We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bentonite is considered as an ideal buffer/backfill material for preparing an engineering barrier for high-level radioactive waste (HLW) disposal. During initial sample preparation, the tendency of wet bentonite powder to gather into large agglomerates and the water to be spread unevenly in the traditional water content adjustment process decreases the homogeneity of compacted bentonite. The main purpose of this study was to solve this problem by applying a new wetting method, which mixes ice powder with bentonite powder (the ice-bentonite mixing method). This new method was used to adjust the water distribution in Gaomiaozi County, China (GMZ) bentonite powder and was compared to the traditional spray method. The screening method was used to separate macro-agglomerates (≥ 0.25 mm) from the water and bentonite mixture. The properties, the content of the various size agglomerates in loose mixtures, and the heterogeneity defects observed in compacted bentonite were compared. An index (P) was defined to quantitatively evaluate the water distribution in a loose bentonite/water mixture. Macro-agglomerates in loose mixtures produced heterogeneities in water content, density, and shrinkage. By using the ice-bentonite mixing method, fewer macro-agglomerates were formed and a homogeneous distribution of water was produced in the compacted bentonite. A homogeneous water distribution had the tendency to decrease the number of shrinkage cracks after the drying process and to maintain high mechanical strength in the compacted bentonite. Although the production of ice powder was laborious, the ice-bentonite mixing method has workability advantages: (i) a high mixing efficiency, (ii) a low mass loss rate, and (iii) a small deviation between measured water content and target water content. The low thawing efficiency of ice-bentonite mixtures can be solved by using a microwave-assisted thawing method. This research can improve the sample preparation method used to produce compacted buffer/backfill materials for HLW disposal.
We describe an outbreak of echovirus 18 infection involving 10 patients in our neonatal intensive care unit (an attack rate of 33%). The mean age at the onset of illness was 26.8 days. Eighty percent were preterm infants. All were discharged home without sequelae. There were no differences in gestation age, birth weight, delivery mode, use of antibiotics, and parenteral nutrition between the enterovirus (EV) group and non-EV group, but the rate of breastfeeding was significantly higher in the EV group. Separation care and reinforcement of hand-washing seemed to be effective in preventing further spread of the virus. Visiting policy, hygiene practice, and handling of expressed breastmilk should be reinforced.
One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the ‘Wuxiang No. 1’ strain of Lentinula edodes (Berk.) Pegler and the ‘Gaowenxiu’ strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.
It has been suggested that psychosocial factors are related to survival time of inpatients with cancer. However, there are not many studies examining the relationship between spiritual well-being (SWB) and survival time among countries. This study investigated the relationship between SWB and survival time among three East Asian countries.
Methods
This international multicenter cohort study is a secondary analysis involving newly admitted inpatients with advanced cancer in palliative care units in Japan, South Korea, and Taiwan. SWB was measured using the Integrated Palliative Outcome Scale (IPOS) at admission. We performed multivariate analysis using the Cox proportional hazards model to identify independent prognostic factors.
Results
A total of 2,638 patients treated at 37 palliative care units from January 2017 to September 2018 were analyzed. The median survival time was 18.0 days (95% confidence interval [CI] 16.5–19.5) in Japan, 23.0 days (95% CI 19.9–26.1) in Korea, and 15.0 days (95% CI 13.0–17.0) in Taiwan. SWB was a significant factor correlated with survival in Taiwan (hazard ratio [HR] 1.27; 95% CI 1.01–1.59; p = 0.04), while it was insignificant in Japan (HR 1.10; 95% CI 1.00–1.22; p = 0.06), and Korea (HR 1.02; 95% CI 0.77–1.35; p = 0.89).
Significance of results
SWB on admission was associated with survival in patients with advanced cancer in Taiwan but not Japan or Korea. The findings suggest the possibility of a positive relationship between spiritual care and survival time in patients with far advanced cancer.
Accurate prognostication is important for patients and their families to prepare for the end of life. Objective Prognostic Score (OPS) is an easy-to-use tool that does not require the clinicians’ prediction of survival (CPS), whereas Palliative Prognostic Score (PaP) needs CPS. Thus, inexperienced clinicians may hesitate to use PaP. We aimed to evaluate the accuracy of OPS compared with PaP in inpatients in palliative care units (PCUs) in three East Asian countries.
Method
This study was a secondary analysis of a cross-cultural, multicenter cohort study. We enrolled inpatients with far-advanced cancer in PCUs in Japan, Korea, and Taiwan from 2017 to 2018. We calculated the area under the receiver operating characteristics (AUROC) curve to compare the accuracy of OPS and PaP.
