We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous studies investigating the effectiveness of augmentation therapy have been limited.
Aims
To evaluate the effectiveness of antipsychotic augmentation therapies among patients with treatment-resistant depression.
Method
We included patients diagnosed with depression receiving two antidepressant courses within 1 year between 2009 and 2020 and used the clone-censor-weight approach to address time-lag bias. Participants were assigned to either an antipsychotic or a third-line antidepressant. Primary outcomes were suicide attempt and suicide death. Cardiovascular death and all-cause mortality were considered as safety outcomes. Weighted pooled logistic regression and non-parametric bootstrapping were used to estimate approximate hazard ratios and 95% confidence intervals.
Results
The cohort included 39 949 patients receiving antipsychotics and the same number of matched antidepressant patients. The mean age was 51.2 (standard deviation 16.0) years, and 37.3% of participants were male. Compared with patients who received third-line antidepressants, those receiving antipsychotics had reduced risk of suicide attempt (sub-distribution hazard ratio 0.77; 95% CI 0.72–0.83) but not suicide death (adjusted hazard ratio 1.08; 95% CI 0.93–1.27). After applying the clone-censor-weight approach, there was no association between antipsychotic augmentation and reduced risk of suicide attempt (hazard ratio 1.06; 95% CI 0.89–1.29) or suicide death (hazard ratio 1.22; 95% CI 0.91–1.71). However, antipsychotic users had increased risk of all-cause mortality (hazard ratio 1.21; 95% CI 1.07–1.33).
Conclusions
Antipsychotic augmentation was not associated with reduced risk of suicide-related outcomes when time-lag bias was addressed; however, it was associated with increased all-cause mortality. These findings do not support the use of antipsychotic augmentation in patients with treatment-resistant depression.
The rural-oriented tuition-waived medical education program in China, started in 2010, provides free medical education to students committed to serving in rural areas to address medical staff shortages. Despite its success in training and deploying graduates, retaining them post-obligation remains challenging. This study explores the mechanisms behind the turnover intentions of rural-oriented medical students in Western China, offering insights for their retention.
Methods:
Semi-structured interviews were conducted with 47 rural-oriented medical students and 30 health clinic directors in Nanning City. Interview data were analysed using grounded theory, and open, axial and selective coding was applied.
Results:
Through three levels of coding analysis, 34 tree nodes, 13 sub-categories and 3 main categories were identified from the interviews with rural-oriented medical students and health clinic directors. 3 main categories were Subjective Norms, Behavioural Attitudes, and Perceived Behavioural Control.
Conclusion:
A model of turnover intention among rural-oriented medical students was developed. This model can serve as a valuable reference for future policy optimization concerning China’s rural order-directed medical students.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
The influence of the SNP rs174575 (C/G) within the fatty acid desaturase 2 gene on the levels of long-chain PUFA was determined through statistical meta-analysis. Six databases were searched to retrieve the relevant literature. Original data were analysed using Stata 17·0, encompassing summary statistics, tests for heterogeneity, assessment of publication bias, subgroup analysis and sensitivity analysis. A total of ten studies were identified and grouped into twelve trials. Our results showed that individuals who carried the minor G allele of rs174575 had significantly higher dihomo-γ-linolenic acid levels (P = 0·005) and lower arachidonic acid levels (P = 0·033) than individuals who were homozygous for the major allele. The subgroup analysis revealed that the G-allele carriers of rs174575 were significantly positively correlated with linoleic acid (P = 0·002) and dihomo-γ-linolenic acid (P < 0·001) and negatively correlated with arachidonic acid (P = 0·004) in the European populations group. This particular SNP showed a potential association with higher concentrations of dihomo-γ-linolenic acid (P = 0·050) and lower concentrations of arachidonic acid (P = 0·030) within the breast milk group. This meta-analysis has been registered in the PROSPERO database (ID: CRD42023470562).
