We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the growing global population and climate change, achieving food security is a pressing challenge(1). Vertical farming has the potential to support local food production and security. In the UK population females and younger adults appear to be particularly vulnerable to micronutrient shortfalls from food sources alone. Levels of micronutrient intakes including zinc and iron are below the recommended daily intake(2). As a Total Controlled Environment Agriculture (TCEA) system, vertical farming employs hydroponics using a nutrient solution which offers opportunities to modulate nutrient uptake, and thus influence plant mineral and vitamin composition(3).
In this study we aimed to determine the suitability of different crop types for soilless agronomic biofortification with zinc and iron to achieve biofortified crops.
In this study, we investigated the effect of the addition of 20ppm (+20 mg L−1) of zinc (ZnSO4) or iron (Fe-EDTA) to the nutrient solution on the growth and nutritional components in pea microgreens, kale microgreens and kale baby leaf plants. The growth conditions were kept identical throughout the treatments with photoperiod 18 h d-1, temperature 20-22°C and relative humidity at 70-80%. Plant growth, mineral composition, glucosinolate content and protein content were evaluated. Results were analysed using ANOVA (p<0.05, Tukey’s test).
It was determined that higher amounts of zinc in the nutrient solution resulted in significantly higher levels of zinc in all three crops (p<0.05), with increases of 205% in pea microgreens, 264% in babyleaf kale and 217% in kale microgreens compared to the control plants. Higher amounts of iron in the nutrient solution resulted in significantly higher levels of iron only in pea microgreens, with an increase of 38% (p<0.05). Neither dosing regimen negatively influenced the overall crop performance.
These results suggest that the three different crops are suitable for soilless biofortification with zinc and iron, although pea microgreens were the only crop that had a significant increase in iron upon iron-dosing.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
Understanding characteristics of healthcare personnel (HCP) with SARS-CoV-2 infection supports the development and prioritization of interventions to protect this important workforce. We report detailed characteristics of HCP who tested positive for SARS-CoV-2 from April 20, 2020 through December 31, 2021.
Methods:
CDC collaborated with Emerging Infections Program sites in 10 states to interview HCP with SARS-CoV-2 infection (case-HCP) about their demographics, underlying medical conditions, healthcare roles, exposures, personal protective equipment (PPE) use, and COVID-19 vaccination status. We grouped case-HCP by healthcare role. To describe residential social vulnerability, we merged geocoded HCP residential addresses with CDC/ATSDR Social Vulnerability Index (SVI) values at the census tract level. We defined highest and lowest SVI quartiles as high and low social vulnerability, respectively.
Results:
Our analysis included 7,531 case-HCP. Most case-HCP with roles as certified nursing assistant (CNA) (444, 61.3%), medical assistant (252, 65.3%), or home healthcare worker (HHW) (225, 59.5%) reported their race and ethnicity as either non-Hispanic Black or Hispanic. More than one third of HHWs (166, 45.2%), CNAs (283, 41.7%), and medical assistants (138, 37.9%) reported a residential address in the high social vulnerability category. The proportion of case-HCP who reported using recommended PPE at all times when caring for patients with COVID-19 was lowest among HHWs compared with other roles.
Conclusions:
To mitigate SARS-CoV-2 infection risk in healthcare settings, infection prevention, and control interventions should be specific to HCP roles and educational backgrounds. Additional interventions are needed to address high social vulnerability among HHWs, CNAs, and medical assistants.
