Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-15T00:33:50.882Z Has data issue: false hasContentIssue false

26 - Reactivation and lytic replication of KSHV

from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

David M. Lukac
Affiliation:
UMDNJ/NJ Medical School, Dept. of Microbiology and Molecular Genetics, Newark, NJ, USA
Yan Yuan
Affiliation:
University of Pennsylvania School of Dental Medicine, Dept. of Microbiology, Philadelphia, PA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Overview: goals of lytic replication

Herpesviruses are extremely successful pathogens that have coevolved with their mammalian hosts over the past 60–80 million years (McGeoch and Davison, 1999). This success likely is attributable to the ability of the Herpesviridae to establish lifelong latent infections of their host. Latently infected cells provide a perpetual reservoir from which progeny viruses can be amplified for dissemination within the host and transmission between hosts. Herpesvirologists have traditionally used the term “lytic reactivation” to describe the biological events that begin with emergence of a virus from latency and end with lysis of the host cell and release of progeny virions. Clinico-epidemiologic studies suggest that lytic reactivation of KSHV is an essential pathogenic step in multiple human diseases. The goal of this chapter is to review the host–virus interactions that are critical for regulating induction of KSHV from latency, subsequent progression through the lytic cycle, replication of the viral genome, and assembly of mature viral particles.

Lytic reactivation of KSHV is a critical pathogenic step in development of KS and other human diseases

Numerous epidemiologic studies unanimously agree that reactivation of KSHV from latency is a critical pathogenic step during the progression to KS. Serologic assays (Gao et al., 1996a; Kedes et al., 1996; Martin et al., 1998; Simpson et al., 1996) demonstrate that primary infection by KSHV typically occurs at least 10 years prior to clinically apparent KS in AIDS patients (Martin et al., 1998).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 434 - 460
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akula, S. M., Pramod, N. P., Wang, F. Z., and Chandran, B. (2001). Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology, 284(2), 235–249.CrossRefGoogle ScholarPubMed
Aluigi, M. G., Albini, A., Carlone, S.et al. (1996). KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi's sarcoma. Res. Virol., 147(5), 267–275.CrossRefGoogle ScholarPubMed
Ambroziak, J., Blackbourn, D., Herndier, B.et al. (1995). Herpesvirus-like sequenes in HIV-infected and uninfected Kaposi's sarcoma patients. Science, 268, 582–583.CrossRefGoogle Scholar
Andreoni, M., Goletti, D., Pezzotti, P.et al. (2001). Prevalence, incidence and correlates of HHV-8/KSHV infection and Kaposi's sarcoma in renal and liver transplant recipients. J. Infect., 43(3), 195–199.CrossRefGoogle ScholarPubMed
Asahara, T., Murohara, T., Sullivan, A.et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.CrossRefGoogle ScholarPubMed
AuCoin, D. P., Colletti, K. S., Xu, Y.et al. (2002). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication. J. Virol., 76(15), 7890–7896.CrossRefGoogle ScholarPubMed
AuCoin, D. P., Colletti, K. S., Cei, S. A., Papouskova, I., Tarrant, M., and Pari, G. S. (2004). Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP). Virology, 318, 542–555.CrossRefGoogle Scholar
Baghian, A., Luftig, M., Black, J. B.et al. (2000). Glycoprotein B of human herpesvirus 8 is a component of the virion in a cleaved form composed of amino- and carboxyl-terminal fragments. Virology, 269(1), 18–25.CrossRefGoogle Scholar
Barozzi, P., Luppi, M., Facchetti, F.et al. (2003). Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat. Med., 9(5), 554–561.CrossRefGoogle ScholarPubMed
Bechtel, J., Grundhoff, A., and Ganem, D. (2005). RNAs in the virion of Kaposi's sarcoma-associated herpesvirus. J. Virol., 79(16), 10138–10146.CrossRefGoogle ScholarPubMed
Beyari, M. M., Hodgson, T. A., Cook, R. D.et al. (2003). Multiple human herpesvirus-8 infection. J. Infect. Dis., 188(5), 678–689.CrossRefGoogle ScholarPubMed
Biggar, R. J., Engels, E. A., Whitby, D., Kedes, D. H., and Goederr, J. J. (2003). Antibody reactivity to latent and lytic antigens to human herpesvirus-8 in longitudinally followed homosexual men. J. Infect. Dis., 187(1), 12–18.CrossRefGoogle ScholarPubMed
Bigoni, B., Dolcetti, R., Lellis, L.et al. (1996). Human Herpesvirus 8 is present in the lymphoid system of healthy persons and can reactivate in the course of AIDS. J. Infect. Dis., 173, 542–549.CrossRefGoogle Scholar
Birkmann, A., Mahr, K., Ensser, A.et al. (2001). Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J. Virol., 75(23), 11583–11593.CrossRefGoogle ScholarPubMed
Blackbourn, D. J., Ambroziak, J., Lennette, E., Adams, M., Ramachandran, B., and Levy, J. A. (1997). Infectious human herpesvirus 8 in a healthy North American blood donor [see comments]. Lancet, 349(9052), 609–611.CrossRefGoogle Scholar
Blackbourn, D. J., Lennette, E. T., Ambroziak, J., Mourich, D. V., and Levy, J. A. (1998). Human herpesvirus 8 detection in nasal secretions and saliva. J. Infect. Dis., 177(1), 213–216.CrossRefGoogle ScholarPubMed
Blackbourn, D., Fujimura, S., Kutzkey, T., and Levy, J. (2000). Induction of human herpesvirus-8 gene expression by recombinant interferon gamma. AIDS, 14, 98–99.CrossRefGoogle ScholarPubMed
Blasig, C., Zietz, C., Haar, B.et al. (1997). Monocytes in Kaposi's sarcoma lesions are productively infected by human herpesvirus 8. J. Virol., 71, 7963–7968.Google ScholarPubMed
Boehmer, P. E. and Lehman, I. R. (1997). Herpes simplex virus DNA replication. Annu. Rev. Biochem., 66, 347–384.CrossRefGoogle ScholarPubMed
Boneschi, V., Brambilla, L., Berti, E.et al. (2001). Human herpesvirus 8 DNA in the skin and blood of patients with Mediterranean Kaposi's sarcoma: clinical correlations. Dermatology, 203(1), 19–23.CrossRefGoogle ScholarPubMed
Boshoff, C., Schulz, T. F., Kennedy, M. M.et al. (1995). Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat. Med., 1(12), 1274–1278.CrossRefGoogle ScholarPubMed
Boshoff, C., Gao, S.-J., Healy, L.et al. (1998). Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood, 91, 1671–1679.Google ScholarPubMed
Bourboulia, D., Aldam, D., Lagos, D.et al. (2004). Short- and long-term effects of highly active antiretroviral therapy on Kaposi sarcoma-associated herpesvirus immune responses and viraemia. AIDS, 18(3), 485–493.CrossRefGoogle Scholar
Brenner, B., Weissmann-Brenner, A., Rakowsky, E.et al. (2002). Classical Kaposi sarcoma. Cancer, 95(9), 1982–1987.CrossRefGoogle ScholarPubMed
Brown, H. J., Song, M. J., Deng, H., Wu, T. T., Cheng, G., and Sun, R. (2003). NF-kappaB inhibits gammaherpesvirus lytic replication. J. Virol., 77(15), 8532–8540.CrossRefGoogle ScholarPubMed
Browning, P., Sechler, J., Kaplan, M.et al. (1994). Identification and culture of Kaposi's sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood, 84, 2711–2720.Google ScholarPubMed
Burysek, L., Yeow, W. S., Lubyova, B.et al. (1999). Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor 1 and its association with cellular interferon regulatory factors and p300. J. Virol., 73, 7334–7342.Google ScholarPubMed