Results
A total of 1,628 inpatients in 33 PCUs in Japan and Korea were analyzed. OPS and PaP were calculated in 71.7% of the Japanese patients and 80.0% of the Korean patients. In Taiwan, PaP was calculated for 81.6% of the patients. The AUROC for 3-week survival was 0.74 for OPS in Japan, 0.68 for OPS in Korea, 0.80 for PaP in Japan, and 0.73 for PaP in Korea. The AUROC for 30-day survival was 0.70 for OPS in Japan, 0.71 for OPS in Korea, 0.79 for PaP in Japan, and 0.74 for PaP in Korea.
Significance of results
Both OPS and PaP showed good performance in Japan and Korea. Compared with PaP, OPS could be more useful for inexperienced physicians who hesitate to estimate CPS.
The clinical characteristics of patients with COVID-19 were analysed to determine the factors influencing the prognosis and virus shedding time to facilitate early detection of disease progression. Logistic regression analysis was used to explore the relationships among prognosis, clinical characteristics and laboratory indexes. The predictive value of this model was assessed with receiver operating characteristic curve analysis, calibration and internal validation. The viral shedding duration was calculated using the Kaplan–Meier method, and the prognostic factors were analysed by univariate log-rank analysis and the Cox proportional hazards model. A retrospective study was carried out with patients with COVID-19 in Tianjin, China. A total of 185 patients were included, 27 (14.59%) of whom were severely ill at the time of discharge and three (1.6%) of whom died. Our findings demonstrate that patients with an advanced age, diabetes, a low PaO2/FiO2 value and delayed treatment should be carefully monitored for disease progression to reduce the incidence of severe disease. Hypoproteinaemia and the fever duration warrant special attention. Timely interventions in symptomatic patients and a time from symptom onset to treatment <4 days can shorten the duration of viral shedding.
The Weibel instability and the induced magnetic field are of great importance for both astrophysics and inertial confinement fusion. Because of the stochasticity of this magnetic field, its main wavelength and mean strength, which are key characteristics of the Weibel instability, are still unobtainable experimentally. In this paper, a theoretical model based on the autocorrelation tensor shows that in proton radiography of the Weibel-instability-induced magnetic field, the proton flux density on the detection plane can be related to the energy spectrum of the magnetic field. It allows us to extract the main wavelength and mean strength of the two-dimensionally isotropic and stochastic magnetic field directly from proton radiography for the first time. Numerical calculations are conducted to verify our theory and show good consistency between pre-set values and the results extracted from proton radiography.
The Linkuo terrace, situated to the west of the Taipei Basin in NW Taiwan, has thick red soils that have been little studied. This paper aims to interpret the development of these soils through chemical and micromorphological investigations, and relate the soils to their palaeo-environments. The soil samples were air dried, crushed and passed through a 2 mm sieve, and then subjected to conventional soil chemical and physical analyses, together with clay mineralogical and morphological characterization. Pedons I and II were clay with low base saturation (BS), cation-exchange capacity (CEC), and exchangeable cations. The pH of pedons I and II ranged from 3.80 to 5.26. The low magnetic susceptibility of these soils indicates that no magnetite (Fe3O4) or maghemite (γ-Fe2O3) are present. X-ray diffraction patterns of the magnetic clay fraction showed lepidocrocite, goethite and hematite, the amounts of which may relate to water fluctuation in the soil environments. Illite, kaolinite and quartz are major clay minerals in the red soil clay fractions. The micromorphology of all horizons showed a great accumulation of Fe-oxides. The upper horizon showed darkened isotropic Fe-oxide materials, and lower horizon showed a black to reddish dense plasma with soil matrix. The groundmass of the oxic horizon is generally characterized by a homogeneous distribution of the different coarse and fine constituents. The thick (4 m depth) and homogeneous red soils of the Linkuo terrace were developed from fine sediments after the gradual subsidence of the Taipei Basin. Alarge amount of gravel was flushed from the Xindian River before the Taipei Basin subsided. The Linkuo red soils can be classified as mesic, Typic Kandiudox. From the chemical compositions of clay fractions and the red soil features, these red soils can be considered as lateritic red earths or red earths that do not reach the criteria for laterite.
The parameters of X-ray radiation and runaway electron beams (RAEBs) generated at long-pulse discharges in atmospheric-pressure air were investigated. In the experiments, high-voltage pulses with the rise times of 500 and 50 ns were applied to an interelectrode gap. The gap geometry provided non-uniform distribution of the electric field strength. It was founded that at the voltage pulse rise time of 500 ns and the maximum breakdown voltage Um for 1 cm-length gap, a duration [full width at half maximum (FWHM)] of a RAEB current pulse shrinks to 0.1 ns. A decrease in the breakdown voltage under conditions of a diffuse discharge leads to an increase in the FWHM duration of the electron beam current pulse up to several nanoseconds. It was shown that when the rise time of the voltage pulse is of 500 ns and the diffuse discharge occurs in the gap, the FWHM duration of the X-ray radiation pulse can reach ≈100 ns. It was established that at a pulse-periodic diffuse discharge fed by high-voltage pulses with the rise time of 50 ns, an energy of X-ray quanta and their number increase with increasing breakdown voltage. Wherein the parameter Um/pd is saved.