Single-crystal Fourier-transform infrared (FTIR) spectra of Keokuk kaolinite and Ouray dickite were obtained with an FTIR microscope. Although numerous IR, FTIR, and Raman spectra of polycrystalline kaolinite and dickite can be found in the literature, the present data represent the first reported single-crystal vibrational spectra for these clay minerals. The orientation of the crystallographic axes of dickite was determined using a cross-polarizing optical microscope fitted with an 550-nm optical retardation plate. Assignment of the inner hydroxyl group OH1 to the 3623-cm-1 band was confirmed, and the angle of this OH group to the b-axis was determined to be 47° based upon the measured dichroic ratio. The 3702-3710-cm−1 absorption feature appeared to consist of two closely spaced bands having slightly different polarization behavior. The inner-surface hydroxyl group OH3 was assigned to the absorption bands at 3710 cm−1. The calculated angle of the OH3 groups to the b-axis was found to be 22°, which agrees well with the angles determined by X-ray powder diffraction and neutron diffraction. The remaining hydroxyl groups, OH2 and OH4, were assigned to the 3656 cm-1 band; the angle of the OH2 and OH4 groups to the b-axis was measured at 45°. The polarization behavior of the OH-deformation bands of dickite at 911, 937, and 952 cm−1 was found to be similar to that observed in the OH-stretching region. Single-crystal FTIR spectra of Keokuk kaolinite showed that rotation of the electric vector around the c/z axis in the ab plane of kaolinite resulted in a behavior distinct from that of dickite. The OH-stretching bands of kaolinite were found to be considerably more polarized than the corresponding bands of dickite. This is related directly to the fact that dickite possesses a glide plane (space group Cc) compared with kaolinite, which does not (space group C1).
Due to the increased importance of bionanocomposites, protamine and papain proteins were adsorbed on Na+- and on Cs+-exchanged saponite from aqueous solution. Protein analysis of equilibrium solutions and thermogravimetric analyses of biocomposites were used to prepare adsorption isotherms. Based on the isotherm shape, and on the amounts of protein adsorbed and the amounts of Na+ and Cs+ released, the initial protein sorption apparently was due to ion exchange. Additional sorbed protein was weakly retained and could be removed by washing with water. From ion exchange, the average charge of the protamine adsorbed was estimated to be +13.1 to +13.5. Similar papain measurements could not be made due to partial decomposition. Quantitatively, protamine was adsorbed at levels up to 400 mg/g on Na+-saponite and 200 mg/g on Cs+-saponite. The maximum protamine adsorption was 650 to 700 mg/g for Na+-saponite and 350–400 mg/g for Cs+-saponite. Protamine was sorbed to edge surfaces and the basal spacing of the interlamellar region of saponite was 1.75 nm. Protamine displaced only 36% of the Cs+ in Cs+-saponite and expanded the interlamellar region by 36% for a basal spacing of 1.6 nm. Papain sorption to Na+-saponite occurred by a two-step process: (1) adsorption to saponite particle external surfaces followed, (2) by partial intercalation. Quantitatively, Papain was adsorbed up to 100 mg/g for Na+-and Cs+-saponite. Greater initial papain concentrations resulted in a 450 mg/g maximum for Na+-saponite, but no increase above 100 mg/g for Cs+-saponite. Papain apparently only sorbed to external Cs+-saponite surfaces that were estimated to be 33–40 m2/g. Step-wise thermal decomposition of the saponite-protein composites occurred between 300 and 800°C.
To characterize residential social vulnerability among healthcare personnel (HCP) and evaluate its association with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection.
Design:
Case–control study.
Setting:
This study analyzed data collected in May–December 2020 through sentinel and population-based surveillance in healthcare facilities in Colorado, Minnesota, New Mexico, New York, and Oregon.
Participants:
Data from 2,168 HCP (1,571 cases and 597 controls from the same facilities) were analyzed.
Methods:
HCP residential addresses were linked to the social vulnerability index (SVI) at the census tract level, which represents a ranking of community vulnerability to emergencies based on 15 US Census variables. The primary outcome was SARS-CoV-2 infection, confirmed by positive antigen or real-time reverse-transcriptase– polymerase chain reaction (RT-PCR) test on nasopharyngeal swab. Significant differences by SVI in participant characteristics were assessed using the Fisher exact test. Adjusted odds ratios (aOR) with 95% confidence intervals (CIs) for associations between case status and SVI, controlling for HCP role and patient care activities, were estimated using logistic regression.
