Skip to main content
  • Print publication year: 2017
  • Online publication date: July 2017

7 - The Martian Planetary Boundary Layer

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

The Atmosphere and Climate of Mars
  • Online ISBN: 9781139060172
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Alexakis, A. 2009. Stratified shear flow instabilities at large Richardson numbers. Phys. Fluids, 21, 054108, doi: 10.1063/1.3147934.
Allison, M., Ross, J. D., and Solomon, N. 1999. Mapping the Martian meteorology. Fifth International Conference on Mars, LPI Contribution No. 972, Lunar and Planetary Institute, Tucson, Arizona, 972.
André, J. C., De Moor, G., Lacarrére, P., Therry, G., and du Vachat, R. 1978. Modeling 24-hour evolution of mean and turbulent structures of planetary boundary layer. J. Atmos. Sci., 35, 18611883.
Atreya, S. K., Wong, A.-S., Rennó, N. O., et al. 2006. Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology, 6, 439450.
Bagnold, R. A. 1941. The Physics of Blown Sand and Desert Dunes. New York: Methuen.
Balme, M., and Greeley, R. 2006. Dust devils on Earth and Mars. Rev. Geophys., 44 (3), RG3003, doi:10.1029/2005RG000188.
Basu, S., Vinuesa, J.-F., and Swift, A. 2008. Dynamic LES Modeling of a Diurnal Cycle. J. Appl. Met. Clim., 47, 11561174.
Blackadar, A. K. 1957. Boundary-layer wind maxima and their significance for the growth of nocturnal inversion. Bull. Amer. Meteorol. Soc., 38, 283290.
Blackadar, A. K. 1962. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102.
Blumsack, S. L., Gierasch, P. J., and Wessel, S. R. 1973. An analytical and numerical study of the Martian planetary boundary layer over slopes. J. Atmos. Sci., 30, 6680.
Brutsaert, W. H. 1982. Exchange processes at the Earth-atmosphere interface. Plate, E. (ed), Engineering Meteorology. Elsevier, 319369.
Cantor, B. A., James, P. B., Caplinger, M., and Wolff, M. J. 2001. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res., 106 (E10), 2365323687.
Cantor, B., Malin, M., and Edgett, K. S. 2002. Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J. Geophys. Res., 107 (E3), 3-13-8.
Cantor, B. A., Kanak, K. M., and Edgett, K. S. 2006. Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res., 111 (E12), E12002.
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S. 2001. Ocean turbulence. Part I: One-point closure model – momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 14131426.
Canuto, V. M., Cheng, Y., and Howard, A. M. 2005. What causes divergences in local second-order models? J. Atmos. Sci., 62, 16451651.
Canuto, V. M., Cheng, Y., Howard, A. M., and Esau, I. N. 2008. Stably stratified flows: a model with no Ri(cr). J. Atmos. Sci., 65, 24372447.
Chamberlain, T. E., Cole, H. L., Dutton, R. G., Greene, G. C., and Tillman, J. E. 1976. Atmospheric measurements on Mars: the Viking meteorology experiment. Bull. Amer. Meteor. Soc., 57, 10941104.
Christensen, P. R., Banfield, J. L., Hamilton, V. E., et al. 2001. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res., 106 (E10), 2382323872.
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al. 2003. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. J. Geophys. Res., 108 (E12), 23823–23872.
Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., and Millour, E. 2013. A thermal plume model for the Martian convective boundary layer. J. Geophys. Res., 118, 14681487.
Cot, C. 2001. Equatorial mesoscale wind and temperature fluctuations in the lower atmosphere. J. Geophys. Res., 106 (D2), 15231532.
Crozier, W. D. 1964. The electric field of a New Mexico dust devil. J. Geophys. Res., 69, 54275429.
Davy, R., Taylor, P. A., Weng, W., and Li, P.-Y. 2009. A model of dust in the Martian lower atmosphere. J. Geophys. Res., 114 (D4), 4108.
Davy, R., Davis, J. A., Taylor, P. A. 2010. Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes. J. Geophys. Res., 115 (E3).
Deardorff, J. W. 1972. Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 72, 59005904.