Growing evidence indicates a link between diet and depression risk. We aimed to examine the association between an inflammatory diet index and depression utilising extensive data from UK biobank cohort. The energy-adjusted dietary inflammation index (E-DII) was calculated to quantify the potential of daily diet, with twenty-seven food parameters utilised. The E-DII scores were classified into two categories (low v. high) based on median value. To mitigate bias and ensure comparability of participant characteristics, propensity score matching was employed. To ascertain the robustness of these associations, sensitivity analyses were conducted. Subgroup analyses were performed to evaluate the consistency of these associations within different subpopulations. Totally, 152 853 participants entered the primary analyses with a mean age of 56·11 (sd 7·98) years. Employing both univariate and multivariate logistic regression models, adjustments were made for varying degrees of confounding factors (socio-demographics, lifestyle factors, common chronic medical conditions including type 2 diabetes and hypertension). Results consistently revealed a noteworthy positive correlation between E-DII and depression. In the context of propensity score matching, participants displaying higher E-DII scores exhibited an increased likelihood of experiencing incident depression (OR = 1·12, 95 % CI: 1·05, 1·19; P = 0·000316). Subgroup analysis results demonstrated variations in these associations across diverse subpopulations. The E-value for the point-estimate OR calculated from the propensity score matching dataset was 1·48. Excluding individuals diagnosed with type 2 diabetes or hypertension, the findings consistently aligned with the positive association in the primary analysis. These findings suggested that consumption of a diet with higher pro-inflammatory potential might associated with an increase of future depression risk.
Smectite growth is of importance across various fields due to its abundance on the surface of both Earth and Mars. However, the impact of the crystallinity of initial materials on smectite growth processes remains poorly understood. In this study, the kinetic processes of smectite growth were examined via experimental synthesis of trioctahedral Mg-Ni saponites. Mg-Ni saponites were synthesized using mixed precursors, specifically end-member Mg-saponite and Ni-saponite, which exhibit different crystallinities. The crystal chemistry and morphology of samples were analyzed using X-ray diffraction, Fourier-transform infrared spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy. The experimental results converge towards these main conclusions: (i) the formation of Mg-Ni saponite solid solutions are promoted when the precursors are small particles, whereas large-particle precursors limit their own dissolution and do not yield Mg-Ni saponite solid solutions under the experimental conditions; (ii) because Ni exhibits a greater stability within the saponite structure compared to Mg, the Mg-Ni-saponite solid solutions formed more easily from the mixture of Ni-saponite germs and well-crystallized Mg-saponite precursors than from the mixture of Mg-saponite germs and well-crystallized Ni-saponite precursors; (iii) the dissolution extent (DE) of precursor mixtures increases with longer synthesis time, higher synthesis temperature, and larger gap between synthesis temperature of precursors and of samples, and stabilizes once it reaches a certain value. Thus DE can be used to estimate the kinetics of Mg-Ni saponite crystallization from precursor mixtures. These results obtained from the experimental Mg-Ni saponite system are useful for predicting the evolution processes of smectite in natural systems.
Hippocampal disruptions represent potential neuropathological biomarkers in depressed adolescents with cognitive dysfunctions. Given heterogeneous outcomes of whole-hippocampus analyses, we investigated subregional abnormalities in depressed adolescents and their associations with symptom severity and cognitive dysfunctions.
Methods
MethodsSeventy-nine first-episode depressive patients (ag = 15.54 ± 1.83) and 71 healthy controls (age = 16.18 ± 2.85) were included. All participants underwent T1 and T2 imaging, completed depressive severity assessments, and performed cognitive assessments on memory, emotional recognition, cognitive control, and attention. Freesurfer was used to segment each hippocampus into 12 subfields. Multivariable analyses of variance were performed to identify overall and disease severity-related abnormalities in patients. LASSO regression was also conducted to explore the associations between hippocampal subfields and patients’ cognitive abilities.
Results
Depressed adolescents showed decreases in dentate gyrus, CA1, CA2/3, CA4, fimbria, tail, and molecular layer. Analyses of overall symptom severity, duration, self-harm behavior, and suicidality suggested that severity-related decreases mainly manifested in CA regions and involved surrounding subfields with disease severity increases. LASSO regression indicated that hippocampal subfield abnormalities had the strongest associations with memory impairments, with CA regions and dentate gyrus showing the highest weights.
Conclusions
Hippocampal abnormalities are widespread in depressed adolescents and such abnormalities may spread from CA regions to surrounding areas as the disease progresses. Abnormalities in CA regions and dentate gyrus among these subfields primarily link with memory impairments in patients. These results demonstrate that hippocampal subsections may serve as useful biomarkers of depression progression in adolescents, offering new directions for early clinical intervention.
