We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The magnetostrictive response of a Terfenol-D pellet was measured via a laboratory-based X-ray diffractometer. X-ray diffraction patterns were collected from the pellet sample with and without the presence of an applied magnetic field (~30 mT) generated by placing a large magnet under the pellet. A standard reference material, Silicon 640c, was employed as an internal standard. Magnetostriction values of 323 and 227 ppm Δl/l were determined for the (104) and (110) indexed peaks, respectively, assuming a rhombohedral structure for Terfenol-D. A threshold noise level value of ~20 to 30 ppm Δl/l was suggested based on before/after measurements in the absence of the applied field. No clear evidence of domain wall rotation was detected via changes in relative intensities of diffraction peaks in the presence of the applied magnetic field.
Physical vapor deposited (PVD) molybdenum disulfide (nominal composition MoS2) is employed as a thin film solid lubricant for extreme environments where liquid lubricants are not viable. The tribological properties of MoS2 are highly dependent on morphological attributes such as film thickness, orientation, crystallinity, film density, and stoichiometry. These structural characteristics are controlled by tuning the PVD process parameters, yet undesirable alterations in the structure often occur due to process variations between deposition runs. Nondestructive film diagnostics can enable improved yield and serve as a means of tuning a deposition process, thus enabling quality control and materials exploration. Grazing incidence X-ray diffraction (GIXRD) for MoS2 film characterization provides valuable information about film density and grain orientation (texture). However, the determination of film stoichiometry can only be indirectly inferred via GIXRD. The combination of density and microstructure via GIXRD with chemical composition via grazing incidence X-ray fluorescence (GIXRF) enables the isolation and decoupling of film density, composition, and microstructure and their ultimate impact on film layer thickness, thereby improving coating thickness predictions via X-ray fluorescence. We have augmented an existing GIXRD instrument with an additional X-ray detector for the simultaneous measurement of energy-dispersive X-ray fluorescence spectra during the GIXRD analysis. This combined GIXRD/GIXRF analysis has proven synergetic for correlating chemical composition to the structural aspects of MoS2 films provided by GIXRD. We present the usefulness of the combined diagnostic technique via exemplar MoS2 film samples and provide a discussion regarding data extraction techniques of grazing angle series measurements.
Depression and anxiety are the leading contributors to the global burden of disease among young people, accounting for over a third (34.8%) of years lived with disability. Yet there is limited evidence for interventions that prevent adolescent depression and anxiety in low- and middle-income countries (LMICs), where 90% of adolescents live. This article introduces the ‘Improving Adolescent mentaL health by reducing the Impact of poVErty (ALIVE)’ study, its conceptual framework, objectives, methods and expected outcomes. The aim of the ALIVE study is to develop and pilot-test an intervention that combines poverty reduction with strengthening self-regulation to prevent depression and anxiety among adolescents living in urban poverty in Colombia, Nepal and South Africa.
Methods
This aim will be achieved by addressing four objectives: (1) develop a conceptual framework that identifies the causal mechanisms linking poverty, self-regulation and depression and anxiety; (2) develop a multi-component selective prevention intervention targeting self-regulation and poverty among adolescents at high risk of developing depression or anxiety; (3) adapt and validate instruments to measure incidence of depression and anxiety, mediators and implementation parameters of the prevention intervention; and (4) undertake a four-arm pilot cluster randomised controlled trial to assess the feasibility, acceptability and cost of the selective prevention intervention in the three study sites.
Results
The contributions of this study include the active engagement and participation of adolescents in the research process; a focus on the causal mechanisms of the intervention; building an evidence base for prevention interventions in LMICs; and the use of an interdisciplinary approach.
Conclusions
By developing and evaluating an intervention that addresses multidimensional poverty and self-regulation, ALIVE can make contributions to evidence on the integration of mental health into broader development policy and practice.