To validate a system to detect ventilator associated events (VAEs) autonomously and in real time.
DESIGN
Retrospective review of ventilated patients using a secure informatics platform to identify VAEs (ie, automated surveillance) compared to surveillance by infection control (IC) staff (ie, manual surveillance), including development and validation cohorts.
SETTING
The Massachusetts General Hospital, a tertiary-care academic health center, during January–March 2015 (development cohort) and January–March 2016 (validation cohort).
PATIENTS
Ventilated patients in 4 intensive care units.
METHODS
The automated process included (1) analysis of physiologic data to detect increases in positive end-expiratory pressure (PEEP) and fraction of inspired oxygen (FiO2); (2) querying the electronic health record (EHR) for leukopenia or leukocytosis and antibiotic initiation data; and (3) retrieval and interpretation of microbiology reports. The cohorts were evaluated as follows: (1) manual surveillance by IC staff with independent chart review; (2) automated surveillance detection of ventilator-associated condition (VAC), infection-related ventilator-associated complication (IVAC), and possible VAP (PVAP); (3) senior IC staff adjudicated manual surveillance–automated surveillance discordance. Outcomes included sensitivity, specificity, positive predictive value (PPV), and manual surveillance detection errors. Errors detected during the development cohort resulted in algorithm updates applied to the validation cohort.
RESULTS
In the development cohort, there were 1,325 admissions, 479 ventilated patients, 2,539 ventilator days, and 47 VAEs. In the validation cohort, there were 1,234 admissions, 431 ventilated patients, 2,604 ventilator days, and 56 VAEs. With manual surveillance, in the development cohort, sensitivity was 40%, specificity was 98%, and PPV was 70%. In the validation cohort, sensitivity was 71%, specificity was 98%, and PPV was 87%. With automated surveillance, in the development cohort, sensitivity was 100%, specificity was 100%, and PPV was 100%. In the validation cohort, sensitivity was 85%, specificity was 99%, and PPV was 100%. Manual surveillance detection errors included missed detections, misclassifications, and false detections.
CONCLUSIONS
Manual surveillance is vulnerable to human error. Automated surveillance is more accurate and more efficient for VAE surveillance.
In high power laser facility for inertial confinement fusion research, final optics assembly (FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis, the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass. Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.
The Shen-Guang II Upgrade (SG-II-U) laser facility consists of eight high-power nanosecond laser beams and one short-pulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion (ICF), especially for conducting fast ignition (FI) research in China and other basic science experiments. To perform FI successfully with hohlraum targets containing a golden cone, the long-pulse beam and cylindrical hohlraum as well as the short-pulse beam and cone target alignment must satisfy tight specifications (30 and $20~\unicode[STIX]{x03BC}\text{m}$ rms for each case). To explore new ICF ignition targets with six laser entrance holes (LEHs), a rotation sensor was adapted to meet the requirements of a three-dimensional target and correct beam alignment. In this paper, the strategy for aligning the nanosecond beam based on target alignment sensor (TAS) is introduced and improved to meet requirements of the picosecond lasers and the new six LEHs hohlraum targets in the SG-II-U facility. The expected performance of the alignment system is presented, and the alignment error is also discussed.
The rock art and the associated natural scenery at 38 sites located in the Zuojiang River valley, in the southwest of Guangxi Zhuang Autonomous Region, southern China, were inscribed recently on UNESCO’s World Heritage List. The painted panel at the site of Mt. Huashan is probably the largest known rock art panel in the world, consisting of approximately 1900 identifiable figures and occupying an area of approximately 8000 m2. To determine a precise age on the rock art at Mt. Huashan, 56 secondary carbonate layers above and below the paintings were studied for their mineralogy, oxygen, and carbon isotopic compositions and dated by the 230Th/U method. The 230Th/U dating results demonstrate that ages of the rock paintings can be bracketed between 1856±16 and 1728±41yr BP corresponding to the middle to the end of the Eastern Han dynasty (AD 25 to 220). The results imply that the rock painting practices at Mt. Huashan probably lasted more than a century, and the Zuojiang rock art is younger than that at Baiyunwan and Cangyuan in Yunnan Province by 1 to 10 centuries.