Cai, J., Gill, P. S., Masood, R.et al. (1994). Oncostatin-M is an autocrine growth factor in Kaposi's sarcoma. Am. J. Pathol., 145(1), 74–79.Google ScholarPubMed
Campbell, T. B., Borok, M., Gwanzura, L.et al. (2000). Relationship of human herpesvirus 8 peripheral blood virus load and Kaposi's sarcoma clinical stage. AIDS, 14(14), 2109–2116.CrossRefGoogle ScholarPubMed
Cannon, M. J., Dollard, S. C., Smith, D. K.et al. (2001). Blood-borne and sexual transmission of human herpesvirus 8 in women with or at risk for human immunodeficiency virus infection. N. Engl. J. Med., 344(9), 637–643.CrossRefGoogle ScholarPubMed
Cannon, M. J., Dollard, S. C., Black, J. B.et al. (2003). Risk factors for Kaposi's sarcoma in men seropositive for both human herpesvirus 8 and human immunodeficiency virus. AIDS, 17(2), 215–222.CrossRefGoogle ScholarPubMed
Cannon, M., Cesarman, E., and Boshoff, C. (2006). KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood, 107(1), 277–284.CrossRefGoogle ScholarPubMed
Carbone, A., Gloghini, A., Cozzi, M. R.et al. (2000). Expression of MUM1/IRF4 selectively clusters with primary effusion lymphoma among lymphomatous effusions: implications for disease histogenesis and pathogenesis. Br. J. Haematol., 111(1), 247–257.CrossRefGoogle ScholarPubMed
Carbone, A., Gloghini, A., Larocca, L.et al. (2001). Expression profile of MUM1/IRF4, BCL-6, and CD138/syndecan-1 defines novel histogenetic subsets of human immunodeficiency virus-related lymphomas. Blood, 97, 744–751.CrossRefGoogle ScholarPubMed
Cardin, R. D., Brooks, J. W., Sarawar, S. R., and Doherty, P. C. (1996). Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J. Exp. Med., 184(3), 863–871.CrossRefGoogle Scholar
Carroll, K. D., Bu, W., Palmeri, D.et al. (2006). The KSHV lytic switch protein stimulates DNA binding of RBP-Jk/CSL to activate the notch pathway. J. Virol., 80(19).CrossRefGoogle ScholarPubMed
Casper, C., Nichols, W. G., Huang, M. L., Corey, L., and Wald, A. (2004). Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. Blood, 103(5), 1632–1634.CrossRefGoogle ScholarPubMed
Casper, C., Redman, M., Huang, M. L.et al. (2004b). HIV infection and human herpesvirus-8 oral shedding among men who have sex with men. J. Acquir. Immune Defic. Syndr., 35(3), 233–238.CrossRefGoogle Scholar
Cattani, P., Capuano, M., Cerimele, F.et al. (2001). Kaposi's sarcoma associated with previous human herpesvirus 8 infection in kidney transplant recipients. J. Clin. Microbiol., 39(2), 506–508.CrossRefGoogle ScholarPubMed
Cattani, P., Capuano, M., Cerimele, F.et al. (1999). Human herpesvirus 8 seroprevalence and evaluation of nonsexual transmission routes by detection of DNA in clinical specimens from human immunodeficiency virus-seronegative patients from central and southern Italy, with and without Kaposi's sarcoma. J. Clin. Microbiol., 37(4), 1150–1153.Google ScholarPubMed
Cattelan, A., Calabro, M., Gasperini, P.et al. (2001). Acquired immunodeficiency syndrome-related kaposi's sarcoma regression after highly active antiretroviral therapy: biologic correlates of clinical outcome. J. Natl Cancer Inst. Monogr., 28, 44–49.Google Scholar
Cerimele, D., Cottoni, F., and Masala, M. V. (2000). Long latency of human herpesvirus type 8 infection and the appearance of classic Kaposi's sarcoma. J. Am. Acad. Dermatol., 43(4), 731–732.CrossRefGoogle ScholarPubMed
Cesarman, E., Chang, Y., Moore, P. S., Said, J. W., and Knowles, D. M. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med., 332(18), 1186–1191.CrossRefGoogle ScholarPubMed
Cesarman, E., Nador, R. G., Aozasa, K., Delsol, G., Said, J. W., and Knowles, D. M. (1996). Kaposi's sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am. J. Pathol., 149(1), 53–57.Google ScholarPubMed
Challberg, M. D. and Kelly, T. J. (1989). Animal virus DNA replication. Annu. Rev. Biochem., 58, 671–717.CrossRefGoogle ScholarPubMed
Chang, J., Renne, R., Dittmer, D., and Ganem, D. (2000). Inflammatory cytokines and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology, 266, 17–25.CrossRefGoogle ScholarPubMed
Chang, P. J., Shedd, D., Gradoville, L.et al. (2002). Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J. Virol., 76(7), 3168–3178.CrossRefGoogle ScholarPubMed
Chang, Y., Cesarman, E., Pessin, M. S.et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma [see comments]. Science, 266(5192), 1865–1869.CrossRefGoogle Scholar
Chang, H., Dittmer, D. P., Chul, S.-Y., Hong, Y., and Jung, J. U. (2005a). Role of notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene Expression. J. Virol., 79(22), 14371–14382.CrossRefGoogle Scholar
Chang, P.-J., Shedd, D., and Miller, G. (2005b). Two subclasses of Kaposi's sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J. Virol., 79(14), 8750–8763.CrossRefGoogle Scholar
Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y., and Moore, P. S. (2002). Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science, 298(5597), 1432–1435.CrossRefGoogle ScholarPubMed
Chen, J., Ueda, K., Sakakibara, S.et al. (2001). Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc. Natl Acad. Sci. USA, 98(7), 4119–4124.CrossRefGoogle ScholarPubMed
Chen, X., Lin, K., and Ricciardi, R. P. (2004). Human Kaposi's sarcoma herpesvirus processivity factor-8 functions as a dimer in DNA synthesis. J. Biol. Chem., 279(27), 28375–28386.CrossRefGoogle ScholarPubMed
Cheng, E. H., Nicholas, J., Bellows, D. S.et al. (1997). A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl Acad. Sci. USA, 94(2), 690–694.CrossRefGoogle ScholarPubMed
Ciufo, D. M., Cannon, J. S., Poole, L. J.et al. (2001). Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol., 75(12), 5614–5626.CrossRefGoogle ScholarPubMed
Canto, A., Virgin, H. I., and Speck, S. (2002). Ongoing viral replication is required for gammaherpesvirus 68-induced vascular damage. J. Virol., 74, 11035–11310.Google Scholar
Davis, D. A., Rinderknecht, A. S., Zoeteweij, J. P.et al. (2001). Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood, 97(10), 3244–3250.CrossRefGoogle ScholarPubMed
Deng, H., Song, M. J., Chu, J. T., and Sun, R. (2002). Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J. Virol., 76(16), 8252–8264.CrossRefGoogle Scholar
DePamphilis, M. L. (1993). Origins of DNA replication that function in eukaryotic cells. Curr. Opin. Cell. Biol., 5(3), 434–441.CrossRefGoogle ScholarPubMed
Dittmer, D., Stoddart, C., Renne, R.et al. (1999). Experimental transmission of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J. Exp. Med., 190(12), 1857–1868.CrossRefGoogle Scholar
Drexler, H., Uphoff, C., Gaidano, G., and Carbone, E. (1998). Lymphoma cell lines: in vitro models for the study of HHV-8+ primary effusion lymphomas (body cavity-based lymphomas). Leukemia, 12, 1507–1517.CrossRefGoogle Scholar
Dupin, N., Fisher, C., Kellam, P.et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA, 96, 4546–4551.CrossRefGoogle ScholarPubMed
Duus, K. M., Lentchitsky, V., Wagenaar, T., Grose, C., and Webster-Cyriaque, (2004). Wild-type Kaposi's sarcoma-associated herpesvirus isolated from the oropharynx of immune-competent individuals has tropism for cultured oral epithelial cells. J. Virol., 78(8), 4074–4084.CrossRefGoogle ScholarPubMed
Eltom, M. A., Jemal, A., and Mbulaiteye, S. M. (2002). Trends in Kaposi's sarcoma and non-Hodgkin's lymphoma incidence in the United States from 1973 through 1998. J. Natl Cancer Inst., 94(16), 1204–1210.CrossRefGoogle ScholarPubMed
