in depression.
Relativistic few-cycle mid-infrared (mid-IR) pulses are unique tools for strong-field physics and ultrafast science, but are difficult to generate with traditional nonlinear optical methods. Here, we propose a scheme to generate such pulses with high efficiency via plasma-based frequency modulation with a negatively chirped laser pulse (NCLP). The NCLP is rapidly compressed longitudinally due to dispersion and plasma etching, and its central frequency is downshifted via photon deceleration due to the enhanced laser intensity and plasma density modulations. Simulation results show that few-cycle mid-IR pulses with the maximum center wavelength of $7.9\;\unicode{x3bc} \mathrm{m}$ and pulse intensity of ${a}_{\mathrm{MIR}}=2.9$ can be generated under a proper chirp parameter. Further, the maximum energy conversion efficiency can approach 5.0%. Such a relativistic mid-IR source is promising for a wide range of applications.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources, nonlinear crystals of large aperture are demanded for high-energy amplifiers. Yttrium calcium oxyborate (YCa4O(BO3)3, YCOB) is capable of being grown with apertures exceeding 100 mm, which makes it possible for application in systems of petawatt scale. In this paper, we experimentally demonstrated for the first time to our knowledge, an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm. Based on the SG-II 5 PW facility, amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%. A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs. The near-field and wavefront aberration represented excellent characteristics, which were comparable with those achieved in lithium triborate-based amplifiers. These results verified the great potential for YCOB utilization in the future.
Aberrant DNA methylation patterns in sperm are a cause of embryonic failure and infertility, and could be a critical factor contributing to male recurrent spontaneous abortion (RSA). The purpose of this study was to reveal the potential effects of sperm DNA methylation levels in patients with male RSA. We compared sperm samples collected from fertile men and oligoasthenospermia patients. Differentially methylated sequences were identified by reduced representation bisulfite sequencing (RRBS) methods. The DNA methylation levels of the two groups were compared and qRT-PCR was used to validate the expression of genes showing differential methylation. The results indicated that no difference in base distribution was observed between the normal group and the patient group. However, the chromosome methylation in these two groups was markedly different. One site was located on chromosome 8 and measured 150 bp, while the other sites were on chromosomes 9, 10, and X and measured 135 bp, 68 bp, and 136 bp, respectively. In particular, two genes were found to be hypermethylated in these patients, one gene was DYDC2 (placed in the differential methylation region of chromosome 10), and the other gene was NXF3 (located on chromosome X). Expression levels of DYDC2 and NXF3 in the RSA group were significantly lower than those in the normal group (P < 0.05). Collectively, these results demonstrated that changes in DNA methylation might be related to male RSA. Our findings provide important information regarding the potential role of sperm DNA methylation in human development.
It is unclear whether the enhancing contact model (ECM) intervention is effective in reducing family caregiving burden and improving hope and quality of life (QOL) among family caregivers of persons with schizophrenia (FCPWS).
Methods
We conducted a cluster randomized controlled trial in FCPWS in eight rural townships in Xinjin, Chengdu, China. In total, 253 FCPWS were randomly allocated to the ECM, psychoeducational family intervention (PFI), or treatment as usual (TAU) group. FCPWS in three groups were assessed caregiving burden, QOL and state of hope at baseline (T0), post-intervention (T1), 3-month (T2), and 9-month (T3) follow-up, respectively.
Results
Compared with participants in the TAU group, participants in the ECM group had statistically significantly lower caregiving burden scores both at T1 and T2 (p = 0.0059 and 0.0257, respectively). Compared with participants in the TAU group, participants in the PFI group had statistically significantly higher QOL scores in T1 (p = 0.0406), while participants in the ECM group had statistically significantly higher QOL scores in T3 (p = 0.0240). Participants in both ECM and PFI groups had statistically significantly higher hope scores than those in the TAU group at T1 (p = 0.0160 and 0.0486, respectively).
Conclusions
This is the first study to explore the effectiveness of ECM on reducing family caregiving burden and improving hope and QOL in rural China. The results indicate the ECM intervention, a comprehensive and multifaceted intervention, is more effective than the PFI in various aspects of mental wellbeing among FCPWS. Future research needs to confirm ECM's effectiveness in various population.
Little is known about the effects of bilingualism and distributional properties of word relationships on children's development of semantic convergence, operationalized as children's ability to produce word associates that mirror adults’ responses in a word association task. Forty-five Mandarin–English bilingual, 32 Spanish–English bilingual, and 28 English-speaking monolingual children, aged 4 to 7, produced three associates to each of 15 single-word cues in English. Children's productions were compared against adult responses to the same cues in the “Small World of Words” Norm. Three scoring methods comparing similarities of children's responses to adults’ showed consistent bilingual disadvantages in producing adult-like responses. Follow-up analyses targeted the three most predominant responses adults produced for each cue and addressed factors predicting children's likelihood to produce these responses. Results showed additional effects of cue-associate relationships measured by co-occurrence and semantic relatedness. The findings highlight the multi-faceted nature of knowledge development of word relationship and semantic convergence.