Deardorff, J.W. 1976a. Clear and cloud-capped mixed layers – their numerical simulation, structure and growth and parameterization. In Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction, European Center for Medium Range Weather Forecasts, 234284.
Deardorff, J. W. 1976b. On the entrainment rate of a stratocumulus-topped mixed layer. Quart. J. R. Meteorol. Soc., 102, 563582.
Delory, G. T., Farrell, W. M., Atreya, S. K. 2006. Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology, 6, 451462.
Dewan, E. M. 1979. Stratospheric wave spectra resembling turbulence. Science, 204, 832835.
Dewan, E. M., and Good, R. E. 1986. Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91, 27422748.
Drake, N. B., Tamppari, L. K., Baker, R. D., Cantor, B. A., and Hale, A. S. 2006. Dust devil tracks and wind streaks in the north polar region of Mars: a study of the 2007 Phoenix Mars Lander sites. Geophys. Res. Lett., 33, L19S02.
Ellehoj, M. D., Gunnlaugsson, H. P., Taylor, P. A. 2010. Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., 115 (E4), E00E16.
Emanuel, K. A. 1994. Atmospheric Convection. Oxford and New York: Oxford University Press.
Farrell, W. M., Delory, G. T., and Atreya, S. K. 2006. Martian dust storms as a possible sink of atmospheric methane. Geophys. Res. Lett., 33, L21203.
Fergason, R. L., Christensen, P. R., and Kieffer, H. H. 2006. High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): thermal model and applications. J. Geophys. Res., 111 (E12), E12004.
Ferri, F., Smith, P. H., Lemmon, M., and Rennó, N. O. 2003. Dust devils as observed by Mars Pathfinder. J. Geophys. Res., 108 (E12), 71.
Forget, F., Hourdin, F., Fournier, R. et al. 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. Planets, 104 (E10), 2415524176.
Forget, F., Spiga, A., Dolla, B., et al. 2007. Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method. J. Geophys. Res., 112 (E8), E08S15.
Fritts, D. C., and Alexander, M. J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003. doi:10.1029/2001RG000106.
Galperin, B., and Sukoriansky, S. 2010. Geophysical flows with anisotropic turbulence and dispersive waves: flows with stable stratification. Ocean Dyn., 60, 13191337.
Galperin, B., Kantha, L. H., Hassid, S., and Rosati, A. R. 1988. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 5562.
Galperin, B., Kantha, L. H., Mellor, G. L., and Rosati, A. R. 1989. Modeling rotating stratified turbulent flows with application to oceanic mixed layers. J. Phys. Oceanogr., 19, 901916.
Galperin, B., Sukoriansky, S., and Anderson, P. S. 2007. On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Let., 8, 6569.
Garratt, J. R. 1992. The atmospheric boundary layer. Cambridge University Press.
Gierasch, P. J., and Goody, R. M. 1968. A study of the thermal and dynamical structure of the lower Martian atmosphere. Plan. Space Sci., 16, 615646.
Golombek, M., Cook, R. A., Economou, T., et al. 1997. Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science, 278, 17431748.
Gómez-Elvira, J., and REMS Team. 2008. Environmental Monitoring Station for Mars Science Laboratory. In Third International Workshop on The Mars Atmosphere: Modeling and Observations, November 10–13, 2008, Williamsburg, VA. LPI Contributions, 1447, 9052.
Gómez-Elvira, J., Armiens, C., Castañer, L., et al. 2012. REMS: the environmental sensor suite for the Mars Science Laboratory Rover. Space Sci. Rev., 170, 583640.
Greeley, R., and Iversen, J. D. 1985. Wind as a geological process on Earth, Mars, Venus and Titan. New York: Cambridge University Press.
Gunnlaugsson, H. P., Holstein-Rathlou, C., Merrison, J. P., et al. 2008. Telltale wind indicator for the Mars Phoenix Lander. J. Geophys. Res., 113 (E3), E00A04.
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al. 1993a. Mars atmospheric dynamics as simulated by the NASA Ames general circulation model: 1. The zonal-mean circulation. J. Geophys. Res., 98 (E2), 30933123.
Haberle, R. M., Houben, H. C., Hertenstein, R., and Herdtle, T. 1993b. A boundary layer model for Mars: comparison with Viking Lander and entry data. J. Atmos. Sci., 50, 15441559.
