Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:51:43.566Z Has data issue: false hasContentIssue false

Chapter 9 - Cerebral Atrophy

Published online by Cambridge University Press:  01 July 2017

Murat Gokden
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Manoj Kumar
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Get access
Type
Chapter
Information
Neuropathologic and Neuroradiologic Correlations
A Differential Diagnostic Text and Atlas
, pp. 222 - 248
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Filippi, M., Agosto, F., Barkhof, F., et al. EFNS task force: The use of neuroimaging in the diagnosis of dementia. Eur J Neurol 2012; 19: e131.CrossRefGoogle ScholarPubMed
Scheltens, P., Fox, N., Barkhof, F., et al. Structural magnetic resonance imaging in the practical assessment of dementia: Beyond exclusion. Lancet Neurol 2002; 1: 13.Google Scholar
Johnson, K. A., Minoshima, S., Bohnen, N. I., et al. Appropriate use criteria for amyloid PET: A report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. J Nucl Med 2013; 54: 476.Google Scholar
Lehmann, M., Ghosh, P. M., Madison, C., et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease. Brain 2013; 136: 844.CrossRefGoogle ScholarPubMed
de la Fuente-Fernandez, R.. Role of DaTSCAN and clinical diagnosis in Parkinson disease. Neurology 2012; 78: 696.CrossRefGoogle ScholarPubMed
Bartzokis, G., Beckson, M., Lu, P. H., et al. Age related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58: 461.Google Scholar
Bastos-Leite, A. J., van Waesberghe, J. H., Oen, A. L., et al. Hippocampal sulcus width and cavities: Comparison between patients with Alzheimer disease and nondemented elderly subjects. Am J Neuroradiol 2006; 27: 2141.Google ScholarPubMed
Brass, S. D., Chen, N. K., Mulkern, R. V., et al. Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imag 2006; 17: 31.Google Scholar
Fazekas, F., Chawluk, J. B., Alavi, A., et al. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal ageing. Am J Roentgenol 1987; 149: 351.Google Scholar
Fox, N. C., Crum, W. R., Scahill, R. I., et al. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001; 358: 201.Google Scholar
Inglese, M., Ge, Y.. Quantitative MRI: Hidden age-related changes in brain tissue. Top Magn Reson Imag 2004; 15: 355.Google Scholar
Kapeller, P., Schmidt, R., Fazekas, F.. Qualitative MRI evidence of usual ageing in the brain. Top Magn Reson Imag 2004; 15: 343.Google Scholar
Mrak, R. E., Griffin, W. S. T., Graham, D. I.. Aging associated changes in human brain. J Neuropathol Exp Neurol 1997; 56: 1269.CrossRefGoogle ScholarPubMed
Tanzi, R. E.. A brief history of Alzheimer's disease gene discovery. J Alzheimers Dis 2013; 33 Suppl 1: S5.Google Scholar
Mayeux, R., Stern, Y.. Epidemiology of Alzheimer disease. Cold Spring Harbor Perspectives Med 2012; 2: 1.CrossRefGoogle ScholarPubMed
Frisoni, G. B., Fox, N. C., Jack, C. R., et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010; 6: 67.CrossRefGoogle ScholarPubMed
Henneman, W. J. P., Sluimer, J. D., Barnes, J., et al. Hippocampal atrophy rates in Alzheimer disease: Added value over whole brain volume measures. Neurology 2009; 72: 999.Google Scholar
Perrin, R. J., Fagan, A. M., Holtzman, D. M.. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 2009; 461: 916.CrossRefGoogle ScholarPubMed
Rinne, J. O., Brooks, D. J., Rossor, M. N.. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patient with Alzheimer's disease treated with bapineuzumab: A phase 2, double blind placebo-controlled, ascending-dose study. Lancet Neurol 2010; 9: 363.Google Scholar