Understanding predator–prey interactions is essential for successful pest management by using predators, especially for the suppression of novel invasive pest. The green lacewing Chrysopa formosa is a promising polyphagous predator that is widely used in the biocontrol of various pests in China, but information on the control efficiency of this predator against the seriously invasive pest Spodoptera frugiperda and native Spodoptera litura is limited. Here we evaluated the predation efficiency of C. formosa adults on eggs and first- to third-instar larvae of S. frugiperda and S. litura through functional response experiments and determined the consumption capacity and prey preference of this chrysopid. Adults of C. formosa had a high consumption of eggs and earlier instar larvae of both prey species, and displayed a type II functional response on all prey stages. Attack rates of the chrysopid on different prey stages were statistically similar, but the handling time increased notably as the prey developed. The highest predation efficiency and shortest-handling time were observed for C. formosa feeding on Spodoptera eggs, followed by the first-instar larvae. C. formosa exhibited a significant preference for S. litura over S. frugiperda in a two-prey system. In addition, we summarized the functional response and predation efficiency of several chrysopids against noctuid pests and made a comparison with the results obtained from C. formosa. These results indicate that C. formosa has potential as an agent for biological control of noctuid pests, particularly for the newly invasive pest S. frugiperda in China.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
X/γ-rays have many potential applications in laboratory astrophysics and particle physics. Although several methods have been proposed for generating electron, positron, and X/γ-photon beams with angular momentum (AM), the generation of ultra-intense brilliant γ-rays is still challenging. Here, we present an all-optical scheme to generate a high-energy γ-photon beam with large beam angular momentum (BAM), small divergence, and high brilliance. In the first stage, a circularly polarized laser pulse with intensity of 1022 W/cm2 irradiates a micro-channel target, drags out electrons from the channel wall, and accelerates them to high energies via the longitudinal electric fields. During the process, the laser transfers its spin angular momentum (SAM) to the electrons’ orbital angular momentum (OAM). In the second stage, the drive pulse is reflected by the attached fan-foil and a vortex laser pulse is thus formed. In the third stage, the energetic electrons collide head-on with the reflected vortex pulse and transfer their AM to the γ-photons via nonlinear Compton scattering. Three-dimensional particle-in-cell simulations show that the peak brilliance of the γ-ray beam is $\sim 1{0}^{22}$ photons·s–1·mm–2·mrad–2 per 0.1% bandwidth at 1 MeV with a peak instantaneous power of 25 TW and averaged BAM of $1{0}^6\hslash$/photon. The AM conversion efficiency from laser to the γ-photons is unprecedentedly 0.67%.
Nowadays, automated essay evaluation (AEE) systems play an important role in evaluating essays and have been successfully used in large-scale writing assessments. However, existing AEE systems mostly focus on grammar or shallow content measurements rather than higher-order traits such as ideas. This paper proposes a new formulation of graph-based features for concept maps using word embeddings to evaluate the quality of ideas for Chinese compositions. The concept map derived from the student’s composition is composed of the concepts appearing in the essay and the co-occurrence relationship between the concepts. By utilizing real compositions written by eighth-grade students from a large-scale assessment, the scoring accuracy of the computer evaluation system (named AECC-I: Automated Evaluation for Chinese Compositions—Ideas) is higher than the baselines. The results indicate that the proposed method deepens the construct-relevant coverage of automatic ideas evaluation in compositions and that it can provide constructive feedback for students.
Visual tracking is an essential building block for target tracking and capture of the underwater vehicles. On the basis of remotely autonomous control architecture, this paper has proposed an improved kernelized correlation filter (KCF) tracker and a novel fuzzy controller. The model is trained to learn an online correlation filter from a plenty of positive and negative training samples. In order to overcome the influence from occlusion, the improved KCF tracker has been designed with an added self-discrimination mechanism based on system confidence uncertainty. The novel fuzzy logic tracking controller can automatically generate and optimize fuzzy rules. Through Q-learning algorithm, the fuzzy rules are acquired through the estimating value of each state action pairs. An S surface based fitness function has been designed for the improvement of learning based particle swarm optimization. Tank and channel experiments have been carried out to verify the proposed tracker and controller through pipe tracking and target grasp on the basis of designed open frame underwater vehicle.