A series of organoclays with monolayers, bilayers, pseudotrilayers, paraffin monolayers and paraffin bilayers were prepared from montmorillonite by ion exchange with hexadecyltrimethylammonium bromide (HDTMAB). The HDTMAB concentrations used for preparing the organoclays were 0.5, 0.7, 1.0, 1.5, 2.0 and 2.5 times the montmorillonite cation exchange capacity (CEC). The microstructural parameters, including the BET-N2 surface area, pore volume, pore size, and surfactant loading and distribution, were determined by X-ray diffraction, N2 adsorption-desorption and high-resolution thermogravimetric analysis (HRTG). The BET-N2 surface area decreased from 55 to 1 m2/g and the pore volume decreased from 0.11 to 0.01 cm3/g as surfactant loading was increased from Na-Mt to 2.5CEC-Mt. The average pore diameter increased from 6.8 to 16.3 nm as surfactant loading was increased. After modifying montmorillonite with HDTMAB, two basic organoclay models were proposed on the basis of HRTG results: (1) the surfactant mainly occupied the clay interlayer space (0.5CEC-Mt, 0.7CEC-Mt, 1.0CEC-Mt); and (2) both the clay interlayer space and external surface (1.5CEC-Mt, 2.0CEC-Mt, 2.5CEC-Mt) were modified by surfactant. In model 1, the sorption mechanism of p-nitrophenol to the organoclay at a relatively low concentration involved both surface adsorption and partitioning, whereas, in model 2 it mainly involved only partitioning. This study demonstrates that the distribution of adsorbed surfactant and the arrangement of adsorbed HDTMA+ within the clay interlayer space control the efficiency and mechanism of sorption by the organoclay rather than BET-N2 surface area, pore volume, and pore diameter.
The thermal stability of surfactant-modified clays plays a key role in the synthesis and processing of organoclay-based nanocomposites. Differential thermal analysis (DTA), thermogravimetric measurement and differential scanning calorimetry (DSC) were used in this study to characterize the thermal stability of hexadecyltrimethylammonium bromide-modified montmorillonites prepared at different surfactant concentrations. Analysis by DSC shows that the molecular environment of the surfactant within the montmorillonite galleries is different from that in the bulk state. The endothermic peak at 70–100°C in the DTA curves of the modified montmorillonites is attributed to both the surfactant phase transformation and the loss of free and interlayer water. With an increase of surfactant-packing density, the amount of water residing in the modified montmorillonite decreases gradually, reflecting the improvement of the hydrophobic property for the organoclay. However, the increase in the surfactant packing density within the galleries leads to a decrease in the thermal stability of the organoclays.
With an increase of initial surfactant concentration for the preparation of organoclays, the surfactant- packing density increases gradually to a ‘saturated’ state. It was found that the cationic surfactant was introduced into the montmorillonite interlayer not only by cation exchange but also by physical adsorption.
With the advantages of short duration and extreme brightness, laser proton accelerators (LPAs) show great potential in many fields for industrial, medical, and research applications. However, the quality of current laser-driven proton beams, such as the broad energy spread and large divergence angle, is still a challenge. We use numerical simulations to study the propagation of such proton bunches in the plasma. Results show the bunch will excite the wakefield and modulate itself. Although a small number of particles at the head of the bunch cannot be manipulated by the wakefield, the total energy spread is reduced. Moreover, while reducing the longitudinal energy spread, the wakefield will also pinch the beam in the transverse direction. The space charge effect of the bunch is completely offset by the wakefield, and the transverse momentum of the bunch decreases as the bunch transports in the plasma. For laser-driven ion beams, our study provides a novel idea about the optimization of these beams.
Heterostructures formed by nanoparticles hybridized with porous hosts are of great potential in many practical applications such as catalysis, adsorption, and environmental remediation, based on their intrinsic properties. The objectives of this study were to synthesize zerovalent iron nanoparticles/montmorillonite heterostructures and to investigate their textural evolution under different Fe loadings. Iron nanoparticles were hybridized with montmorillonite by impregnation of montmorillonite by ferric ions followed by chemical reduction with sodium borohydride in solution. These hybridized Fe nanoparticles were well dispersed on the montmorillonite surface, size adjustable, and resistant to oxidation under the protection of native Fe-oxide shells. The textural evolution of these heterostructures under various Fe loadings was investigated using nitrogen physisorption, X-ray diffraction, electron microscopy, and elemental analyses. As the Fe loadings increased, the total pore and mesopore volumes were almost unchanged; the total, micropore, and external surface areas as well as the micropore volume decreased; and the average pore diameter increased. These textural changes could be attributed to the filling of the interparticle pores of montmorillonite by a variable amount of Fe nanoparticles. In addition, with increasing Fe loadings, the mesoporous character was enhanced for these heterostructures. These fundamental results are important in understanding the structure of these heterostructures as well as in developing some novel applications in related fields.