Pb–Zr–Ti–O (PZT) perovskites span a large solid-solution range and have found widespread use due to their piezoelectric and ferroelectric properties that also span a large range. Crystal structure analysis via Rietveld refinement facilitates materials analysis via the extraction of the structural parameters. These parameters, often obtained as a function of an additional dimension (e.g., pressure), can help to diagnose materials response within a use environment. Often referred to as “in-situ” studies, these experiments provide an abundance of data. Viewing structural changes due to applied pressure conditions can give much-needed insight into materials performance. However, challenges exist for viewing/presenting results when the details are inherently three-dimensional (3D) in nature. For PZT perovskites, the use of polyhedra (e.g., Zr/Ti–O6 octahedra) to view bonding/connectivity is beneficial; however, the visualization of the octahedra behavior with pressure dependence is less easily demonstrated due to the complexity of the added pressure dimension. We present a more intuitive visualization by projecting structural data into virtual reality (VR). We employ previously published structural data for Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 as an exemplar for VR visualization of the PZT R3c crystal structure between ambient and 0.62 GPa pressure. This is accomplished via our in-house CAD2VR™ software platform and the new CrystalVR plugin. The use of the VR environment enables a more intuitive viewing experience, while enabling on-the-fly evaluation of crystal data, to form a detailed and comprehensive understanding of in-situ datasets. Discussion of methodology and tools for viewing are given, along with how recording results in video form can enable the viewing experience.
Tungsten (W) films have many applications in the semiconducting industry for sensor technology. Deposition conditions can significantly impact the resulting W films in terms of the phases present (α-BCC or β-A12), microstructural grain orientation (texture), and residual strain. Tilt-A-Whirl methodology has been employed for the evaluation of a W film showing both texture and residual strain. Sin2(ψ) analysis of the film was performed to quantify the strongly tensile in-plane strain (+0.476%) with an estimated in-plane tensile stress of ~1.9 GPa. The 3D dataset was also evaluated qualitatively via 3D visualization. Visualization of 3D texture/strain data poses challenges due to peak broadening resulting from defocusing of the beam at high ψ tilt angles. To address this issue, principal component analysis (PCA) was employed to diagnose, model, and remove the broadening component from the diffraction data. Evaluation of the raw data and subsequent corrected data (after removal of defocusing effects) has been performed through projection of the data into a virtual 3D environment (via CAD2VR software) to qualitatively detect the impact of residual strain on the observed pole figure.
With natural hazards increasing in frequency and severity and global population aging, preparedness efforts must evolve to address older adults’ risks in disasters. This study elucidates potential contributors to the elevated older adult mortality risk following Hurricane Maria in Puerto Rico through an examination of community stakeholder preparedness, response, and recovery experiences.
Methods:
In April 2018, qualitative interviews (n = 22) were conducted with stakeholders in 7 Puerto Rican municipalities. Interview transcripts were deductively and inductively coded and analyzed to identify salient topics and themes representing participant response patterns.
Results:
The hurricane’s detrimental impact on older adult health emerged as a prominent finding. Through 6 months post-hurricane, many older adults experienced unmet needs that contributed to declining physical and emotional health, inadequate non-communicable disease management, social isolation, financial strain, and excess morbidity and mortality. These needs were predominantly consequences of lengthy public service gaps, unsafe living conditions, interrupted health care, and the incongruence between preparedness and event severity.
Conclusions:
In a landscape of increasing natural hazard frequency and magnitude, a pattern of older adult risk has become increasingly clear. Study findings compel practitioners to engage in natural hazard preparedness planning, research, and policy-making that considers the multiple facets of older adult well-being.
Prolonged survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on environmental surfaces and personal protective equipment may lead to these surfaces transmitting this pathogen to others. We sought to determine the effectiveness of a pulsed-xenon ultraviolet (PX-UV) disinfection system in reducing the load of SARS-CoV-2 on hard surfaces and N95 respirators.
Methods:
Chamber slides and N95 respirator material were directly inoculated with SARS-CoV-2 and were exposed to different durations of PX-UV.