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al. 1999. General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res., 104 (E4), 89578974.
Haberle, R. M., Gómez-Elvira, J., de la Torre Juarez, M., et al. 2014. Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res. Planets, 119, 440453.
Harri, A.-M., Genzer, M., Kemppinen, O., et al. 2014a. Mars Science Laboratory relative humidity observations – initial results. J. Geophys. Res. Planets, 119, 21322147.
Harri, A.-M., Genzer, M., Kemppinen, O., et al. 2014b. Pressure observations by the Curiosity Rover – initial results. J. Geophys. Res. Planets, 119, 8292.
Hassid, S., and Galperin, B. 1994. Modeling rotating flows with neutral and unstable stratification. J. Geophys. Res., 99, 1253312548.
Heavens, N. G., Richardson, M. I., and Toigo, A. D. 2008. Two aerodynamic roughness maps derived from Mars Orbiter Laser Altimeter (MOLA) data and their effects on boundary layer properties in a Mars general circulation model (GCM). J. Geophys. Res., 113 (E2), E02014, doi:10.1029/2007JE002991.
Hébrard, E., Listowski, C., Coll, P., et al. 2012. An aerodynamic roughness length map derived from extended Martian rock abundance data. J. Geophys. Res., 117 (E4), E04008.
Hess, S., Henry, R., Leovy, C., et al. 1976. Preliminary Meteorological Results on Mars from the Viking 1 Lander. Science, 193, 788791.
Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., and Tillman, J. E. 1977. Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res., 82, 45594574.
Hinson, D. P., and Wilson, R. J. 2004. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res., 109 (E1), 15.
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. 1999. Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res., 104 (E11), 2699727012.
Hinson, D. P., Tyler, G. L., Hollingsworth, J. L., and Wilson, R. J. 2001. Radio occultation measurements of forced atmospheric waves on Mars. J. Geophys. Res., 106, 14631480.
Hinson, D. P., Smith, M. D., and Conrath, B. J. 2004. Comparison of atmospheric temperatures obtained through infrared sounding and radio occulation by Mars Global Surveyor. J. Geophys. Res., 109 (E12), E12002, doi:10.1029/2004JE002344.
Hinson, D. P., Pätzold, M., Tellmann, S., Häusler, B., and Tyler, G. L. 2008. The depth of the convective boundary layer on Mars. Icarus, 198, 5766.
Holstein-Rathlou, C., Gunnlaugsson, H. P., Merrison, J. P., et al. 2010. Winds at the Phoenix landing site. J. Geophys. Res., 115 (E5), E00E18.
Holtslag, A., and Moeng, C. 1991. Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901700.
Joshi, M. M., Lawrence, B. N., and Lewis, S. R. 1996. The effect of spatial variations in unresolved topography on gravity wave drag in the Martian atmosphere. Geophys. Res. Lett., 23, 29272930.
Kanak, K. M., Lilly, D. K., and Snow, J. T. 2000. The formation of vertical Vortices in the convective boundary layer. Quart. J. R. Meteorol. Soc., 126, 27892810.
Karelsky, K. V., and Petrosyan, A. S. 1995. Numerical simulations of the near surface phenomena on Mars. Adv. in Space Res., 16, 4548.
Karelsky, K., Petrosyan, A., and Smirnov, I. 2007. A new model for boundary layer flows interacting with particulates in land surface on complex terrain. Quart. J. Hungarian Meteorol. Service, 111, 149159.
Kass, D. M., Schofield, J. T., Michaels, T. I., et al. 2003. Analysis of atmospheric mesoscale models for entry, descent, and landing. J. Geophys. Res., 108 (E12), 8090, doi:10.1029/2003JE002065.
Kauhanen, J., Siili, T., Järvenoja, S., and Savijärvi, H. 2008. The Mars limited area model and simulations of atmospheric circulations for the Phoenix landing area and season of operation. J. Geophys. Res., 113 (E3), E00A14, doi:10.1029/2007JE00301.
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D. 1976. Martian north pole summer temperatures: dirty water ice. Science, 194, 13411344.
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al. 1977. Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res., 82, 42494291.