Results:
Significantly higher proportions of certified nursing assistants (48.0%) and medical assistants (44.1%) resided in high SVI census tracts, compared to registered nurses (15.9%) and physicians (11.6%). HCP cases were more likely than controls to live in high SVI census tracts (aOR, 1.76; 95% CI, 1.37–2.26).
Conclusions:
These findings suggest that residing in more socially vulnerable census tracts may be associated with SARS-CoV-2 infection risk among HCP and that residential vulnerability differs by HCP role. Efforts to safeguard the US healthcare workforce and advance health equity should address the social determinants that drive racial, ethnic, and socioeconomic health disparities.
Background: ALS is a progressive neurodegenerative disease without a cure and limited treatment options. Edaravone, a free radical scavenger, was shown to slow disease progression in a select group of patients with ALS over 6 months; however, the effect on survival was not investigated in randomized trials. The objective of this study is to describe real-world survival effectiveness over a longer timeframe. Methods: This retrospective cohort study included patients with ALS across Canada with symptom onset up to three years. Those with a minimum 6-month edaravone exposure between 2017 and 2022 were enrolled in the interventional arm, and those without formed the control arm. The primary outcome of tracheostomy-free survival was compared between the two groups, accounting for age, sex, ALS-disease progression rate, disease duration, pulmonary vital capacity, bulbar ALS-onset, and presence of frontotemporal dementia or C9ORF72 mutation using inverse propensity treatment weights. Results: 182 patients with mean ± SD age 60±11 years were enrolled in the edaravone arm and 860 in the control arm (mean ± SD age 63±12 years). Mean ± SD time from onset to edaravone initiation was 18±10 months. Tracheostomy-free survival will be calculated. Conclusions: This study will provide evidence for edaravone effectiveness on tracheostomy-free survival in patients with ALS.
Clinical trial processes are unnecessarily inefficient and costly, slowing the translation of medical discoveries into treatments for people living with disease. To reduce redundancies and inefficiencies, a group of clinical trial experts developed a framework for clinical trial site readiness based on existing trial site qualifications from sponsors. The site readiness practices are encompassed within six domains: research team, infrastructure, study management, data collection and management, quality oversight, and ethics and safety. Implementation of this framework for clinical trial sites would reduce inefficiencies in trial conduct and help prepare new sites to enter the clinical trials enterprise, with the potential to improve the reach of clinical trials to underserved communities. Moreover, the framework holds benefits for trial sponsors, contract research organizations, trade associations, trial participants, and the public. For novice sites considering future trials, we provide a framework for site preparation and the engagement of stakeholders. For experienced sites, the framework can be used to assess current practices and inform and engage sponsors, staff, and participants. Details in the supplementary materials provide easy access to key regulatory documents and resources. Invited perspective articles provide greater depth from a systems, DEIA (diversity, equity, inclusion, and accessibility) and decentralized trials perspective.
We describe the design, validation, and commissioning of a new correlator termed ‘MWAX’ for the Murchison Widefield Array (MWA) low-frequency radio telescope. MWAX replaces an earlier generation MWA correlator, extending correlation capabilities and providing greater flexibility, scalability, and maintainability. MWAX is designed to exploit current and future Phase II/III upgrades to MWA infrastructure, most notably the simultaneous correlation of all 256 of the MWA’s antenna tiles (and potentially more in future). MWAX is a fully software-programmable correlator based around an ethernet multicast architecture. At its core is a cluster of 24 high-performance GPU-enabled commercial-off-the-shelf compute servers that together process in real-time up to 24 coarse channels of 1.28 MHz bandwidth each. The system is highly flexible and scalable in terms of the number of antenna tiles and number of coarse channels to be correlated, and it offers a wide range of frequency/time resolution combinations to users. We conclude with a roadmap of future enhancements and extensions that we anticipate will be progressively rolled out over time.
In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of ${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$, the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 ${\textrm{pc cm}}^{-3}$, to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from ${\sim} 3\% $ of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).