Engels, E. A., Biggar, R. J., Marshall, V. A.et al. (2003). Detection and quantification of Kaposi's sarcoma-associated herpesvirus to predict AIDS-associated Kaposi's sarcoma. J. AIDS, 17(12), 1847–1851.CrossRefGoogle ScholarPubMed
Ensoli, B., Nakamura, S., Salahuddin, S.et al. (1989). AIDS-Kaposi's Sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science, 243, 223–226.CrossRefGoogle ScholarPubMed
Ensoli, B., Sturzl, M., and Monini, P. (2000). Cytokine-mediated growth promotion of Kaposi's sarcoma and primary effusion lymphoma. Semin. Cancer Biol., 10, 367–381.CrossRefGoogle ScholarPubMed
Ensoli, B., Sgadari, C., Barillari, G., Sirianni, M. C., Sturzl, M., and Monini, P. (2001). Biology of Kaposi's sarcoma. Eur. J. Cancer, 37(10), 1251–1269.CrossRefGoogle ScholarPubMed
Ernst, M. and Jenkins, B. J. (2004). Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet., 20(1), 23–32.CrossRefGoogle ScholarPubMed
Fais, F., Gaidano, G., Capello, D.et al. (1999). Immunoglobulin V region gene use and structure suggest antigen selection in AIDS-related primary effusion lymphomas. Leukemia, 13(7), 1093–1099.CrossRefGoogle ScholarPubMed
Fakhari, F. D. and Dittmer, D. P. (2002). Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J. Virol., 76(12), 6213–6223.CrossRefGoogle ScholarPubMed
Fardet, L., Blum, L., Kerob, D.et al. (2003). Human herpesvirus 8-associated hemophagocytic lymphohistiocytosis in human immunodeficiency virus-infected patients. Clin. Infect. Dis., 37(2), 285–291.CrossRefGoogle ScholarPubMed
Farge, D., Lebbe, C., Marjanovic, Z.et al. (1999). Human herpes virus-8 and other risk factors for Kaposi's sarcoma in kidney transplant recipients. Groupe Cooperatif de Transplantation d' Ile de France (GCIF). Transplantation, 67(9), 1236–1242.CrossRefGoogle Scholar
Feng, P., Park, J., Lee, B. S.et al. (2002). Kaposi's sarcoma-associated herpesvirus mitochondrial K7 protein targets a cellular calcium-modulating cyclophilin ligand to modulate intracellular calcium concentration and inhibit apoptosis. J. Virol., 76(22), 11491–11504.CrossRefGoogle ScholarPubMed
Feng, P., Scott, C. W., Cho, N. H.et al. (2004). Kaposi's sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protien to promote protein degradation. Mol. Cell. Biol., 24(9), 3938–3948.CrossRefGoogle Scholar
Feske, S., Okamura, H., Hogan, P. G., and Rao, A. (2003). Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun., 311(4), 1117–1132.CrossRefGoogle ScholarPubMed
Field, A. K., Davies, M. E., DeWitt, C.et al. (1983). 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc. Natl Acad. Sci. USA, 80(13), 4139–4143.CrossRefGoogle ScholarPubMed
Fixman, E. D., Hayward, G. S., and Hayward, S. D. (1995). Replication of Epstein–Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J. Virol., 69(5), 2998–3006.Google ScholarPubMed
Flemington, E. K. (2001). Herpesvirus lytic replication and the cell cycle: arresting new developments. J. Virol., 75(10), 4475–4481.CrossRefGoogle ScholarPubMed
Flowers, C. C., Flowers, S. P., and Nabel, G. J. (1998). Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor confers resistance to the antiproliferative effect of interferon-alpha. Mol. Med., 4(6), 402–412.Google ScholarPubMed
Gaidano, G., Cechova, K., Chang, Y., Moore, P. S., Knowles, D. M., and Dalla-Favera, R. (1996). Establishment of AIDS-related lymphoma cell lines from lymphomatous effusions. Leukemia, 10(7), 1237–1240.Google ScholarPubMed
Gangappa, S., Kapadia, S. B., Speck, S. H., and Virgin, H. W. T. (2002). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J. Virol., 76(22), 11460–11468.CrossRefGoogle ScholarPubMed
Gao, S. J., Kingsley, L., Hoover, D. R.et al. (1996a). Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. N. Engl. J. Med., 335(4), 233–241.CrossRefGoogle Scholar
Gao, S. J., Kingsley, L., Li, M.et al. (1996b). KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nat. Med., 2(8), 925–928.CrossRefGoogle Scholar
Gao, S. J., Boshoff, C., Jayachandra, S., Weiss, R. A., Chang, Y., and Moore, P. S. (1997). KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene, 15(16), 1979–1985.CrossRefGoogle ScholarPubMed
Ghosh, S. K., Wood, C., Boise, L. H.et al. (2003). Potentiation of TRAIL-induced apoptosis in primary effusion lymphoma through azidothymidine-mediated inhibition of NF-kappa B. Blood, 101(6), 2321–2327.CrossRefGoogle ScholarPubMed
Gill, J., Bourboulia, D., Wilkinson, J.et al. (2002). Prospective study of the effects of antiretroviral therapy on Kaposi sarcoma – associated herpesvirus infection in patients with and without Kaposi sarcoma. J. Acquir. Immune Defic. Syndr., 31(4), 384–390.CrossRefGoogle ScholarPubMed
Glaunsinger, B. and Ganem, D. (2004). Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J. Exp. Med., 200(3), 391.CrossRefGoogle ScholarPubMed
Gradoville, L., Gerlach, J., Grogan, E.et al. (2000). Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire lytic cycle in the HH-B2 primary effusion lymphoma cell line. J. Virol., 74, 6207–6212.CrossRefGoogle ScholarPubMed
Grandadam, M., Dupin, N., Calvez, V.et al. (1997). Exacerbations of clinical symptoms in human immunodeficinecy virus type 1-infected patients with multicentric Castleman's disease are associated with a high increase in Kaposi's sarcoma herpesvirus DNA load in peripheral blood mononuclear cells. J. Infect. Dis., 175(5), 1198–1201.CrossRefGoogle Scholar
Gwack, Y., Byun, H., Hwang, S., Lim, C., and Choe, J. (2001a). CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi's sarcoma-associated herpesvirus open reading frame 50. J. Virol., 75(4), 1909–1917.CrossRefGoogle Scholar
Gwack, Y., Hwang, S., Byun, H.et al. (2001b). Kaposi's sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J. Virol., 75(13), 6245–6248.CrossRefGoogle Scholar
Gwack, Y., Hwang, S., Lim, C., Won, Y. S., Lee, C. H., and Choe, J. (2002). Kaposi's Sarcoma-associated Herpesvirus Open Reading Frame 50 Stimulates the Transcriptional Activity of STAT3. J. Biol. Chem., 277(8), 6438–6442.CrossRefGoogle ScholarPubMed
Gwack, Y., Baek, H. J., Nakamura, H.et al. (2003a). Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol. Cell. Biol., 23(6), 2055–2067.CrossRefGoogle Scholar
Gwack, Y., Nakamura, H., Lee, S. H.et al. (2003b). Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol. Cell. Biol., 23(22), 8282–8294.CrossRefGoogle Scholar
Hammerschmidt, W. and Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein–Barr virus. Cell, 55(3), 427–433.CrossRefGoogle ScholarPubMed
Haque, M., Davis, D. A., Wang, V., Widmer, I., and Yarchoan, R. (2003). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic inducation by hypoxia. J. Virol., 77(12), 6761–6768.CrossRefGoogle Scholar
Han, Z. and Swaminathan, S. (2006). Kaposi's sarcoma-associated herpesvirus lytic gene ORF57 is essential for infectious virion production. J. Virol., 80(11), 5251–5260.CrossRefGoogle ScholarPubMed
Harrington, W. J. Jr., Bagasra, O., Sosa, C.et al. (1996). Human herpesvirus type 8 DNA sequences in cell-free plasma and mononuclear cells of Kaposi's sarcoma patients. J. Infect. Dis., 174(5), 1101–1105.CrossRefGoogle ScholarPubMed
Harrington, W. Jr., Sieczkowski, L., Sosa, C.et al. (1997). Activation of HHV-8 by HIV-1 tat. Lancet, 349(9054), 774–775.Google ScholarPubMed