Results:
For hard surfaces, disinfection for 1, 2, and 5 minutes resulted in 3.53 log10, >4.54 log10, and >4.12 log10 reductions in viral load, respectively. For N95 respirators, disinfection for 5 minutes resulted in >4.79 log10 reduction in viral load. PX-UV significantly reduced SARS-CoV-2 on hard surfaces and N95 respirators.
Conclusion:
With the potential to rapidly disinfectant environmental surfaces and N95 respirators, PX-UV devices are a promising technology to reduce environmental and personal protective equipment bioburden and to enhance both healthcare worker and patient safety by reducing the risk of exposure to SARS-CoV-2.
Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin2(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (−0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.
The second and final year of the Erasmus Plus programme ‘Innovative Education and Training in high power laser plasmas’, otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme, where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The ‘in-class’ time is limited to 4 weeks a year, and the programme spans 2 years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser plasma interaction physics and inertial confinement fusion. Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Hellenic Mediterranean University and supported by co-workers from the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just finished its second and final year. Six Learning Teaching Training activities have been held at the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University, the University of Salamanca and the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University. The last of these institutes hosted two 2-week-long Intensive Programmes, while the activities at the other four universities were each 5 days in length. In addition, a ‘Multiplier Event’ was held at the University of Ioannina, which will be briefly described. In this second year, the work has concentrated on training in both experimental diagnostics and simulation techniques appropriate to the study of plasma physics, high power laser matter interactions and high energy density physics. The nature of the programme will be described in detail, and some metrics relating to the activities carried out will be presented. In particular, this paper will focus on the overall assessment of the programme.
Audits play a critical role in maintaining the integrity of observational cohort data. While previous work has validated the audit process, sending trained auditors to sites (“travel-audits”) can be costly. We investigate the efficacy of training sites to conduct “self-audits.”
Methods:
In 2017, eight research groups in the Caribbean, Central, and South America network for HIV Epidemiology each audited a subset of their patient records randomly selected by the data coordinating center at Vanderbilt. Designated investigators at each site compared abstracted research data to the original clinical source documents and captured audit findings electronically. Additionally, two Vanderbilt investigators performed on-site travel-audits at three randomly selected sites (one adult and two pediatric) in late summer 2017.
Results:
Self- and travel-auditors, respectively, reported that 93% and 92% of 8919 data entries, captured across 28 unique clinical variables on 65 patients, were entered correctly. Across all entries, 8409 (94%) received the same assessment from self- and travel-auditors (7988 correct and 421 incorrect). Of 421 entries mutually assessed as “incorrect,” 304 (82%) were corrected by both self- and travel-auditors and 250 of these (72%) received the same corrections. Reason for changing antiretroviral therapy (ART) regimen, ART end date, viral load value, CD4%, and HIV diagnosis date had the most mismatched corrections.
Conclusions:
With similar overall error rates, findings suggest that data audits conducted by trained local investigators could provide an alternative to on-site audits by external auditors to ensure continued data quality. However, discrepancies observed between corrections illustrate challenges in determining correct values even with audits.
Drawing on a landscape analysis of existing data-sharing initiatives, in-depth interviews with expert stakeholders, and public deliberations with community advisory panels across the U.S., we describe features of the evolving medical information commons (MIC). We identify participant-centricity and trustworthiness as the most important features of an MIC and discuss the implications for those seeking to create a sustainable, useful, and widely available collection of linked resources for research and other purposes.
The powder-bed laser additive manufacturing (AM) process is widely used in the fabrication of three-dimensional metallic parts with intricate structures, where kinetically controlled diffusion and microstructure ripening can be hindered by fast melting and rapid solidification. Therefore, the microstructure and physical properties of parts made by this process will be significantly different from their counterparts produced by conventional methods. This work investigates the microstructure evolution for an AM fabricated AlSi10Mg part from its nonequilibrium state toward equilibrium state. Special attention is placed on silicon dissolution, precipitate formation, collapsing of a divorced eutectic cellular structure, and microstructure ripening in the thermal annealing process. These events alter the size, morphology, length scale, and distribution of the beta silicon phase in the primary aluminum, and changes associated with elastic properties and microhardness are reported. The relationship between residual stress and silicon dissolution due to changes in lattice spacing is also investigated and discussed.