Kitamura, Y. 2010. Modifications to the Mellor–Yamada–Nakanishi–Niino (MYNN) model for the stable stratification case. J. Met. Soc. Japan, 88, 857864.
Kok, J. F., and Rennó, N. O. 2008. Electrostatics in wind-blown sand. Phys. Rev. Lett., 100, 014501.
Kok, J. F., and Rennó, N. O. 2009. Electrification of wind-blown sand on Mars and its implications for atmospheric chemistry. Geophys. Res. Lett., 36, L05202.
Kurbatskiy, A. F., and Kurbatskaya, L. I. 2006. Three-parameter model of turbulence for the atmospheric boundary layer over an urbanized surface. Izvestiya, Atm. Ocean. Phys., 42, 439455.
Kursinski, E. R., Folkner, W., Zuffada, C., et al. 2004. The Mars Atmospheric Constellation Observatory (MACO) Concept. 393405 of: Kirchengast, G., Foelsche, U., and Steiner, A. (eds), Occultations for Probing Atmosphere and Climate. Springer. Papers from the 1st International Workshop on Occultations for Probing Atmosphere and Climate (OPAC-1).
Larsen, S. E., Jørgensen, H. E., Landberg, L., and Tillman, J. E. 2002. Aspects of the atmospheric surface layers on Mars and Earth. Boundary-Layer Meteorol., 105, 451470.
Launder, B. E., Reece, G. J., and Rodi, W. 1975. Progress in development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537566.
Lefevre, F., and Forget, F. 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature, 460, 720723.
Lemmon, M., Wolff, M., Smith, M., et al. 2004. Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 306, 17531756.
Leovy, C. B., and Mintz, Y. 1969. Numerical simulation of the atmospheric circulation and climate of Mars. J. Atmos. Sci., 26, 11671190.
Lilly, D. K. 1962. On the numerical simulation of buoyant convection. Tellus, 14, 148172.
Määttänen, A., and Savijärvi, H. 2004. Sensitivity tests with a 1-dimensional boundary layer Mars model. Boundary-Layer Meteorol., 113, 305320.
Malin, M. C., and Edgett, K. S. 2001. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res., 106 (E10), 2342923570.
Malin, M. C., Carr, M. H., Danielson, G. E., et al. 1999. Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science, 279, 16811685.
Martínez, G., Valero, F., and Vázquez, L. 2009a. Characterization of the Martian Convective Boundary Layer. J. Atmos. Sci., 66, 20442058.
Martínez, G., Valero, F., and Vázquez, L. 2009b. Characterization of the Martian surface layer. J. Atmos. Sci., 66, 187198.
Martínez, G., Valero, F., and Vázquez, L. 2011. The TKE budget in the convective Martian planetary boundary layer. Quart. J. R. Meteorol. Soc., 137, 21942208.
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R. 2000. High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission spectrometer. Icarus, 148, 437455.
Mellor, G. L. 1973. Analytic prediction of properties of stratified planetary surface layers. J. Atmos. Sci., 30, 10611069.
Mellor, G. L, and Herring, H. J. 1973. Survey of mean turbulent field closure models. AIAA J., 11, 590599.
Mellor, G. L., and Yamada, T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.
Mellor, G. L., and Yamada, T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.
Melnik, O., and Parrot, M. 1998. Electrostatic discharge in Martian dust storms. J. Geophys. Res., 103 (A12), 2910729117.
Metzger, S. M., Carr, J. R., Johnson, J. R., Parker, T. J., and Lemmon, M. 1999. Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett., 26, 27812784.
Michaels, T. I. 2006. Numerical modeling of Mars dust devils: albedo track generation. Geophys. Res. Lett., 33, L19S08, doi:10.1029/2006GL026268.
Michaels, T. I., and Rafkin, S. C. R. 2004. Large eddy simulation of atmospheric convection on Mars. Quart. J. R. Meteorol. Soc., 130, 12511274.
Michaels, T. I., and Rafkin, S. C. R. 2008. Meteorological predictions for candidate 2007 Phoenix Mars Lander sites using the Mars Regional Atmospheric Modeling System (MRAMS). J. Geophys. Res., 113 (E3), E00A07, doi:10.1029/2007JE003013.