Hengge, U. R., Ruzicka, T., Tyring, S. K.et al. (2002). Update on Kaposi's sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect. Dis., 2(5), 281–292.CrossRefGoogle ScholarPubMed
Henry, M., Uthman, A., Geusau, A.et al. (1999). Infection of circulating CD34+ cells by HHV-8 in patients with Kaposi's sarcoma. J. Invest. Dermatol., 113(4), 613–616.CrossRefGoogle ScholarPubMed
Huang, L. M., Chao, M. F., Chen, M. F.et al. (2001). Reciprocal regulatory interaction between human herpesvirus 8 and human immunodeficiency virus type 1. J. Biol. Chem., 276(16), 13427–13432.CrossRefGoogle ScholarPubMed
Humphrey, R. W., O'Brien, T. R., Newcomb, F. M.et al. (1996). Kaposi's sarcoma (KS)-associated herpesvirus-like DNA sequences in peripheral blood mononuclear cells: association with KS and persistence in patients receiving anti-herpesvirus drugs. Blood, 88(1), 297–301.Google ScholarPubMed
Inohara, N., Gourley, T. S., Carrio, R.et al. (1998). Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J. Biol. Chem., 273(49), 32479–32486.CrossRefGoogle ScholarPubMed
Iscovich, J., Boffetta, P., Franceschi, S., Azizi, E., and Sarid, R. (2000). Classic Kaposi sarcoma. Cancer, 88, 500–517.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Izumiya, Y., Lin, S. F., Ellison, T.et al. (2003a). Kaposi's sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. J. Virol., 77(2), 1441–1451.CrossRefGoogle Scholar
Izumiya, Y., Lin, S. F., Ellison, T. J.et al. (2003b). Cell cycle regulation by Kaposi's sarcoma-associated herpesvirus K-bZIP: direct interaction with cyclin-CDK2 and induction of G1 growth arrest. J. Virol., 77(17), 9652–9661.CrossRefGoogle Scholar
Jacobson, L. P., Jenkins, F. J., Springer, G.et al. (2000). Interaction of human immunodeficiency virus type 1 and human herpesvirus type 8 infections on the incidence of Kaposi's sarcoma. J. Infect. Dis., 181(16), 1940–1949.CrossRefGoogle ScholarPubMed
Jayachandra, S., Low, K. G., Thick, A. E.et al. (1999). Three unrelated viral transforming proteins (vIRF, EBNA2, and E1A) induce the MYC oncogene through the interferon-responsive PRF element by using different transcription coadaptors. Proc. Natl Acad. Sci. USA, 96(20), 11566–11571.CrossRefGoogle ScholarPubMed
Jenkins, P., Binne, U., and Farrell, P. (2000). Histone acetylation and reactivation of Epstein-Barr virus from latency. J. Virol., 74, 710–720.CrossRefGoogle ScholarPubMed
Jenner, R., Alba, M., Boshoff, C., and Kellam, P. (2001). Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol, 75, 891–902.CrossRefGoogle ScholarPubMed
Jenner, R. G., Maillard, K., Cattini, N.et al. (2003). Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile. Proc. Natl Acad. Sci. USA, 100(18), 10399–10404.CrossRefGoogle Scholar
Jones, J. L., Hanson, D. L., Chu, S. Y., Ward, J. W., and Jaffe, H. W. (1995). AIDS-associated Kaposi's sarcoma. Science, 267(5201), 1078–1079.CrossRefGoogle ScholarPubMed
Jones, J. L., Hanson, D. L., Dworkin, M. S., and Jaffe, H. W. (2000). Incidence and trends in Kaposi's sarcoma in the era of effective antiretroviral therapy. J. Acquir. Immune Defic. Syndr., 24(3), 270–274.CrossRefGoogle ScholarPubMed
Kaufman, D. B., Shapiro, R., Lucey, M. R.et al. (2004). Immunosuppression: practice and trends. Am. J. Transpl., 4 Suppl 9, 38–53.CrossRefGoogle ScholarPubMed
Kedes, D. H. and Ganem, D. (1997). Sensitivity of Kaposi's sarcoma-associated herpesvirus replication to antiviral drugs. Implications for potential therapy. J. Clin. Invest., 99(9), 2082–2086.CrossRefGoogle ScholarPubMed
Kedes, D., Operskalski, E., Busch, M., Kohn, R., Flood, J., and Ganem, D. (1996). The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat. Med., 2, 918–924.CrossRefGoogle ScholarPubMed
Keller, S. A., Schattner, E. J., and Cesarman, E. (2000). Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood, 96(7), 2537–2542.Google ScholarPubMed
Keller, R., Zago, A., Viana, M. C.et al. (2001). HHV-8 infection in patients with AIDS-related Kaposi's sarcoma in Brazil. Braz. J. Med. Biol. Res., 34(7), 879–886.CrossRefGoogle Scholar
Kikuta, H., Itakura, O., Taneichi, K., and Kohno, M. (1997). Tropism of human herpesvirus 8 for peripheral blood lymphocytes in patients with Castleman's disease. Br. J. Haematol., 99(4), 790–793.CrossRefGoogle ScholarPubMed
Kim, I. J., Flano, E., Woodland, D. L., and Blackman, M. A. (2002). Antibody-mediated control of persistent gamma-herpesvirus infection. J. Immunol., 168(8), 3958–3964.CrossRefGoogle ScholarPubMed
Kimball, L. E., Casper, C., Koelle, D. M., Morrow, R., Corey, L., and Vieira, J. (2004). Reduced levels of neutralizing antibodies to Kaposi sarcoma-associated herpesvirus in persons with a history of Kaposi sarcoma. J. Infect. Dis., 189(11), 2016–2022.CrossRefGoogle ScholarPubMed
Kirchhoff, S., Sebens, T., Baumann, S.et al. (2002). Viral IFN-regulatory factors inhibit activation-induced cell death via two positive regulatory IFN-regulatory factor 1-dependent domains in the CD95 ligand promoter. J. Immunol., 168(3), 1226–1234.CrossRefGoogle ScholarPubMed
Kirshner, J. R., Lukac, D. M., Chang, J., and Ganem, D. (2000). Kaposi's sarcoma-associated herpesvirus open reading frame 57 encodes a posttranscriptional regulator with multiple distinct activities. J. Virol., 74, 3586–3597.CrossRefGoogle ScholarPubMed
Klein, U., Gloghini, A., Gaidano, G.et al. (2003). Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood, 101(10), 4115–4121.CrossRefGoogle ScholarPubMed
Koelle, D. M., Huang, M. L., Chandran, B., Vieira, J., Piepkorn, M., and Corey, L. (1997). Frequent detection of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in saliva of human immunodeficiency virus-infected men: clinical and immunologic correlates. J. Infect. Dis., 176(1), 94–102.CrossRefGoogle ScholarPubMed
LaDuca, J. R., Love, J. L., Abbott, L. Z., Dube, S., Freidman-Kien, A. E., and Poiesz, B. J. (1998). Detection of human herpesvirus 8 DNA sequences in tissues and bodily fluids. J. Infect. Dis., 178(6), 1610–1615.Google Scholar
Lagunoff, M., Majeti, R., Weiss, A., and Ganem, D. (1999). Deregulated signal transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA, 96(10), 5704–5709.CrossRefGoogle ScholarPubMed
Lagunoff, M., Lukac, D., and Ganem, D. (2001). Immunoreceptor tyrosine-based activation motif-dependent signaling by Kaposi's sarcoma-associated herpesvirus (KSHV) K1 protein: effects on lytic viral replication. J. Virol., 75, 5891–5898.CrossRefGoogle ScholarPubMed
Lan, K., Kuppers, D. A., and Robertson, E. S. (2005). Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jk, the major downstream effector of the notch signaling pathway. J. Virol., 79(6), 3468–3478.CrossRefGoogle Scholar
Lebbe, C., Blum, L., Pellet, C.et al. (1998). Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi's sarcoma. AIDS, 12(7), F45–F49.CrossRefGoogle ScholarPubMed
Lee, B. S., Paulose-Murphy, M., Chung, Y. H.et al. (2002). Suppression of tetradecanoyl phorbol acetate-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus by K1 signal transduction. J. Virol., 76(23), 12185–12199.CrossRefGoogle ScholarPubMed
Lee, H., Guo, J., Li, M.et al. (1998). Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol. Cell. Biol., 18(9), 5219–5228.CrossRefGoogle ScholarPubMed
Leonard, W. J. and O'Shea, J. J. (1998). Jaks and STATs: biological implications. Annu. Rev. Immunol., 16, 293–322.CrossRefGoogle ScholarPubMed