The ordering conformation of surfactant molecules in intercalated montmorillonite prepared at various concentrations was investigated by 13C MAS NMR. The 13C MAS NMR study demonstrates the coexistence of ordered and disordered chain conformations. Two main resonance peaks are associated with the backbone alkyl chains: the resonance at 33 ppm corresponds to the ordered conformation (all-trans), and the resonance at 30 ppm corresponds to the disordered conformation (mixture of trans and gauche). Deconvolution of 13C MAS NMR spectra indicates that the ordering conformation of surfactant molecules within the gallery of montmorillonite depends very much on their orientation and packing density. When amine chains are oriented parallel to the silicate layers, the amount of all-trans conformer decreases with the increase of amine concentration. However, the amount of all-trans conformer increases with the increase of amine concentration when amine chains radiate from the silicate layers. Furthermore, 13C MAS NMR spectra show that the intercalated surfactant molecules in the clay minerals never attained the complete liquidlike or solidlike behavior.
The objective of the present study was to investigate changes in the structural, textural, and surface properties of tubular halloysite under heating, which are significant in the applications of halloysite as functional materials but have received scant attention in comparison with kaolinite. Samples of a purified halloysite were heated at various temperatures up to 1400°C, and then characterized by X-ray diffraction, electron microscopy, Fourier-transform infrared spectroscopy, thermal analysis, and nitrogen adsorption. The thermal decomposition of halloysite involved three major steps. During dehydroxylation at 500–900°C, the silica and alumina originally in the tetrahedral and octahedral sheets, respectively, were increasingly separated, resulting in a loss of long-range order. Nanosized (5–40 nm) γ-Al2O3 was formed in the second step at 1000–1100°C. The third step was the formation of a mullite-like phase from 1200 to 1400°C and cristobalite at 1400°C. The rough tubular morphology and the mesoporosity of halloysite remained largely intact as long as the heating temperature was <900°C. Calcination at 1000°C led to distortion of the tubular nanoparticles. Calcination at higher temperatures caused further distortion and then destruction of the tubular structure. The formation of hydroxyl groups on the outer surfaces of the tubes during the disconnection and disordering of the original tetrahedral and octahedral sheets was revealed for the first time. These hydroxyl groups were active for grafting modification by an organosilane (γ-aminopropyltriethoxysilane), pointing to some very promising potential uses of halloysite for ceramic materials or as fillers for novel clay-polymer nanocomposites.
High-intensity vortex beams with tunable topological charges and low coherence are highly demanded in applications such as inertial confinement fusion (ICF) and optical communication. However, traditional optical vortices featuring nonuniform intensity distributions are dramatically restricted in application scenarios that require a high-intensity vortex beam owing to their ineffective amplification resulting from the intensity-dependent nonlinear effect. Here, a low-coherence perfect vortex beam (PVB) with a topological charge as high as 140 is realized based on the super-pixel wavefront-shaping technique. More importantly, a globally adaptive feedback algorithm (GAFA) is proposed to efficiently suppress the original intensity fluctuation and achieve a flat-top PVB with dramatically reduced beam speckle contrast. The GAFA-based flat-top PVB generation method can pave the way for high-intensity vortex beam generation, which is crucial for potential applications in ICF, laser processing, optical communication and optical trapping.
COVID-19 lockdowns increased the risk of mental health problems, especially for children with autism spectrum disorder (ASD). However, despite its importance, little is known about the protective factors for ASD children during the lockdowns.
Methods
Based on the Shanghai Autism Early Developmental Cohort, 188 ASD children with two visits before and after the strict Omicron lockdown were included; 85 children were lockdown-free, while 52 and 51 children were under the longer and the shorter durations of strict lockdown, respectively. We tested the association of the lockdown group with the clinical improvement and also the modulation effects of parent/family-related factors on this association by linear regression/mixed-effect models. Within the social brain structures, we examined the voxel-wise interaction between the grey matter volume and the identified modulation effects.
Results
Compared with the lockdown-free group, the ASD children experienced the longer duration of strict lockdown had less clinical improvement (β = 0.49, 95% confidence interval (CI) [0.19–0.79], p = 0.001) and this difference was greatest for social cognition (2.62 [0.94–4.30], p = 0.002). We found that this association was modulated by parental agreeableness in a protective way (−0.11 [−0.17 to −0.05], p = 0.002). This protective effect was enhanced in the ASD children with larger grey matter volumes in the brain's mentalizing network, including the temporal pole, the medial superior frontal gyrus, and the superior temporal gyrus.
Conclusions
This longitudinal neuroimaging cohort study identified that the parental agreeableness interacting with the ASD children's social brain development reduced the negative impact on clinical symptoms during the strict lockdown.