Tolboom, N., Yaqub, M., van der Flier, W. M., et al. Detection of Alzheimer pathology in vivo using both 11-C PIB and 18F-FDDNP PET. J Nucl Med 2009; 50: 191.CrossRefGoogle ScholarPubMed
Pantoni, l., Pescini, F., Nannucci, S., et al. Comparison of clinical, familial and MRI features of CADASIL and NOTCH3 negative patients. Neurology 2010; 74: 57.CrossRefGoogle ScholarPubMed
Goos, J. D., Kester, M. I., Barkhof, F., et al. Patients with Alzheimer's disease with multiple microbleeds: Relation with cerebrospinal fluid biomarkers and cognition. Stroke 2009; 40: 3455.Google Scholar
Greenberg, S. M., Vernooij, M. W., Cordonnier, C., et al. Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol 2009; 40: 3455.Google Scholar
Chao, C. P., Kotsenas, A. L., Broderick, D. F.. Cerebral amyloid angiopathy: CT and MR imaging findings. Radiographics 2006; 16: 1517.Google Scholar
Griffin, W. S. T., Sheng, J. G., Roberts, G. W., Mrak, R. E.. Interleukin-1 expression in different plaque types in Alzheimer's disease: Significance in plaque evolution. J Neuropathol Exp Neurol 1995; 54: 276.Google Scholar
Mrak, R. E., Sheng, J. G., Griffin, W. S. T.. Correlation of astrocytic S100β expression with dystrophic neurites in amyloid plaques of Alzheimer's disease. J Neuropathol Exp Neurol 1996; 55: 273.CrossRefGoogle ScholarPubMed
Mirra, S. S., Heyman, A., McKeel, D., et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991; 41: 479.Google Scholar
Braak, H., Braak, E.. Neuropathologic stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239.Google Scholar
National Institute on Aging, and the Reagan Institute Working Group on Diagnostic Criteria for the Neuropathologic Assessment of Alzheimer's disease. Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. Neurobiol Aging 1997; 18: S1.Google Scholar
Montine, T. J., Phelps, C. H., Beach, T. G., et al. National Institutes on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: A practical approach. Acta Neuropathol 2012; 123: 1.Google Scholar
Thal, D. R., Rub, U., Orantes, M., Braak, H.. Phases of A beta deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791.Google Scholar
Li, X. Y., Feng, D. F.. Diffuse axonal injury: Novel insights into detection and treatment. J Clin Neurosci 2009; 16: 614.Google Scholar
Suskauer, S. J., Huisman, T. A.. Neuroimaging in pediatric traumatic brain injury: Current and future predictors of functional outcome. Dev Disabil Rev 2009; 15: 117.Google Scholar
Nandoe, R. D., Scheltens, P., Eikelenboom, P.. Head trauma and Alzheimer's disease. J Alzheimers Dis 2002; 4: 303.Google Scholar
Corsellis, J. A. N., Brierly, J. B.. Observations on the pathology of insidious dementia following head injury. J Ment Sci 1959; 105: 714.Google Scholar
McKee, A. C., Cantu, R. C., Nowinski, C. J., et al. Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009; 68: 709.Google Scholar
McKee, A. C., Stern, R. A., Nowinski, C. J., et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013; 136: 43.Google Scholar
O'Brien, J. T., Paling, S., Barber, R., et al. Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD and vascular dementia. Neurology 2001; 56: 1386.Google Scholar
Watson, R., Blamire, A. M. and O'Brien, J. T.. Magnetic resonance imaging in Lewy body dementias. Dement Geriatr Cofn Disord 2009; 28: 493.CrossRefGoogle ScholarPubMed
Whitwell, J. L., Weigand, S. D., Shiung, M. M., et al. Focal atrophy in dementia with Lewy bodies on MRI: A distinct pattern from Alzheimer's disease. Brain 2007; 130: 708.Google Scholar
Lewy, F. H.. Paralysis agitans. I. Pathologische anatomie. In Lewandowsky's Handbuch der Neurologie, 3. Band: Spez. Neurologie II. Berlin: Springer, 1912, pp. 92033.Google Scholar