Li, M., Lee, H., Guo, J.et al. (1998). Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor. J. Virol., 72, 5433–5440.Google ScholarPubMed
Liang, Y. and Ganem, D. (2003). Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc. Natl Acad. Sci. USA, 100(14), 8490–8495.CrossRefGoogle Scholar
Liang, Y. and Ganem, D. (2004). RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi's sarcoma-associated herpesvirus by the lytic switch protein RTA. J. Virol., 78(13), 6818–6826.CrossRefGoogle ScholarPubMed
Liang, Y., Chang, J., Lynch, S., Lukac, D. M., and Ganem, D. (2002). The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jk, the target of the Notch signaling pathway. Genes Dev., 16, 1977–1989.CrossRefGoogle Scholar
Liao, W., Tang, Y., Kuo, Y. L.et al. (2003). Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J. Virol., 77(17), 9399–9411.CrossRefGoogle ScholarPubMed
Lin, C. L., Li, H., Wang, Y., Zhu, F. X., Kudchodkar, S., and Yuan, Y. (2003). Kaposi's sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: identification of the ori-Lyt and association of K8 bZip protein with the origin. J. Virol., 77(10), 5578–5588.CrossRefGoogle ScholarPubMed
Lin, K., Dai, C. Y., and Ricciardi, R. P. (1998). Cloning and functional analysis of Kaposi's sarcoma-associated herpesvirus DNA polymerase and its processivity factor. J. Virol., 72, 6228–6232.Google ScholarPubMed
Lin, R., Genin, P., Mamane, Y.et al. (2001). HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene, 20(7), 800–811.CrossRefGoogle ScholarPubMed
Lo, P., Yu, X., Atanasov, I., Chandran, B., and Zhou, Z. H. (2003). Three-dimensional localization of pORF65 in Kaposi's sarcoma-associated herpesvirus capsid. J. Virol., 77(7), 4291–4297.CrossRefGoogle ScholarPubMed
Lu, F., Zhou, J., Wiedmer, A., Madden, K., Yuan, Y., and Lieberman, P. M. (2003). Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J. Virol., 77(21), 11425–11435.CrossRefGoogle ScholarPubMed
Lu, M., Suen, J., Frias, C.et al. (2004). Dissection of the Kaposi's sarcoma-associated gene expression program using the viral DNA replication inhibitor cidofovir. J. Virol., 78(24), 13637–13652.CrossRefGoogle ScholarPubMed
Lukac, D. M., Renne, R., Kirshner, J. R., and Ganem, D. (1998). Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology, 252, 304–312.CrossRefGoogle ScholarPubMed
Lukac, D. M., Kirshner, J. R., and Ganem, D. (1999). Transcriptional activation by the product of the open reading frame 50 of Kaposi's-associated herpesvirus is required for lytic viral reactivation in B cells. J. Virol., 73, 9348–9361.Google Scholar
Lukac, D., Garibyan, L., Kirshner, J., Palmeri, D., and Ganem, D. (2001). DNA binding by the Kaposi's sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. J. Virol., 75, 6786–6799.CrossRefGoogle ScholarPubMed
Luppi, M., Barozzi, P., Guaraldi, G.et al. (2003). Human herpesvirus 8-associated diseases in solid-organ transplantation: importance of viral transmission from the donor. Clin. Infect. Dis., 37(4), 606–607; author reply 607.CrossRefGoogle Scholar
Mantina, H., Kankasa, C., Klaskala, W.et al. (2001). Vertical transmission of Kaposi's sarcoma-associated herpesvirus. Int. J. Cancer, 94(5), 749–752.CrossRefGoogle ScholarPubMed
Martin, D. F., Kuppermann, B. D., Wolitz, R. A., Palestine, A. G., Li, H., and Robinson, C. A. (1999). Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N. Engl. J. Med., 340, 1063–1070.CrossRefGoogle ScholarPubMed
Martin, J. N., Ganem, D. E., Osmond, D. H.et al. (1998). Sexual transmission and the natural history of human herpesvirus 8 infection. N. Engl. J. Med., 338, 948–954.CrossRefGoogle ScholarPubMed
Maulik, G., Shrikhande, A., Kijima, T., Ma, P. C., Morrison, P. T., and Salgia, R. (2002). Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev., 13(1), 41–59.CrossRefGoogle ScholarPubMed
McGeoch, D. J. and Davison, A. J. (1999). The descent of human herpesvirus 8. Semin. Cancer Biol., 9(3), 201–209.CrossRefGoogle ScholarPubMed
Merat, R., Amara, A., de The, H., Morel, P., and Saib, A. (2002). HIV-1 infection of primary effusion lymphoma cell line triggers Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation. Int. J. Cancer, 97(6), 791–795.CrossRefGoogle ScholarPubMed
Mercader, M., Taddeo, B., Panella, J., Chandran, B., Nickoloff, B., and Foreman, K. (2000). Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am. J. Pathol., 156, 1961–1971.CrossRefGoogle ScholarPubMed
Miles, S. A., Martinez-Maza, O., Rezai, A.et al. (1992). Oncostatin M as a potent mitogen for AIDS-Kaposi's sarcoma-derived cells. Science, 255(5050), 1432–1434.CrossRefGoogle ScholarPubMed
Miller, G., Heston, L., Grogan, E.et al. (1997). Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein–Barr virus in dually infected body cavity lymphoma cells. J. Virol., 71(1), 314–324.Google ScholarPubMed
Min, J. and Katzenstein, D. A. (1999). Detection of Kaposi's sarcoma-associated herpesvirus in peripheral blood cells in human immunodeficiency virus infection: association with Kaposi's sarcoma, CD4 cell count, and HIV RNA levels. AIDS Res. Hum. Retroviruses, 15(1), 51–55.CrossRefGoogle ScholarPubMed
Mocroft, A., Kirk, O., Clumeck, N.et al. (2004). The changing pattern of Kaposi sarcoma in patients with HIV, 1994–2003: the EuroSIDA Study. Cancer, 100(12), 2644–2654.CrossRefGoogle ScholarPubMed
Monini, P., Carlini, F., Sturzl, M.et al. (1999a). Alpha interferon inhibits human herpesvirus 8 (HHV-8) reactivation in primary effusion lymphoma cells and reduces HHV-8 load in cultured peripheral blood mononuclear cells. J. Virol., 73(5), 4029–4041.Google Scholar
Monini, P., Colombini, S., Sturzl, M.et al. (1999b). Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood, 93(12), 4044–4058.Google Scholar
Monini, P., Sirianni, M. C., Franco, M.et al. (2001). Clearance of human herpesvirus 8 from blood and regression of leukopenia-associated aggressive classic Kaposi's sarcoma during interferon-alpha therapy: a case report. Clin. Infect. Dis., 33(10), 1782–1785.CrossRefGoogle ScholarPubMed
Moore, P. S. and Chang, Y. (1995). Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection. N. Engl. J. Med., 332(18), 1181–1185.CrossRefGoogle ScholarPubMed
Moore, P. S., Kingsley, L. A., Holmberg, S. D.et al. (1996). Kaposi's sarcoma-associated herpesvirus infection prior to onset of Kaposi's sarcoma. AIDS, 10, 175–180.CrossRefGoogle ScholarPubMed
Nador, R. G., Cesarman, E., Chadburn, A.et al. (1996). Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood, 88(2), 645–656.Google ScholarPubMed
Naidu, Y. M., Rosen, E. M., Zitnick, R.et al. (1994). Role of scatter factor in the pathogenesis of AIDS-related Kaposi sarcoma. Proc. Natl Acad. Sci. USA, 91(12), 5281–5285.CrossRefGoogle ScholarPubMed
Nakamura, H., Li, M., Zarycki, J., and Jung, J. U. (2001). Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J. Virol., 75(16), 7572–7582.CrossRefGoogle ScholarPubMed
Nakamura, H., Lu, M., Gwack, Y., Souvlis, J., Zeichner, S. L., and Jung, J. U. (2003). Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol., 77(7), 4205–4220.CrossRefGoogle ScholarPubMed
Nasti, G., Martellotta, F., Berretta, M.et al. (2003). Impact of highly active antiretroviral therapy on the presenting features and outcome of patients with acquired immunodeficiency syndrome-related Kaposi sarcoma. Cancer, 98(11), 2440–2446.CrossRefGoogle ScholarPubMed