Moeng, C. H., Dudhia, J., Klemp, J., and Sullivan, P. 2007. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Monthly Weather Review, 135, 22952311.
Monin, A. S., and Obukhov, A. M. 1954. Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnon sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz. Inst. AN SSSR, 24, 163187.
Monin, A. S., and Yaglom, A. M. 1975. Statistical Fluid Mechanics. MIT Press.
Moores, J. E., Lemmon, M. T., Smith, P. H., Komguem, L., and Whiteway, J. A. 2010. Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager. J. Geophys. Res., 115 (E1), E00E08.
Moudden, Y., and McConnell, J. C. 2005. A new model for multiscale modeling of the Martian atmosphere, GM3. J. Geophys. Res., 110 (E4), E00A07, doi:10.1029/2007JE003013.
Murphy, J. R., and Nelli, S. 2002. Mars Pathfinder convective vortices: frequency of occurrence. J. Geophys. Res., 29, 2103, doi:10.1029/2002GL015214.
Nayvelt, L., Gierasch, P. J., and Cook, K. H. 1997. Modeling and observations of Martian stationary waves. J. Atmos. Sci., 54, 9861013.
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. 2002a. Modeling the Martian Dust Cycle, 1. Representations of Dust Transport Processes. J. Geophys. Res., 107 (E12), doi:10.1029/2002JE001910.
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. 2002b. Modeling the Martian Dust Cycle, 2. Multiannual Radiatively Active Dust Transport Simulations. J. Geophys. Res., 107 (E12), doi:10.1029/2002JE001920.
Odaka, M. 2001. A numerical simulation of Martian atmospheric convection with a two-dimensional anelastic model: a case of dust-free Mars. Geophys. Res. Lett., 28, 895898.
Odaka, M., Nakajima, K., Takehiro, S., Ishiwatari, M., and Hayashi, Y. 1998. A numerical study of the Martian atmospheric convection with a two-dimensional anelastic model. Earth, Planets, and Space, 50, 431437.
Oyama, V., Berdahl, B., and Carle, G. 1977. Preliminary findings of Viking gas-exchange experiment and a model for Martian surface chemistry. Nature, 265, 110114.
Pallman, A. J. 1983. The thermal structure of the atmospheric surface layer on Mars as modified by the radiative effect of Aeolian dust. J. Geophys. Res., 88, 54835493.
Petrosyan, A., Galperin, B., Larsen, S. E., et al. 2011. The Martian atmospheric boundary layer. Rev. Geophys., 49, RG3005.
Pollack, J. B., Leovy, C. B., Mintz, Y., and Van Camp, W. 1976. Winds on Mars during the Viking season: predictions based on a general circulation model with topography. Geophys. Res. Lett., 3, 479482.
Pollack, J., Colburn, D., Kahn, R., et al. 1977. Properties of aerosols in the Martian atmosphere, as inferred from Viking Lander imaging data. J. Geophys. Res., 82, 44794496.
Pollack, J. B., Leovy, C. B., Greiman, P. W., and Mintz, Y. 1981. A Martian general circulation experiment with large topography. J. Atmos. Sci., 38, 329.
Pope, S. B. 2005. Turbulent Flows. Cambridge University Press.
Putzig, N. E., and Mellon, M. T. 2007. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 191, 6894.
Rafkin, S. C. R. 2003. The effect of convective adjustment on the global circulation of Mars as simulated by a general circulation model. In Albee, A. (ed), Sixth International Conference on Mars, 1, 3059.
Rafkin, S. C. R., and Michaels, T. I. 2003. Meteorological predictions for 2003 Mars Exploration Rover high-priority landing sites. J. Geophys. Res., 108 (E12), 8091, doi:10.1029/2002JE002027.
Rafkin, S. C. R., Haberle, R. M., and Michaels, T. I. 2001. The Mars Regional Atmospheric Modeling System: model description and selected simulations. Icarus, 151, 228256.
Rafkin, S. C. R., Michaels, T. I., and Haberle, R. M. 2004. Meteorological predictions for the Beagle 2 mission to Mars. Geophys. Res. Lett., 31, 1703.
Rennó, N. O. 2008. A general theory for convective plumes and vortices. Tellus A, 60, 688699.