We present an overview of the Southern-sky MWA Rapid Two-metre (SMART) pulsar survey that exploits the Murchison Widefield Array’s large field of view and voltage-capture system to survey the sky south of 30$^{\circ}$ in declination for pulsars and fast transients in the 140–170 MHz band. The survey is enabled by the advent of the Phase II MWA’s compact configuration, which offers an enormous efficiency in beam-forming and processing costs, thereby making an all-sky survey of this magnitude tractable with the MWA. Even with the long dwell times employed for the survey (4800 s), data collection can be completed in $<$100 h of telescope time, while still retaining the ability to reach a limiting sensitivity of $\sim$2–3 mJy (at 150 MHz, near zenith), which is effectively 3–5 times deeper than the previous-generation low-frequency southern-sky pulsar survey, completed in the 1990s. Each observation is processed to generate $\sim$5000–8000 tied-array beams that tessellate the full $\sim 610\, {\textrm{deg}^{2}}$ field of view (at 155 MHz), which are then processed to search for pulsars. The voltage-capture recording of the survey also allows a multitude of post hoc processing options including the reprocessing of data for higher time resolution and even exploring image-based techniques for pulsar candidate identification. Due to the substantial computational cost in pulsar searches at low frequencies, the survey data processing is undertaken in multiple passes: in the first pass, a shallow survey is performed, where 10 min of each observation is processed, reaching about one-third of the full-search sensitivity. Here we present the system overview including details of ongoing processing and initial results. Further details including first pulsar discoveries and a census of low-frequency detections are presented in a companion paper. Future plans include deeper searches to reach the full sensitivity and acceleration searches to target binary and millisecond pulsars. Our simulation analysis forecasts $\sim$300 new pulsars upon the completion of full processing. The SMART survey will also generate a complete digital record of the low-frequency sky, which will serve as a valuable reference for future pulsar searches planned with the low-frequency Square Kilometre Array.
Dr. Sharpe was a leading eye movement researcher who had also been the editor of this journal. We wish to mark the 10th anniversary of his death by providing a sense of what he had achieved through some examples of his research.
The damage caused by ear tags used for sheep identification was investigated in a two-part study. In Part I, ear tags classified as metal loop, golf-tee, single flex or lambtag were inserted into the ears of 62 ewes. The severity of ewe ear lesions was monitored until 20 weeks after ear tag insertion. In Part II, 351 lambs had tags classified as metal loop, plastic loop, golf-tee, double flex, single flap, lambtag and electronic, inserted in their ears. The behaviour of the lambs was observed for 30s after insertion of the ear tag. The severity of lamb ear lesions was monitored until 5 weeks after ear tag insertion. In both ewes and lambs there was a significantly greater risk of severe and persistent ear lesions following the use of metal loop tags as compared with the other types of ear tag (P < 0.001). The single flap tag was difficult to insert in a greater proportion of lambs (P < 0.001), and more lambs haemorrhaged (P < 0.001), vocalized (P = 0.002) and shook their heads (P = 0.004) with it, than with the other types of ear tags. All ear tags resulted in an inflammatory reaction and required correct positioning to minimize the severity of ear lesions.
The Covid-19 pandemic profoundly affected delivery and accessibility of mental health care services at a time when most needed. The OPTIMA Mood Disorder Service, a specialist bipolar disorder service, adapted group psychoeducation programme for delivery on-line.
Objectives
We report the feasibility of creating a digital psychoeducation programme.
Methods
The OPTIMA ten session group psychoeducation programme was converted into a ‘Digital’ intervention using video-conferencing. Sessions offered a range of key topics, derived from the initial Barcelona Group Psychoeducation Programme. At the time of writing, OPTIMA had fully completed two 10 session digital courses.
Results
A total of 12 people (6 in each group) consented to be part of a service evaluation of the digital groups. Just over half of the participants were women (7/12; 58.3%) and one identified as being non-binary (8.3); remaining participants were men. Age of participants ranged from 25 years to 65 years (Mean=42.3; SD=13.1). Data showed a high level of engagement (77%) All participants reported some improvement with a mean Bipolar Self-Efficacy scale (BPSES) post-group score of 105.6 (SD=14.8). At group level, this change was not statistically significant (F (1, 15) = 0.71, p=0.41). At an individual level, two out of five showed a reliable change index >1.96.