Nealon, K., Newcomb, W. W., Pray, T. R.et al. (2001). Lytic replication of Kaposi's sarcoma-associated herpesvirus results in the formation of multiple capsid species: isolation and molecular characterization of A, B, and C capsids from a gammaherpesvirus. J. Virol., 75(6), 2866–2878.CrossRefGoogle Scholar
Niedt, G. W., Myskowski, P. L., Urmacher, C., Niedzwiecki, D., Chapman, D., and Safai, B. (1990). Histology of early lesions of AIDS-associated Kaposi's sarcoma. Mod. Pathol., 3(1), 64–70.Google ScholarPubMed
Nishimura, K., Ueda, K., Sakakibara, S.et al. (2003). A viral transcriptional activator of Kaposi's sarcoma-associated herpesvirus (KSHV) induces apoptosis, which is blocked in KSHV-infected cells. Virology, 316(1), 64–74.CrossRefGoogle ScholarPubMed
Nuovo, M. and Nuovo, G. (2001). Utility of HHV8 RNA detection for differentiating Kaposi's sarcoma from its mimics. J. Cutan. Pathol., 28(5), 248–255.CrossRefGoogle ScholarPubMed
Oksenhendler, E., Carcelain, G., Aoki, Y.et al. (2000). High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric castleman disease in HIV-infected patients. Blood, 96(6), 2069–2073.Google Scholar
Osmond, D. H., Buchbinder, S., Cheng, A.et al. (2002). Prevalence of Kaposi sarcoma-associated herpesvirus infection in homosexual men at beginning of and during the HIV epidemic. J. Am. Med. Assoc., 287(2), 221–225.CrossRefGoogle ScholarPubMed
Parravicini, C., Olsen, S. J., Capra, M.et al. (1997). Risk of Kaposi's sarcoma herpesvirus transmission from donor allografts among Italian posttransplant Kaposi's sarcoma patients. Blood, 90, 2826–2829.Google ScholarPubMed
Pauk, J., Huang, M. L., Brodie, S. J.et al. (2000). Mucosal shedding of human herpesvirus 8 in men. N. Engl. J. Med., 343(19), 1369–1377.CrossRefGoogle ScholarPubMed
Paulose-Murphy, M., Ha, N.-K., Xiang, C.et al. (2001). Transcription program of Human herpesvirus 8 (Kaposi's Sarcoma-associated herpesvirus). J. Virol., 75, 4843–4853.CrossRefGoogle Scholar
Pellet, C., Chevret, S., Blum, L.et al. (2001). Virologic and immunologic parameters that predict clinical response of AIDS-associated Kaposi's sarcoma to highly active antiretroviral therapy. J. Invest. Dermatol., 117(4), 858–863.CrossRefGoogle ScholarPubMed
Pertel, P. E. (2002). Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J. Virol., 76(9), 4390–4400.CrossRefGoogle Scholar
Picchio, G. R., Sabbe, R. E., Gulizia, R. J.et al. (1997). The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology, 238(1), 22–29.CrossRefGoogle ScholarPubMed
Polson, A., Huang, L., Lukac, D.et al. (2001). Kaposi's sarcoma-associated herpesvirus K-bZIP protein is phosphorylated by cyclin-dependent kinases. J. Virol., 75, 3175–3184.CrossRefGoogle ScholarPubMed
Polstra, A. M., Goudsmit, J., and Cornelissen, M. (2003). Latent and lytic HHV-8 mRNA expression in PBMCs and Kaposi's sarcoma skin biopsies of AIDS Kaposi's sarcoma patients. J. Med. Virol., 70(4), 624–627.CrossRefGoogle ScholarPubMed
Pyakurel, P., Massambu, C., Castanos-Velez, E.et al. (2004). Human herpesvirus 8/Kaposi sarcoma herpesvirus cell association during evolution of Kaposi sarcoma. J. Acquir. Immune Defic. Syndr., 36(2), 678–683.CrossRefGoogle ScholarPubMed
Quinlivan, E. B., Zhang, C., Stewart, P. W., Komoltri, C., Davis, M. G., and Wehbie, R. S. (2002). Elevated virus loads of Kaposi's sarcoma-associated human herpesvirus 8 predict Kaposi's sarcoma disease progression, but elevated levels of human immunodeficiency virus type 1 do not. J. Infect. Dis., 185(12), 1736–1744.CrossRefGoogle ScholarPubMed
Reed, J. A., Nador, R. G., Spaulding, D., Tani, Y., Cesarman, E., and Knowles, D. M. (1998). Demonstration of Kaposi's sarcoma-associated herpesvirus cyclin D homolog in cutaneous Kaposi's sarcoma by colorimetric in situ hybridization using a catalyzed signal amplification system. Blood, 91(10), 3825–3832.Google ScholarPubMed
Renne, R., Lagunoff, M., Zhong, W., and Ganem, D. (1996a). The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J. Virol., 70(11), 8151–8154.Google Scholar
Renne, R., Zhong, W., Herndier, B.et al. (1996b). Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat. Med., 2(3) 342–346.CrossRefGoogle Scholar
Renne, R., Blackbourn, D., Whitby, D., Levy, J., and Ganem, D. (1998). Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 72, 5182–5188.Google ScholarPubMed
Rimessi, P., Bonaccorsi, A., Sturzl, M.et al. (2001). Transcription pattern of human herpesvirus 8 open reading frame K3 in primary effusion lymphoma and Kaposi's sarcoma. J. Virol., 75(15), 7161–7174.CrossRefGoogle ScholarPubMed
Robertson, K. A., Usherwood, E. J., and Nash, A. A. (2001). Regression of a murine gammaherpesvirus 68-positive b-cell lymphoma mediated by CD4 T lymphocytes. J. Virol., 75(7), 3480–3482.CrossRefGoogle ScholarPubMed
Robles, R., Lugo, D., Gee, L., and Jacobson, M. A. (1999). Effect of antiviral drugs used to treat cytomegalovirus end-organ disease on subsequent course of previously diagnosed Kaposi's sarcoma in patients with AIDS. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 20(1), 34–38.CrossRefGoogle ScholarPubMed
Roizman, B. and Sears, A. E., (1996). Herpes simplex viruses and their replication. In Fields, B. N., Knipe, D. M., Howley, P. M.et al. eds Fields Virology. Philadelphia, Lippincott-Raven Publishers, pp. 2231–2295.Google Scholar
Sakakibara, S., Ueda, K., Chen, J., Okuno, T., and Yamanishi, K. (2001). Octamer-binding sequence is a key element for the autoregulation of Kaposi's sarcoma-associated herpesvirus ORF50/Lyta gene expression. J. Virol., 75, 6894–6900.CrossRefGoogle ScholarPubMed
Sakurada, S., Katano, H., Sata, T., Ohkuni, H., Watanabe, T., and Mori, S. (2001). Effective human herpesvirus 8 infection of human umbilical vein endothelial cells by cell-mediated transmission. J. Virol., 75(16), 7717–7722.CrossRefGoogle ScholarPubMed
Santarelli, R., DeMarco, R., Masala, M.et al. (2001). Direct correlation between human herpesvirus-8 seroprevalence and classic Kaposi's sarcoma incidence in Northern Sardinia. J. Med. Virol., 65, 368–372.CrossRefGoogle ScholarPubMed
Sarawar, S. R., Lee, B. J., Reiter, S. K., and Schoenberger, S. P. (2001). Stimulation via CD40 can substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Proc. Natl Acad. Sci. USA, 98(11), 6325–6329.CrossRefGoogle ScholarPubMed
Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J., and Chang, Y. (1997). Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat. Med., 3(3), 293–298.CrossRefGoogle ScholarPubMed
Sarid, R., Flore, O., Bohenzky, R. A., Chang, Y., and Moore, P. S. (1998). Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (Human Herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J. Virol., 72, 1005–1012.Google Scholar
Sarid, R., Olsen, S. J., and Moore, P. S. (1999). Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv. Virus Res., 52, 139–232.CrossRefGoogle ScholarPubMed
Saveliev, A., Zhu, F., and Yuan, Y. (2002). Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus. Virology, 299(2), 301–314.CrossRefGoogle ScholarPubMed
Schalling, M., Ekman, M., Kaaya, E. E., Linde, A., and Biberfield, P. (1995). A role for a new herpes virus (KSHV) in different forms of Kaposi's sarcoma. Nat. Med., 1(7), 707–708.CrossRefGoogle ScholarPubMed
Seaman, W., Ye, D., Wang, R., Hale, E., Weisse, M., and Quinlivan, E. (1999). Gene expression from the ORF50/K8 region of Kaposi's sarcoma-associated herpesvirus. Virology, 263, 436–449.CrossRefGoogle ScholarPubMed