Rennó, N. O., and Kok, J. F. 2008. Electrical activity and dust lifting on Earth, Mars and beyond. Springer. 419434.
Rennó, N. O., Burkett, M. L., and Larkin, M. P. 1998. A simple thermodynamical theory for dust devils. J. Atmos. Sci., 55, 32443252.
Rennó, N. O., Nash, A. A., Lunine, J., and Murphy, J. 2000. Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res., 105 (E1), 18591865.
Rennó, N. O., Abreu, V., Koch, J., et al. 2004. MATADOR 2002: A field experiment on convective plumes and dust devils. J. Geophys. Res., 109 (E7), E07001, doi:10.1029/2003JE002219.
Rennó, N., Bos, B., Catling, D., et al. 2009. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res., 114 (E1), E00E03, doi:10.1029/2009JE003362.
Richardson, M. I., Toigo, A. D., and Newman, C. E. 2007. PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res., 112 (E9), E09001, doi:10.1029/2006JE002825.
Ringrose, T. J., Towner, M. C., and Zarnecki, J. C. 2003. Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus, 163, 7887.
Rippeth, T. P. 2005. Mixing in seasonally stratified shelf seas: a shifting paradigm. Phil. Trans. R. Soc. A, 363, 28372854.
Ristorcelli, J. R. 1997. Toward a turbulence constitutive relation for geophysical flows. Theor. Comput. Fluid Dynamics, 9, 207221.
Ruf, C., Rennó, N. O., Kok, J. F., 2009. The emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett., 36, L13202.
Ryan, J., and Lucich, R. 1983. Possible Dust Devils, Vortices on Mars. J. Geophys. Res., 88, 1100511011.
Savijärvi, H. 1991a. A model study of the PBL structure on Mars and the Earth. Contrib. Atmos. Phys., 64, 219229.
Savijärvi, H. 1991b. Radiative fluxes on a dustfree Mars. Contrib. Atmos. Phys., 64, 103111.
Savijärvi, H. 1999. A model study of the atmospheric boundary layer in the Mars Pathfinder Lander conditions. Quart. J. R. Meteorol. Soc., 125, 483493.
Savijärvi, H. 2012a. Mechanisms of the diurnal cycle in the atmospheric boundary layer of Mars. Quart. J. R. Meteorol. Soc., 138, 552560.
Savijärvi, H. 2012b. The convective boundary layer on Mars: some 1-D simulation results. Icarus, 221, 617623.
Savijärvi, H., and Kauhanen, J. 2008. Surface and boundary layer modelling for the Mars Exploration Rover sites. Quart. J. R. Meteorol. Soc., 134, 635641.
Savijärvi, H., and Määttänen, A. 2010. Boundary layer simulations for the Mars Phoenix Lander site. Quart. J. R. Meteorol. Soc., 136, 14971505.
Savijärvi, H., and Siili, T. 1993. The Martian slope winds and the nocturnal PBL jet. J. Atmos. Sci., 50, 7788.
Savijärvi, H., Määttänen, A., Kauhanen, J., and Harri, A.-M. 2004. Mars Pathfinder: new data and new model simulations. Quart. J. R. Meteorol. Soc., 130, 669683.
Schmidt, D. S., Schmidt, R. A., and Dent, J. D. 1998. Electrostatic force on saltating sand. J. Geophys. Res., 103 (D8), 89979001.
Schofield, J. T., Barnes, J. R., Crisp, D., et al. 1997. The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment. Science, 278, 17521758.
Segschneider, J., Grieger, B., Keller, H. U., et al. 2005. Response of the intermediate complexity Mars Climate Simulator to different obliquity angles. Planet. Space Sci., 53, 659670.
Seiff, A., and Kirk, D. B. 1977. Structure of the atmosphere of Mars in summer at mid-latitude. J. Geophys. Res., 82, 43644388.
Seiff, A., Tillman, J., Murphy, J., et al. 1997. The atmosphere structure and meteorology instrument on the Mars Pathfinder Lander. J. Geophys. Res., 102 (E2), 40454056.
Sinclair, P. C. 1973. The lower structure of dust devils. J. Atmos. Sci., 30, 15991619.