Maternal syphilis not only seriously affects the quality of life of pregnant women themselves but also may cause various adverse pregnancy outcomes (APOs). This study aimed to analyse the association between the related factors and APOs in maternal syphilis. 7,030 pregnant women infected with syphilis in Henan Province between January 2016 and December 2022 were selected as participants. Information on their demographic and clinical characteristics, treatment status, and pregnancy outcomes was collected. Multivariate logistic regression models and chi-squared automatic interaction detector (CHAID) decision tree models were used to analyse the factors associated with APOs. The multivariate logistic regression results showed that the syphilis infection history (OR = 1.207, 95% CI, 1.035–1.409), the occurrence of abnormality during pregnancy (OR = 5.001, 95% CI, 4.203–5.951), not receiving standard treatment (OR = 1.370, 95% CI, 1.095–1.716), not receiving any treatment (OR = 1.313, 95% CI, 1.105–1.559), and a titre ≥1:8 at diagnosis (OR = 1.350, 95%CI, 1.079–1.690) and before delivery (OR = 1.985, 95%CI, 1.463–2.694) were risk factors. A total of six influencing factors of APOs in syphilis-infected women were screened using the CHAID decision tree model. Integrated prevention measures such as early screening, scientific eugenics assessment, and standard syphilis treatment are of great significance in reducing the incidence of APOs for pregnant women infected with syphilis.
Echinolaelaps echidninus is a gamasid mite that is of medical and veterinary significance as parasites and vectors of disease agents, which can carry pathogens of zoonosis such as Rickettsia tsutsugamushi, Rickettsia Q fever, Rickettsia mooseri, Rickettsia pox pathogens, Corynebacterium pseudotuberculosis and Leptospira. At present, only single mitochondrial genes have been analysed for E. echidninus in the world, and no complete mitochondrial genome has been reported. However, information carried by a single gene is limited. Therefore, the complete mitochondrial genome of E. echidninus was determined for the first time by Illumina Hiseq X-Ten platform in this study. The mitochondrial genome is 15 736 bp in length and contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a control region of 1561 bp in length. Codon analysis of 13 protein-coding genes revealed that UUU, UUA, AUU, AUA and AAU were the most frequently used, while cox2 had the fastest evolutionary rate and cob the slowest. Comparative analysis of genome structure and breakpoint distances of the mitochondrial genomes of 23 species in 17 genera from 10 families of Gamasida deposited in GenBank revealed a novel gene arrangement type of the E. echidninus mitochondrial genome, and different degrees of rearrangement among different taxa of Gamasida. Phylogenetic analyses of Gamasida were performed using the maximum likelihood and Bayesian inference methods. Echinolaelaps echidninus was clustered with Dermanyssoidea and formed a more supportive sister group with Varroa destructor. This study provides novel insights into rearrangement patterns and evolution of mitochondrial genomes of Gamasida.
Suppose you need to complete a task of 5 steps, each of which has equal difficulty and pass rate. You somehow have a privilege that can ensure you pass one of the steps, but you need to decide which step to be privileged before you start the task. Which step do you want to privilege? Mathematically speaking, the effect of each step on the final outcome is identical, and so there seems to be no prima facie reason for a preference. Five studies were conducted to explore this issue. In Study 1, participants could place the privilege on any of steps 1–5. Participants were most inclined to privilege step 5. In Study 2, participants needed to pay some money to purchase the privilege for steps 1–5, respectively. Participants would pay most money for step 5. Study 3 directly reminded participants that the probability of success of the whole task is mathematically the same, no matter on which step the privilege is placed, but most of the participants still prefer to privilege the final step. Study 4 supposed that the outcomes of all steps were not announced until all steps were finished, and asked how painful participants would feel if they passed all steps but one. People thought they would feel most painful when they failed at the final step. In Study 5, an implicit association test showed that people associated the first step with easy and the final step with hard. These results demonstrated the phenomenon of the final step effect and suggested that both anticipated painfulness and stereotype may play a role in this phenomenon.
This paper presents systematic molecular dynamics modelling of Na-montmorillonite subjected to uniaxial compression and unidirectional shearing. An initial 3D model of a single-cell Na-montmorillonite structure is established using the Build Crystal module. The space group is C2/m, and COMPASS force fields are applied. Hydration analysis of Na-montmorillonite has been performed to validate the simulation procedures, where the number of absorbed water molecules varied with respect to the various lattice parameters. A series of uniaxial compression stress σzz and unidirectional shear stress τxy values are applied to the Na-montmorillonite structure. It is shown that the lattice parameter and hydration degree exhibit significant influence on the stress–strain relationship of Na-montmorillonite. The ultimate strain increases with increases in the lattice parameter but decreases in the number of water molecules. For saturated Na-montmorillonite, more water molecules result in a stiffer clay mineral under uniaxial compression and unidirectional shearing.