Seo, T., Park, J., Lee, D., Hwang, S. G., and Choe, J. (2001). Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J. Virol., 75(13), 6193–6198.CrossRefGoogle ScholarPubMed
Serraino, D., Tedeschi, R. M., Songini, M.et al. (2000). Prevalence of antibodies to human herpesvirus 8 in children from Sardinia and Croatia. Infection, 28(5), 336–338.CrossRefGoogle ScholarPubMed
Sgadari, C., Barillari, G., Toschi, E.et al. (2002). HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat. Med., 8(3), 225–232.CrossRefGoogle ScholarPubMed
Shahinian, A., Pfeffer, K., Lee, K. P.et al. (1993). Differential T cell costimulatory requirements in CD28-deficient mice. Science, 261(5121), 609–612.CrossRefGoogle ScholarPubMed
Shaw, R., Arbiser, J., and Offermann, M. K. (2000). Valproic acid induced human herpesvirus 8 lytic gene expression in BCBL-1 cells. AIDS, 14, 899.CrossRefGoogle Scholar
Simas, J. and Efstathiou, S. (1998). Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trend Microbiol., 6, 276–282.CrossRefGoogle Scholar
Simas, J. P., Swann, D., Bowden, R., and Efstathiou, S. (1999). Analysis of murine gammaherpesvirus-68 transcription during lytic and latent infection. J. Gen. Virol., 80(1), 75–82.CrossRefGoogle ScholarPubMed
Sirianni, M. C., Uccini, S., Angeloni, A., Faggioni, A., Cottoni, F., and Ensoli, B. (1997). Circulating spindle cells: correlation with human herpesvirus-8 (HHV-8) infection and Kaposi's sarcoma [letter]. Lancet, 349(9047), 255.CrossRefGoogle Scholar
Sirianni, M. C., Vincenzi, L., Fiorelli, V.et al. (1998). Gamma-Interferon production in peripherala blood mononuclear cells and tumor infiltrating lymphocytes from Kaposi's sarcoma patients: correlation with the presence of human herpesvirus-8 in peripheral blood mononuclear cells and lesional macrophages. Blood, 91(3), 968–976.Google ScholarPubMed
Sirianni, M. C., Vincenzi, L., Topino, S.et al. (2002). NK cell activity controls human herpesvirus 8 latent infection and is restored upon highly active antiretroviral therapy in AIDS patients with regressing Kaposi's sarcoma. Eur. J. Immunol., 32(10), 2711–2720.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Song, M. J., Li, X., Brown, H. J., and Sun, R. (2002). Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 76(10), 5000–5013.CrossRefGoogle ScholarPubMed
Song, M. J., Deng, H., and, Sun, R. (2003). Comparative study of regulation of RTA-responsive genes in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 77(17), 9451–9462.CrossRefGoogle ScholarPubMed
Speck, S. and Virgin, H. I. (1999). Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr. Opin. Microbiol., 2, 403–409.CrossRefGoogle ScholarPubMed
Staskus, K. A., Zhong, W., Gebhard, K.et al. (1997). Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol., 71(1), 715–719.Google ScholarPubMed
Stevenson, P. G. and Doherty, P. C. (1998). Kinetic analysis of the specific host response to a murine gammaherpesvirus. J. Virol., 72(2), 943–949.Google ScholarPubMed
Stewart, J. P., Usherwood, E. J., Ross, A., Dyson, H., and Nash, T. (1998). Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J. Exp. Med., 187(12), 1941–1951.CrossRefGoogle ScholarPubMed
Strauchen, J. A., Hauser, A. D., Burstein, D., Jimenez, R., Moore, P. S., and Chang, Y. (1996). Body cavity-based malignant lymphoma containing Kaposi sarcoma-associated herpesvirus in an HIV-negative man with previous Kaposi sarcoma. Ann. Intern. Med., 125(10), 822–825.CrossRefGoogle Scholar
Strickler, H. D., Goedert, J. J., Bethke, F. R.et al. (1999). Human herpesvirus 8 cellular immune responses in homosexual men. J. Infect. Dis., 180(5), 1682–1685.CrossRefGoogle ScholarPubMed
Sun, R., Lin, S. F., Staskus, K.et al. (1998). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA, 95, 10866–10871.CrossRefGoogle ScholarPubMed
Sunil-Chandra, N., Efstathiou, S., Arno, J., and Nash, A. (1992a). Virological and pathological features of mice infected with murine gammaherpesvirus 68. J. Gen. Virol., 73, 2347–2356.CrossRefGoogle Scholar
Sunil-Chandra, N., Efstathiou, S., and Nash, A. (1992b). Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J. Gen. Virol., 73, 3275–3279.CrossRefGoogle Scholar
Sunil-Chandra, N., Arno, J., Fazakerley, J., and Nash, A. (1994). Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am. J. Pathol., 145, 818–826.Google Scholar
Symensma, T. L., Martinez-Guzman, D., Jia, Q.et al. (2003). COX-2 induction during murine gammaherpesvirus 68 infection leads to enhancement of viral gene expression. J. Virol., 77(23), 12753–12763.CrossRefGoogle ScholarPubMed
Taga, T. and Kishimoto, T. (1997). Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol., 15, 797–819.CrossRefGoogle ScholarPubMed
Tam, H. K., Zhang, Z. F., Jacobson, L. P.et al. (2002). Effect of highly active antiretroviral therapy on survival among HIV-infected men with Kaposi and sarcoma or non-Hodgkin lymphoma. Int. J. Cancer, 98(6), 916–922.CrossRefGoogle ScholarPubMed
Tedeschi, R., Enbom, M., Bidoli, E., Linde, A., De Pauli, P., and Dillner, J. (2001). Viral load of human herpesvirus 8 in peripheral blood of human immunodeficiency virus-infected patients with Kaposi's sarcoma. J. Clin. Microbiol., 39(12), 4269–4273.CrossRefGoogle ScholarPubMed
Tibbetts, S. A., Dyk, L. F.et al. (2002). Immune control of the number and reactivation phenotype of cells latently infected with a gammaherpesvirus. J. Virol., 76(14), 7125–7132.CrossRefGoogle ScholarPubMed
Triantos, D., Horefti, E., Paximadi, E.et al. (2004). Presence of human herpes virus-8 in salvia and non-lesional oral mucosa in HIV-infected and oncologic immunocompromised patients. Oral Microbiol. Immunol., 19(3), 201–204.CrossRefGoogle Scholar
Trus, B. L., Heymann, J. B., Nealon, K.et al. (2001). Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J. Virol., 75(6), 2879–2890.CrossRefGoogle Scholar
Ubbink, D. T. II, Tulevski, Hartog D.et al. (1997). The value of non-invasive techniques for the assessment of critical limb ischaemia. Eur. J. Vasc. Endovasc. Surg., 13(3), 296–300.CrossRefGoogle ScholarPubMed
Ueda, K., Ishikawa, K., Nishimura, K., Sakakibara, S., Do, E., and Yamanishi, K. (2002). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism. J. Virol., 76(23), 12044–12054.CrossRefGoogle ScholarPubMed
Uphoff, C., Carbone, A., Gaidano, G., and Drexler, H. (1998). HHV-8 infection is specific for cell lines derived from primary effusion (body cavity-based) lymphomas. Leukemia, 12, 1806–1809.CrossRefGoogle ScholarPubMed
Varthakavi, V., Browning, P. J., and Spearman, P. (1999). Human immunodeficiency virus replication in a primary effusion lymphoma cell line stimulates lytic-phase replication of Kaposi's sarcoma-associated herpesvirus. J. Virol., 73(12), 10329–10338.Google Scholar
Vieira, J. and O'Hearn, P. M. (2004). Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology, 325(2), 225–240.CrossRefGoogle ScholarPubMed
Vieira, J., Huang, M. L., Koelle, D. M., and Corey, L. (1997). Transmissible Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in saliva of men with a history of Kaposi's sarcoma [In Process Citation]. J. Virol., 71(9), 7083–7087.Google Scholar
Virgin, H. W. T., Latreille, P., Wamsley, P.et al. (1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol., 71(8), 5894–5904.Google ScholarPubMed