Smith, D. E., Zuber, M. T., Frey, H. V., et al. 2001. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106 (E10), 2368923722.
Smith, M. D., Wolff, M. J., Lemmon, M. T., et al. 2004. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES. Science, 306, 17501753.
Smith, M. D., Wolff, M. J., Spanovich, N., et al. 2006. One Martian year of atmospheric observations using MER Mini-TES. J. Geophys. Res., 111 (E12), E12S13.
Smith, P., Tomasko, M., Britt, D., et al. 1997. The Imager for Mars Pathfinder experiment. J. Geophys. Res., 102 (E2), 40034025.
Sorbjan, Z. 2007. Statistics of shallow convection on Mars based on large-eddy simulations. Part 1: shearless conditions. Boundary-Layer Meteorol., 123, 121142.
Sorbjan, Z., Wolff, M., and Smith, M. D. 2009. Thermal structure of the atmospheric boundary layer of Mars based on mini-TES observations. Quart. J. R. Meteorol. Soc., 135, 17761787.
Souza, E. P., Rennó, N. O., and Silva Dias, M. A. F. 2000. Convective circulations induced by surface heterogeneities. J. Atmos. Sci., 57, 29152922.
Spiga, A. 2011. Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection. Plan. Space Sci., 59, 915922.
Spiga, A., and Forget, F. 2009. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., 114 (E2), E02009, doi:10.1029/2008JE003242.
Spiga, A., Forget, F., Dolla, B., et al. 2007. Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. J. Geophys. Res., 112 (E8), E08S16, doi:10.1029/2006JE002870.
Spiga, A., Forget, F., Lewis, S. R., and Hinson, D. P. 2010. Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Quart. J. R. Meteorol. Soc., 136, 414428.
Squyres, S., Arvidson, R., Baumgartner, E., et al. 2003. Athena Mars Rover science investigation. J. Geophys. Res., 108 (E12), 8062, doi:10.1029/2003JE002121.
Sreenivasan, K. 1995. On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784.
Stow, C. D. 1969. Dust and storm electrification. Weather, 24, 134137.
Stull, R. B. 1976. Internal gravity waves generated by penetrative convection. J. Atmos. Sci., 33, 12791286.
Stull, R. B. 1988. An introduction to boundary layer meteorology. Springer.
Stull, R. B. 1991. Static stability – an update. Bull. Amer. Meteor. Soc., 72, 15211529.
Sukoriansky, S., and Galperin, B. 2008. Anisotropic turbulence and internal waves in stably stratified flows (QNSE theory). Phys. Scr., T132, 014036.
Sukoriansky, S., Galperin, B., and Staroselsky, I. 2005. A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids, 17, 085107.
Sutton, J. L., Leovy, C. B., and Tillman, J. E. 1978. Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites. J. Atmos. Sci., 35, 23462355.
Svensson, G., Holtslag, A. A. M., Kumar, V., et al. 2011. Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second GABLS experiment. Boundary Layer Meteorol., 140, 177206.
Takahashi, Y. O., Fujiwara, H., Fukunishi, H., et al. 2003. Topographically induced north–south asymmetry of the meridional circulation in the Martian atmosphere. J. Geophys. Res., 108 (E3), 5018, doi:10.1029/2001JE001638.
Takahashi, Y. O., Fujiwara, H., and Fukunishi, H. 2006. Vertical and latitudinal structure of the migrating diurnal tide in the Martian atmosphere: numerical investigations. J. Geophys. Res., 111 (E1), E01003, doi:10.1029/2005JE002543.
Tamppari, L. K., Bass, D., Cantor, B., et al. 2010. Phoenix and MRO coordinated atmospheric measurements. J. Geophys. Res., 115 (E5), E00E17, doi:10.1029/2009JE003415.
Taylor, P. A, Catling, D. C., Daly, M., et al. 2008. Temperature, pressure, and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res., 113 (E3), E00A10, doi:10.1029/2007JE003015.
Taylor, P. A., Kahanpää, H., Weng, W., et al. 2010. On pressure measurement and seasonal pressure variations during the Phoenix mission. J. Geophys. Res., 115 (E3), E00E15, doi:10.1029/2009JE003422.
Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press.