The high overall plant-based diet index (PDI) is considered to protect against type 2 diabetes in the general population. However, whether the PDI affects gestational diabetes mellitus (GDM) risk among pregnant women is still unclear. We evaluated the association between PDI and GDM risk based on a Chinese large prospective cohort – the Tongji Maternal and Child Health Cohort. Dietary data were collected at 13–28 weeks of pregnancy by a validated semi-quantitative FFQ. The PDI was obtained by assigning plant food groups positive scores while assigning animal food groups reverse scores. GDM was diagnosed by a 75 g 2-h oral glucose tolerance test at 24–28 weeks of gestation. Logistic regression models were fitted to estimate OR of GDM, with associated 95 % CI, comparing women in different PDI quartiles. Among the total 2099 participants, 169 (8·1 %) were diagnosed with GDM. The PDI ranged from 21·0 to 52·0 with a median of 36·0 (interquartile range (IQR) 33·0–39·0). After adjusting for social-demographic characteristics and lifestyle factors etc., the participants with the highest quartile of PDI were associated with 57 % reduced odds of GDM compared with women in the lowest quartile of PDI (adjusted OR 0·43; 95 % CI 0·24, 0·77; Pfor trend = 0·005). An IQR increment in PDI was associated with 29 % decreased odds of GDM (adjusted OR 0·71; 95 % CI 0·56, 0·90). Findings suggest that adopting a plant-based diet during pregnancy could reduce GDM risk among Chinese women, which may be valuable for dietary counselling during pregnancy.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
Although topographic mapping missions and geological surveys carried out by Autonomous Underwater Vehicles (AUVs) are becoming increasingly prevalent, the lack of precise navigation in these scenarios still limits their application. This paper deals with the problems of long-term underwater navigation for AUVs and provides new mapping techniques by developing a Bathymetric Simultaneous Localisation And Mapping (BSLAM) method based on graph SLAM technology. To considerably reduce the calculation cost, the trajectory of the AUV is divided into various submaps based on Differences of Normals (DoN). Loop closures between submaps are obtained by terrain matching; meanwhile, maximum likelihood terrain estimation is also introduced to build weak data association within the submap. Assisted by one weight voting method for loop closures, the global and local trajectory corrections work together to provide an accurate navigation solution for AUVs with weak data association and inaccurate loop closures. The viability, accuracy and real-time performance of the proposed algorithm are verified with data collected onboard, including an 8 km planned track recorded at a speed of 4 knots in Qingdao, China.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
TRIM28/KAP1/TIF1β was identified as a universal transcriptional co-repressor and is critical for regulating post-fertilization methylation reprogramming in preimplantation embryos. In this study, three siRNAs (si647, si742, and si1153) were designed to target the TRIM28 mRNA sequence. After transfection of the mixture of the three siRNA (siMix) into bovine fibroblast cells, the most effective one for TRIM28 knockdown was selected. By injecting RNAi directed against TRIM28 mRNA, we found that TRIM28 knockdown in oocytes had the most effect on the H19 gene, in which differentially methylated region (DMR) methylation was almost completely absent at the 2-cell stage (1.4%), while control embryos showed 74% methylation. In addition, global H3K9me3 levels at the 2-cell stage were significantly higher in the in vitro fertilization (IVF) group than in the TRIM28 knockdown group (P<0.05). We further show that TRIM28 is highly expressed during oocyte maturation and reaches peak levels at the 2-cell stage. In contrast, at this stage, TRIM28 expression in somatic cell nuclear transfer (SCNT) embryos decreased significantly (P<0.05), suggesting that Trim28 transcripts are lost during SCNT. TRIM28 is required for the maintenance of methylation imprints in bovine preimplantation embryos, and the loss of TRIM28 during SCNT may contribute to the unfaithful maintenance of imprints in cloned embryos.
Familial monozygotic (MZ) twinning reports are rare around the world, and we report a four-generation pedigree with seven recorded pairs of female MZ twins. Whole-genome sequencing of seven family members was performed to explore the featured genetic factors in MZ twins. For variations specific to MZ twins, five novel variants were observed in the X chromosome. These candidates were used to explain the seemingly X-linked dominant inheritance pattern, and only one variant was exonic, located at the 5′UTR region of ZCCHC12 (chrX: 117958597, G > A). Besides, consistent mitochondrial DNA composition in the maternal linage precluded roles of mitochondria for this trait. In this pedigree, autosomes also contain diverse variations specific to MZ twins. Pathway analysis revealed a significant enrichment of genes carrying novel SNVs in the epithelial adherens junction-signaling pathway (p = .011), contributed by FGFR1, TUBB6, and MYH7B. Meanwhile, TBC1D22A, TRIOBP, and TUBB6, also carrying similar SNVs, were involved in the GTPase family-mediated signal pathway. Furthermore, gene-set enrichment analysis for 533 genes covered by copy number variations specific to MZ twins illustrated that the tight junction-signaling pathway was significantly enriched (p < .001). Therefore, the novel changes in the X chromosome and the provided candidate variants across autosomes may be responsible for MZ twinning, giving clues to increase our understanding about the underlying mechanism.
We summarize our model that high frequency quasi-periodic oscillations (QPOs) both in the neutron star low mass X-ray binaries (NS-LMXBs) and black hole LMXBs may originate from magnetohydrodynamic (MHD) waves. Based on the MHD model in NS-LMXBs, the explanation of the parallel tracks is presented. The slowly varying effective surface magnetic field of a NS leads to the shift of parallel tracks of QPOs in NS-LMXBs. In the study of kilohertz (kHz) QPOs in NS-LMXBs, we obtain a simple power-law relation between the kHz QPO frequencies and the combined parameter of accretion rate and the effective surface magnetic field. Based on the MHD model in BH-LMXBs, we suggest that two stable modes of the Alfv́en waves in the accretion disks with a toroidal magnetic field may lead to the double high frequency QPOs. This model, in which the effect of the general relativity in BH-LMXBs is considered, naturally accounts for the 3:2 relation for the upper and lower frequencies of the QPOs and the relation between the BH mass and QPO frequency.