Okazaki, H., Lipkin, L. E., Aronson, S. M.. Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion. J Neuropathol Exp Neurol 1961; 20: 237.Google Scholar
Burkhardt, C. R., Filley, C. M., Kleinschmidt-deMasters, B., et al. Diffuse Lewy body disease and progressive dementia. Neurology 1988; 38: 1520.Google Scholar
Hansen, L. A., Masliah, E., Galasko, D., et al. Plaque-only Alzheimer's disease is usually the Lewy body variant, and vice versa. J Neuropathol Exp Neurol 1993; 52: 648.Google Scholar
Barker, W. M., Luis, C. A., Kashuba, A., et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the state of Florida brain bank. Alzheimer Dis Assoc Disord 2002; 16: 203–12.Google Scholar
Mrak, R. E., Griffin, W. S. T.. Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J Neuropathol Exp Neurol 2007; 66: 683.Google Scholar
Braak, H., Ghebremedhin, E., Rüb, U., et al. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res 2004; 318: 121.Google Scholar
McKeith, I. G., Dickson, D. W., Lowe, J., et al. Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology 2005; 65: 1863.Google Scholar
Bastos-Leite, A. J., van der Flier, W. M., van Straaten, E. C., et al. The contribution of medial temporal lobe atrophy and vascular pathology to cognitive impairment in vascular dementia. Stroke 2007; 38: 3182.Google Scholar
Leys, D., Henon, H., Mackowiak-Cordolian, M. A., et al. Poststroke dementia. Lancet Neurol 2005; 4: 752.Google Scholar
Pantoni, L.. Cerebral small vessel disease from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689.Google Scholar
Snowdon, D. A., Greiner, L. H., Mortimer, J. A., et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun study. JAMA 1997; 277: 813.Google Scholar
Vermeer, S. E., Prins, N. D., Heijer, T. den. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003; 348: 1215.Google Scholar
Gorelick, P. B., Scuteri, A., Black, S. E., et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011; 42: 2672.Google Scholar
Chabriat, H., Joutel, A., Dichgans, M, et al. CADASIL. Lancet Neurol 2009; 8: 643.Google Scholar
Mrak, R. E.. The Big Eye in the 21st century: The role of electron microscopy in modern diagnostic neuropathology. J Neuropathol Exp Neurol 2002; 61: 1027Google Scholar
Creutzfeldt, H. G.. Über eine eigenartige herdförmige Erkrankung des Zentralnervensystems. Z Ges Neurol Psychiat 1920; 57: 1.Google Scholar
Jakob, A.. Über eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswerten anatomischen Befunde (spastische Pseudosklerose–Encephalomyelopathie mit disseminierten Degenerationsherden). Z Ges Neurol Psychiat 1921; 64: 147.Google Scholar
Jakob., A. Spastische pseudosklerose. In Jakob, A., ed., Die Extrapyramidalen Erkrankungen. Berlin: Springer-Verlag, 1923, pp. 215–45.Google Scholar
Gibbs, C. J. Jr., Gajdusek, D. C., Asher, D. M., et al. Creutzfeldt–Jakob disease (spongiform encephalopathy): Transmission to the chimpanzee. Science 1968; 161: 388.Google Scholar
Manners, D. N., Parchi, P., Tonon, C., et al. Pathologic correlates of diffusion MRI changes in Creutzfeldt–Jakob disease. Neurology 2009; 72: 1425.Google Scholar
Ukisu, R., Kushihaski, R., Tanaka, E., et al. Diffusion-weighted MR imaging of early-stage Creutzfeldt–Jakob disease: Typical and atypical manifestations. Radiographics 2006; 26: S191.Google Scholar
Hyare, H., Thornton, J., Stevens, J., et al. High-b-value diffusion MR imaging and basal ganglia apparent diffusion coefficient measurements of variant and sporadic Creutzfeldt–Jakob disease. Am J Neuroradiol 2010; 31: 521.Google Scholar
Meisner, B., Kallenberg, K., Sanchez-Juan, P., et al. MRI lesion profiles in sporadic Creutzfeldt–Jakob disease. Neurology 2009; 72: 1994.Google Scholar