Vitale, F., Viviano, E., Perna, A.et al. (2000). Serological and virological evidence of non-sexual transmission of human herpesvirus type 8 (HHV8). Epidemiol. Infect., 125, 671–675.CrossRefGoogle Scholar
Wahren, B., Ruden, U., Gadler, H., Oberg, B., and Eriksson, B. (1985). Activity of the cytomegalovirus genome in the presence of PPi analogs. J. Virol., 56(3), 996–1001.Google ScholarPubMed
Wang, F. Z., Akula, S. M., Pramod, N. P., Zeng, L., and Chandran, B. (2001). Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J. Virol., 75(16), 7517–7527.CrossRefGoogle ScholarPubMed
Wang, H. W., Sharp, T. V., Kuomi, A., Koentges, G., and Boshoff, C. (2002). Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J., 21(11), 2602–2615.CrossRefGoogle ScholarPubMed
Wang, S., Liu, S., Wu, M., Geng, Y., and Wood, C. (2001a). Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 ORF50 gene product contains a potent C-terminal activation domain which activates gene expression via a specific target sequence. Arch. Virol., 146(7), 1415–1426.CrossRefGoogle Scholar
Wang, J., Zhang, J., Zhang, L., Harrington, W. Jr., West, J. T., and Wood, C. (2005). Modulation of human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J. Virol., 79(4), 2420–2431.CrossRefGoogle ScholarPubMed
Wang, Y., Tang, Q., Maul, G. G., and Yuan, Y. (2006). Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: dual roles of RTA in the replication. J. Virol., 80(24), 12171–12186.CrossRefGoogle ScholarPubMed
Wang, S. E., Wu, F. Y., Fujimuro, M., Zong, J., Hayward, S. D., and Hayward, G. S. (2003a). Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J. Virol., 77(1), 600–623.CrossRefGoogle Scholar
Wang, S. E., Wu, F. Y., Yu, Y., and Hayward, G. S. (2003b). CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J. Virol., 77(17), 9590–9612.CrossRefGoogle Scholar
Wang, S. E., Wu, F. Y., Chen, H., Shamay, M., Zheng, Q., and Hayward, G. (2004). Early activation of the Kaposi's sarcoma-associated herpesvirus RTA, RAP, and MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway. J. Virol., 78(8), 4248–4267.CrossRefGoogle ScholarPubMed
Wang, Y., Chong, O. T., and Yuan, Y. (2004a). Differential regulation of K8 gene expression in immediate-early and delayed-early stages of Kaposi's sarcoma-associated herpesvirus. Virology, 325(1), 149–163.CrossRefGoogle Scholar
Wang, Y., Li, H., Chan, M. Y.et al. (2004b). Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J. Virol., 78(16), 8615–8629.CrossRefGoogle Scholar
Weck, K., Barkon, M., Yoo, L., Speck, S., and Virgin, H. I. (1996). Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J. Virol, 70, 6775–6780.Google Scholar
Weck, K. E., Dal Canto, A. J., Gould, J. D.et al. (1997). Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-gamma responsiveness: a new model for virus-induced vascular disease. Nat. Med., 3(12), 1346–1353.CrossRefGoogle ScholarPubMed
Weck, K. E., Kim, S. S., Virgin, H. I., and Speck, S. H. (1999a). B cells regulate murine gammaherpesvirus 68 latency. J. Virol., 73(6), 4651–4661.Google Scholar
Weck, K. E., Kim, S. S., Virgin, H. I., and Speck, S. H. (1999b). Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J. Virol., 73(4), 3273–3783.Google Scholar
Weigert, A. L., Pires, A., Adragao, T.et al. (2004). Human herpes virus-8 serology and DNA analysis in recipients of renal allografts showing Kaposi's sarcoma and their respective donors. Transpl. Proc., 36(4), 902–904.CrossRefGoogle ScholarPubMed
Whitby, D., Howard, M. R., Tenant-Flowers, M.et al. (1995). Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma [see comments]. Lancet, 346(8978), 799–802.CrossRefGoogle Scholar
Wilkinson, J., Cope, A., Gill, J.et al. (2002). Identification of Kaposi's sarcoma-associated herpesvirus (KSHV)-specific cytotoxic T-lymphocyte epitopes and evaluation of reconstitution of KSHV-specific responses in human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy. J. Virol., 76(6), 2634–2640.CrossRefGoogle ScholarPubMed
Wu, F. Y., Ahn, J. H., Alcendor, D. J.et al. (2001). Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J. Virol., 75(3), 1487–1506.CrossRefGoogle ScholarPubMed
Wu, F. Y., Tang, Q. Q., Chen, H.et al. (2002). Lytic replication-associated protein (RAP) encoded by Kaposi sarcoma-associated herpesvirus causes p21CIP-1-mediated G1 cell cycle arrest through CCAAT/enhancer-binding protein-alpha. Proc. Natl Acad. Sci. USA, 99(16), 10683–10688.CrossRefGoogle ScholarPubMed
Wu, F. Y., Wang, S. E., Tang, Q. Q.et al. (2003). Cell cycle arrest by Kaposi's sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1). J. Virol., 77(16), 8893–8914.CrossRefGoogle Scholar
Wu, L., Lo, P., Yu, X., Stoops, J. K., Forghani, B., and Zhou, Z. H. (2000). Three-dimensional structure of the human herpesvirus 8 capsid. J. Virol., 74(20), 9646–9654.CrossRefGoogle ScholarPubMed
Xu, Y., Rodriguez-Huete, A., and Pari, G. S. (2006). Evaluation of lytic origins of replication of Kaposi's Sarcoma – associated Herpesvirus/Human herpesvirus 8 in the context of the viral genome. J. Virol., 80(19), 9905–9909.CrossRefGoogle ScholarPubMed
Yang, C. and Kazanietz, M. G. (2003). Divergence and complexities in DAG signaling: looking beyond PKC. Trends Pharmacol. Sci., 24(11), 602–608.CrossRefGoogle ScholarPubMed
Yao, L., Salvucci, O., Cardones, A. R.et al. (2003). Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis. Blood, 102(12), 3900–3905.CrossRefGoogle Scholar
Yu, X. K., O'Connor, C. M., Atanasov, I., Damania, B., Kedes, D. H., and Zhou, Z. H. (2003). Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging. J. Virol., 77(24), 13182–13193.CrossRefGoogle Scholar
Yu, Y., Wang, S. E., and Hayward, G. S. (2005). The KSHV immediate–early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteasome-mediated degradation. Immunity, 22, 59–70.CrossRefGoogle Scholar
Zhong, W., Wang, H., Herndier, B., and Ganem, D. (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA, 93(13), 6641–6646.CrossRefGoogle ScholarPubMed
Zhu, F., Cusano, T., and Yuan, Y. (1999). Identification of the immediate-early transcripts of Kaposi's sarcoma-associated herpesvirus. J. Virol., 73, 5556–5567.Google ScholarPubMed
Zhu, F. X. and Yuan, Y. (2003). The ORF45 protein of Kaposi's sarcoma-associated herpesvirus is associated with purified virions. J. Virol., 77(7), 4221–4230.CrossRefGoogle ScholarPubMed
Zhu, F. X., King, S. M., Smith, E. J., Levy, D. E., and Yuan, Y. (2002). A Kaposi's sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. Proc. Natl Acad. Sci. USA, 99(8), 5573–5578.CrossRefGoogle ScholarPubMed
Zhu, L., Wang, R., Sweat, A., Goldstein, E., Horvat, R., and Chandran, B. (1999b). Comparison of human sera reactivities in immunoblots with recombinant human herpesvirus (HHV)-8 proteins associated with the latent (ORF73) and lytic (ORFs 65, K8.1A, and K8.1B) replicative cycles and in immunofluorescence assays with HHV-8-infected BCBL-1 cells. Virology, 256(2), 381–392.CrossRefGoogle Scholar
Zhu, F. X., Chong, J. M., Wu, L., and Yuan, Y. (2005). Virion proteins of Kaposi's sarcoma-associated herpesvirus. J. Virol., 79(2), 800–811.CrossRefGoogle ScholarPubMed
Zoeteweij, J. P., Moses, A. V., Rinderknecht, A. S.et al. (2001). Targeted inhibition of calcineurin signaling blocks calcium-dependent reactivation of Kaposi sarcoma-associated herpesvirus. Blood, 97(8), 2374–2380.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×