Thomas, P., and Gierasch, P. J. 1985. Dust Devils on Mars. Science, 230, 175177.
Tillman, J. E., Landberg, L., and Larsen, S. E. 1994. The boundary layer of Mars: fluxes, stability, turbulent spectra, and growth of the mixed layer. J. Atmos. Sci., 51, 17091727.
Toigo, A. D., and Richardson, M. I. 2002. A mesoscale model for the Martian atmosphere. J. Geophys. Res., 107 (E7), 5049, doi:10.1029/ 2000JE001489.
Toigo, A. D., and Richardson, M. I. 2003. Meteorology of proposed Mars Exploration Rover landing sites. J. Geophys. Res., 108 (E12), doi:10.1029/2003JE002064.
Toigo, A. D., Richardson, M. I., Ewald, S. P., and Gierasch, P. J. 2003. Numerical simulation of Martian dust devils. J. Geophys. Res., 108 (E6), 5047, doi:10.1029/2002JE002002.
Tyler, D., and Barnes, J. R. 2013. Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths. Mars, 8, 5877.
Tyler, D., Barnes, J. R., and Haberle, R. M. 2002. Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. J. Geophys. Res., 107 (E4), 5018, doi:10.1029/2001JE001618.
Tyler, D., Barnes, J. R., and Skyllingstad, E. D. 2008. Mesoscale and large-eddy simulation model studies of the Martian atmosphere in support of Phoenix. J. Geophys. Res., 113 (E3), E00A12, doi:10.1029/2007JE003012.
Tyler, G. L., Balmino, G., Hinson, D. P., et al. 1992. Radio science investigations with Mars Observer. J. Geophys. Res., 97 (E5), 77597780.
VanZandt, T. E. 1982. A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578.
Webster, P. J. 1977. The low latitude circulation of Mars. Icarus, 30, 626649.
Weng, W., Taylor, P. A., and Savijärvi, H. 2006. Modelling the Martian boundary layer. In 2nd International Workshop on Mars Atmosphere Modeling and Observations. 27 Febrary–3 March, Granada, Spain, 123.
Whiteway, J., Daly, M., Carswell, A., et al. 2008. Lidar on the Phoenix mission to Mars. J. Geophys. Res., 113 (E3), E00A08, doi:10.1029/2007JE003002.
Whiteway, J., Komguem, L., Dickinson, C., et al. 2009a. Phoenix Lidar observations of dust, clouds, and precipitation on Mars. In Lunar and Planetary Institute Science Conference, 40, 2202.
Whiteway, J. A., Komguem, L., Dickinson, C., et al. 2009b. Mars water-ice clouds and precipitation. Science, 325, 6870.
Wilson, R. J., and Hamilton, K. P. 1996. Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci., 53, 12901326.
Wing, D. R., and Austin, G. L. 2006. Description of the University of Auckland global Mars mesoscale meteorological model. Icarus, 185, 370382.
Withers, P., and Catling, D. 2010. Observations of atmospheric tides at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett., 37, L24204, doi:10.1029/2010GL045382.
Wolkenberg, P., Grassi, D., Formisano, V., et al. 2009. Simultaneous observations of the Martian atmosphere by Planetary Fourier Spectrometer on Mars Express and Miniature Thermal Emission Spectrometer on Mars Exploration Rover. J. Geophys. Res., 114 (E4), E04012, doi:10.1029/2008JE003216.
Wyngaard, J. C. 2010. Turbulence in the Atmosphere. Cambridge University Press.
Ye, Z. J., Segal, M., and Pielke, R. A. 1990. A comparative study of daytime thermally induced upslope flow on Mars and Earth. J. Atmos. Sci., 47, 612628.
Zent, A. P., Hecht, M. H., Cobos, D. R., et al. 2009. Thermal and Electrical Conductivity Probe (TECP) for Phoenix. J. Geophys. Res., 114 (E3), E00A27, doi:10.1029/2007JE003052.
Zent, A. P., Hecht, M. H., Cobos, D. R., et al. 2010. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res., 115 (E3), E00E14, doi:10.1029/2009JE003420.
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., and Rogachevskii, I. 2007. Energy and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Boundary-Layer Meteorol., 125, 167191.