Tschampa, H. J., Zerr, I., Urbach, H.. Radiological assessment of Creutzfeldt–Jakob disease. Eur Radiol 2007; 17: 1200.Google Scholar
McFarlane, R. G., Wroe, S. J., Collinge, J., et al. Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 2007; 78: 664.Google Scholar
Chan, G., Fox, N. C., Scahill, R. I., et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 2001; 49: 433.Google Scholar
Neary, D., Snowden, J. S., Gustafson, L., et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology 1998; 51: 1546.Google Scholar
Rascovsky, K., Hodges, J. R., Kipps, C. M., et al. Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): Current limitations and future directions. Alzheimer Disord Assoc Dis 2007; 21: S14.Google Scholar
Pick, A.. Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr 1892; 17: 165.Google Scholar
Dickson, D. W.. Neuropathology of Pick's disease. Neurology 2001; 56(Suppl 4): S16.Google Scholar
Bigio, E. H.. Making the diagnosis of frontotemporal lobar degeneration. Arch Pathol Lab Med 2013; 137: 314.Google Scholar
Al-Chalabi, A., Jones, A., Troakes, C. et al. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 2012; 124: 339.Google Scholar
Schrag, A.. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000; 54: 697.Google Scholar
Oba, H.. New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 2005; 64: 2050.Google Scholar
Steele, J., Richardson, J., Olszewski, J.. Progressive supranuclear palsy: A heterogenous degeneration involving the brain stem, basal ganglia, and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia, and dementia. Arch Neurol 1964; 2: 473.Google Scholar
Huntington, G.. On chorea. Med Surg Rep Philadelphia 1872; 26: 317.Google Scholar
Aylward, E. H., Sparks, B. F., Fiedl, K. M., et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 2004; 63: 66.CrossRefGoogle ScholarPubMed
Rosas, H. D., Feigin, A. S., Hersch, S. M.. Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington's disease. NeuroRx 2004; 1: 263.Google Scholar
Vonsattel, J. P., Myers, R. H., Stevens, T. J., et al. Neuropathologic classification of Huntington's disease. J Neuropathol Exp Neurol 1985; 44: 559.Google Scholar
Angelini, L., Nardocci, N., Rumi, V., et al. Hallervorden–Spatz disease: Clinical and MRI study of 11 cases diagnosed in life. J Neurol 1992; 239: 417.Google Scholar
Savoiardo, M., Halliday, W. C., Nardocci, N., et al. Hallervorden–Spatz disease: MR and pathologic findings. Am J Neuroradiol 1993; 14: 155.Google Scholar
Guillerman, R. P.. The eye-of-the-tiger sign. Radiology 2000; 217: 895.Google Scholar
Gupta, D., Saini, J., Kesavadas, C., et al. Utility of susceptibility weighted MRI in differentiating Parkinson's disease and atypical parkinsonism. Neuroradiology 2010; 52: 1087.Google Scholar
Schwarz, S. T., Afzal, M., Morgan, P. S., et al. The “swallow tail” appearance of the healthy nigrosome – a new accurate test of Parkinson's disease: A case-control and retrospective cross-sectional MRI study at 3T. PLoS One 2014; 9: e93814.Google Scholar
Stoessl, A.. Neuroimaging in Parkinson's disease. Nanotherapeutics 2011; 8: 7.Google Scholar
Stoessl, A. J., Lehericy, S., Strafella, A. P.. Imaging insights into basal ganglia function, Parkinson's disease and dystonia. Lancet 2014; 384: 532.CrossRefGoogle ScholarPubMed
Ozawa, T.. The spectrum of pathologic involvement of the striatonigral and olivopontocerebellar system in multiple system atrophy: Clinicopathologic correlations. Brain 2004; 127: 2657.CrossRefGoogle Scholar
Seppi, K.. How to diagnose MSA early: The role of magnetic resonance imaging. J Neural Transm 2005; 112: 1625.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×