X-ray fluorescence (XRF) has been employed as one of several orthogonal means of screening materials to prevent counterfeit and adulterated products from entering the product stream. We document the use of principal component analysis (PCA) of XRF data on compositionally similar and dissimilar stainless steels for the purpose of testing the feasibility of employing XRF spectra to parse and bin these alloys as the same or significantly different alloy materials. The results indicate that XRF spectra can separate and assign alloys via PCA, but that important corrections for detector drift and scaling must be performed in order to achieve valid results.
Activation energies for the intermixing reaction of textured metal-metal multilayer thin films have been determined using X-ray diffraction analysis. Kinetic data were collected utilizing an area detector so as to reduce intensity bias from changes in out-of-plane texture during the intermixing reaction. Activation energies for Al/Pt, Ni/Ti, and Co/Al metal-metal multilayer thin films have been determined as 95.4(2) kJ/mol, 201(13) kJ/mol, and 247(19) kJ/mol, respectively.
Potassium titanyl phosphate crystals in both x-cut and z-cut were irradiated with 185 MeV Au ions. The morphology of the resulting ion tracks was investigated using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). SAXS measurements indicate the presence of cylindrical ion tracks with abrupt boundaries and a density contrast of 1 ± 0.5% compared to the surrounding matrix, consistent with amorphous tracks. The track radius depends on the crystalline orientation, with 6.0 ± 0.1 nm measured for ion tracks along the x-axis and 6.3 ± 0.1 nm for those along the z-axis. TEM images in both cross-section and plan-view show amorphous ion tracks with radii comparable to those determined from SAXS analysis. The protruding hillocks covering the sample surface detected by AFM are consistent with a lower density of the amorphous material within the ion tracks compared to the surrounding matrix. Simulations using an inelastic thermal-spike model indicate that differences in the thermal conductivity along the z- and x-axis can partially explain the different track radii along these directions.
High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K2SO4 that subsequently reacted with the pyrite-type CoS2 phase leading to cathode decomposition between ~260 and 450 °C. Independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS2 decomposition. Both gas analysis measurements (i.e. GC and MS) from the independent experiments confirmed the formation of SO2 off-gas species during breakdown of the CoS2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS2 throughout the entire temperature range of analysis.
There has been some confusion in the published literature concerning the structure of Metastudtite (UO2)O2(H2O)2 where differing unit cells and space groups have been cited for this compound. Owing to the absence of a refined structure for Metastudtite, Weck et al. (2012) have documented a first-principles study of Metastudtite using density functional theory (DFT). Their model presents the structure of Metastudtite as an orthorhombic (space group Pnma) structure with lattice parameters of a = 8.45, b = 8.72, and c = 6.75 Å. A Powder Diffraction File (PDF) database entry has been allocated for this hypothetical Metastudtite phase based on the DFT modeling (see 01-081-9033) and aforementioned Dalton Trans. manuscript. We have obtained phase pure powder X-ray diffraction data for Metastudtite and have confirmed the model of Weck et al. via Rietveld refinement (see Figure 1). Structural refinement of this powder diffraction dataset has yielded updated refined parameters. The new cell has been determined as a = 8.411(1), b = 8.744(1), and c = 6.505(1) Å; cell volume = 478.39 Å3. There are only subtle differences between the refined structure and that of the first-principles model derived from DFT. Notably, the b-axis is significantly contracted in the final refinement as compared with DFT. There were also subtle changes to the U1, O1, and O3 atom positions. Tabulated powder diffraction data (d's and I's) for the Metastudtite have been derived from the refined model and these new values can serve to augment the PDF entry 01-081-9033 with a more updated entry based on observed X-ray powder diffraction data.