Conclusions
Delivering a ‘digital’ group psychoeducation programme was possible due to careful planning and programme development. There was good uptake from service users suggesting it is a feasible approach with preliminary evidence of clinical benefit.
We describe a new low-frequency wideband radio survey of the southern sky. Observations covering 72–231 MHz and Declinations south of
$+30^\circ$
have been performed with the Murchison Widefield Array “extended” Phase II configuration over 2018–2020 and will be processed to form data products including continuum and polarisation images and mosaics, multi-frequency catalogues, transient search data, and ionospheric measurements. From a pilot field described in this work, we publish an initial data release covering 1,447
$\mathrm{deg}^2$
over
$4\,\mathrm{h}\leq \mathrm{RA}\leq 13\,\mathrm{h}$
,
$-32.7^\circ \leq \mathrm{Dec} \leq -20.7^\circ$
. We process twenty frequency bands sampling 72–231 MHz, with a resolution of 2′–45′′, and produce a wideband source-finding image across 170–231 MHz with a root mean square noise of
$1.27\pm0.15\,\mathrm{mJy\,beam}^{-1}$
. Source-finding yields 78,967 components, of which 71,320 are fitted spectrally. The catalogue has a completeness of 98% at
${{\sim}}50\,\mathrm{mJy}$
, and a reliability of 98.2% at
$5\sigma$
rising to 99.7% at
$7\sigma$
. A catalogue is available from Vizier; images are made available via the PASA datastore, AAO Data Central, and SkyView. This is the first in a series of data releases from the GLEAM-X survey.
The coronavirus disease 2019 (COVID-19) pandemic has placed significant burden on healthcare systems. We compared Clostridioides difficile infection (CDI) epidemiology before and during the pandemic across 71 hospitals participating in the Canadian Nosocomial Infection Surveillance Program. Using an interrupted time series analysis, we showed that CDI rates significantly increased during the COVID-19 pandemic.
MeerTime is a five-year Large Survey Project to time pulsars with MeerKAT, the 64-dish South African precursor to the Square Kilometre Array. The science goals for the programme include timing millisecond pulsar (MSPs) to high precision (
${<} 1 \unicode{x03BC} \mathrm{s}$
) to study the Galactic MSP population and to contribute to global efforts to detect nanohertz gravitational waves with the International Pulsar Timing Array (IPTA). In order to plan for the remainder of the programme and to use the allocated time most efficiently, we have conducted an initial census with the MeerKAT ‘L-band’ receiver of 189 MSPs visible to MeerKAT and here present their dispersion measures, polarisation profiles, polarisation fractions, rotation measures, flux density measurements, spectral indices, and timing potential. As all of these observations are taken with the same instrument (which uses coherent dedispersion, interferometric polarisation calibration techniques, and a uniform flux scale), they present an excellent resource for population studies. We used wideband pulse portraits as timing standards for each MSP and demonstrated that the MeerTime Pulsar Timing Array (MPTA) can already contribute significantly to the IPTA as it currently achieves better than
$1\,\unicode{x03BC}\mathrm{s}$
timing accuracy on 89 MSPs (observed with fortnightly cadence). By the conclusion of the initial five-year MeerTime programme in 2024 July, the MPTA will be extremely significant in global efforts to detect the gravitational wave background with a contribution to the detection statistic comparable to other long-standing timing programmes.
This paper presents an exploratory case study where video-based pose estimation is used to analyse human motion to support data-driven design. It provides two example use cases related to design. Results are compared to ground truth measurements showing high correlation for the estimated pose, with an RMSE of 65.5 mm. The paper exemplifies how design projects can benefit from a simple, flexible, and cost-effective approach to capture human-object interactions. This also entails the possibility of implementing interaction and body capturing in the earliest stages of design, at minimal effort.