The Myanmar snub-nosed monkey Rhinopithecus strykeri was discovered in 2010 on the western slopes of the Gaoligong Mountains in the Irrawaddy River basin in Myanmar and subsequently in the same river basin in China, in 2011. Based on 2 years of surveying the remote and little disturbed forest of the Gaoligong Mountains National Nature Reserve in China, with outline transect sampling and infrared camera monitoring, a breeding group comprising > 70 individuals was found on the eastern slopes of the Gaoligong Mountains in the Salween River Basin. Given the Critically Endangered status of this primate (a total of < 950 individuals are estimated to remain in the wild), efforts to protect the relatively undisturbed habitat of this newly discovered population and to prevent hunting are essential for the long-term survival of this species.
Edited by
Yun-chien Chang, Academia Sinica, Taipei, Taiwan,Wei Shen, Shandong University, People's Republic of China,Wen-yeu Wang, National Taiwan University
Inflammation plays a pivotal role in the pathogenesis of atherosclerosis and of cerebrovascular complications. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine with a central role in inflammation. To investigate whether polymorphisms of the TGF-β1 gene can modify the risk of ischemic stroke (IS) in Chinese population, we conduct this hospital-based, case-control study.
Methods:
Transforming growth factor-β1 genotype was determined in 450 Chinese patients (306 male and 144 female) with IS and 450 control subjects (326 male and 124 female).
Results:
Subjects carrying 869TT were susceptible to IS (odds ratio [OR] =1.58; P=0.003). Further analysis of IS data partitioned by gender revealed the female-specific association with 869T/C (OR=2.64; P=0.001).
Conclusions:
Findings suggest that the TT genotype of 869T/C might be a risk factor of IS in Chinese, especially in females.
Nanosecond pulse discharges can provide high reduced electric field for exciting high-energy electrons, and the ultrafast rising time of the applied pulse can effectively suppress the generation of spark streamer and produce homogeneous discharges preionized by runaway electrons in atmospheric-pressure air. In this paper, the electrostatic field in a tube-plate electrodes gap is calculated using a calculation software. Furthermore, a simple physical model of nanosecond pulse discharges is established to investigate the behavior of the runaway electrons during the nanosecond pulse discharges with a rise time of 1.6 ns and a full-width at half-maximum of 3–5 ns in air. The physical model is coded by a numerical software, and then the runaway electrons and electron avalanche are investigated under different conditions. The simulated results show that the applied voltage, voltage polarity, and gas pressure can significantly affect the formation of the avalanche and the behavior of the runaway electrons. The inception time of runaway breakdown decreases when the applied voltage increases. In addition, the threshold voltage of runaway breakdown has a minimum value (10 kPa) with the variation of gas pressure.
The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25 : 1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.
To clarify the role of inflammation in the pathogenesis of cerebral small vessel disease (SVD), we investigated whether the gene encoding transforming growth factor-beta 1(TGF-beta 1) is a risk factor for cerebral SVD as a whole, and for two different SVD subtypes.
Methods:
TGF-beta 1 codon10 (T+29C) genotype was determined in 441 Chinese patients (313 male and 128 female) with cerebral SVD and 450 control subjects (326 male and 124 female). Cerebral SVD patients were retrospectively classified into two groups based on neuroimaging findings: lacunar infarction group with 112 patients and ischaemic leukoaraiosis group with 329 patients.
Results:
Subjects carrying TT homozygote were susceptible to cerebral SVD [adjusted odds ratio (OR) =1.44, 95% confidence interval (CI), 1.05-1.98; P=0.026]. Further analysis of SVD subtypes revealed a moderate association with the ischaemic leukoaraiosis group [OR= 1.60, 95% CI, 1.14-2.25; P=0.007].
Conclusions:
Codon 10 of TGF-beta 1 might be a risk factor for SVD, specifically in ischaemic leukoaraiosis phenotype.
In this work, the generation of a super-short avalanche electron beam (SAEB) in SF6 in an inhomogeneous electric field is studied on two generators with pulse rise times of 0.5 and 2 ns, respectively. The SAEB parameters in SF6 are compared with those obtained in other gases (air, nitrogen, argon, and krypton). It is shown that the SAEB amplitude in SF6 at pressures ranging from 0.05 to 0.2 MPa is commensurable with that in krypton and is much lower than that in air and nitrogen. It is also found that in SF6, SF6 mixture with 2.5% of nitrogen, and other gases, a diffuse discharge is ignited not only at negative polarity but also at positive polarity of the electrode with small curvature radius. Furthermore, the velocity of the ionization wave front in SF6 in an inhomogeneous electric field is studied. Experimental results show that the velocity of the ionization wave front in SF6 is lower than that in air and nitrogen as well as such velocity decreases when the pressure increases from 0.05 to 0.3 MPa in all gases.