Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T18:03:28.565Z Has data issue: false hasContentIssue false

Chapter 1 - Introduction to Neuroradiologic Techniques

Published online by Cambridge University Press:  01 July 2017

Murat Gokden
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Manoj Kumar
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Get access
Type
Chapter
Information
Neuropathologic and Neuroradiologic Correlations
A Differential Diagnostic Text and Atlas
, pp. 1 - 22
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spiegel, P. K. The first clinical X-ray made in America – 100 years. Am. J. Roentgenol., 1995, 164: 241–3.Google Scholar
Curry, T. S., Dowdey, J. E., and Murry, R. C. Christensen's Physics of Diagnostic Radiology, 4th edn. Philadelphia, PA: Lea and Febiger, 1990, ch. 2.Google Scholar
Hounsfield, G. N. Computerized transverse axial scanning (tomography). 1. Description of system. Br. J. Radiol., 1973, 46, 1016–22.Google Scholar
Curry, T. S. Dowdey, J. E., and Murry, R. C. Christensen's Physics of Diagnostic Radiology, 4th edn. Philadelphia, PA: Lea and Febiger, 1990, ch. 19.Google Scholar
Kalender, W. A. Computed Tomography: Fundamentals, System Technology, Image Quality, and Applications, 3rd edn. Munich: MCD Verlag, 2011.Google Scholar
Mahesh, M. MDCT Physics; The Basics – Technology, Image Quality and Radiation Dose. Philadelphia, PA: Lippincott Williams & Wilkins, 2009.Google Scholar
Hoeffner, E. G., Case, I., Jain, R., et al. Cerebral perfusion CT: Technique and clinical applications. Radiology, 2004, 231: 632–44.Google Scholar
Wintermark, M., Flanders, A. E., Velthuis, B., et al. Perfusion-CT assessment of infarct core and penumbra. Receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke, 2006, 37: 979–85.Google Scholar
Kelly, H. R., Hamberg, L. M., and Hunter, G. J. 4D-CT for preoperative localization of abnormal parathyroid glands in patients with hyperparathyroidism; accuracy and ability to stratify patients by unilateral versus bilateral disease in surgery-naïve and re-exploration patients. Am. J. Neuroradiol., 2014, 35: 176–81.Google Scholar
Seeram, E. Computed Tomography; Physical Principles, Clinical Applications, and Quality Control, 3rd edn. London: Saunders/Elsevier, 2009, pp. 352–3.Google Scholar
Davis, P. C. Head trauma. ACR appropriateness criteria. Am. J. Neuroradiol., 2007, 28: 1619–21.Google Scholar
Birenbaum, D., Bancroft, L. W., and Felsberg, G. J. Imaging in acute stroke. West J. Emerg. Med., 2011, 12: 6776.Google Scholar
Hwang, D. Y., Silva, G. S., Furie, K. L., and Greer, D. M. Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting posterior fossa infarct. J. Emerg. Med., 2012, 42: 559–65.Google Scholar
Packer, R. J., Zimmerman, R. A., Bilanuik, L. T., Sutton, L. N., and Schut, L. Magnetic resonance imaging of lesions of the posterior fossa and upper cervical cord in childhood. Pediatrics, 1985, 76: 8490.Google Scholar
Lauterbur, P. C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 1973, 242: 190–1.Google Scholar
Horowitz, A. L. MRI Physics for Radiologists. A Visual Approach, 3rd edn. New York, NY: Springer-Verlag, 1995.Google Scholar
Johansen-Berg, H. and Behrens, T. E. J. Diffusion MRI. From Quantitative Measurement to In-vivo Neuroanatomy, 2nd edn. San Diego, CA: Academic Press, 2013.Google Scholar
Barker, P. B., Golay, X., and Zaharzuk, G. (eds.) Clinical Perfusion MRI. Techniques and Applications. Cambridge: Cambridge University Press, 2013.Google Scholar
Essig, M., Shiroshi, M. S., Ngyugen, T. B., Saake, M., and Provenzale, J. M. Perfusion MRI: The five most frequently asked technical questions. Am. J. Roentgenol., 2013, 200: 2434.CrossRefGoogle ScholarPubMed
Parsons, M. W., Yang, Q., Barber, P. A., Darby, D. G., and Desmond, P. M. Perfusion magnetic resonance imaging in hyperacute stroke. Relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke, 2001, 32: 1581–7.Google Scholar
Covarrubias, D. J., Rosen, B. R., and Lev, M. H. Dynamic magnetic resonance perfusion imaging of brain tumors. The Oncologist, 2004, 95: 528–37.Google Scholar
Bajaras, R. F., Chang, J. S., Sneed, P. K., et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility weighted contrast-enhanced perfusion MR imaging. Am. J. Neuroradiol., 2009, 30: 367–72.Google Scholar
Salibi, N. and Brown, M. A. Clinical MR Spectroscopy: First Principles. New York, NY: Wiley, 1997.Google Scholar
Horska, A. and Barker, P. B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin. N. Am., 2010, 20: 293310.Google Scholar
Mukherjee, P., Berman, J. I., Chung, S. W., Hess, C. P., and Henry, R. G. Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings. Am. J. Neuroradiol., 2008, 29: 632–41.Google Scholar
Carr, J. C. and Carroll, T. J. (eds.) Magnetic Resonance Angiography. New York, NY: Springer Verlag, 2012.Google Scholar
Bhadelia, R. A., Bogdan, A. R., and Wolpert, S. M. Analysis of cerebrospinal fluid flow waveforms with gated phase-contrast MR velocity measurements. Am. J. Neuroradiol., 1995, 16: 389400.Google Scholar
Hofmann, E., Warmuth-Metz, M., Bendszus, M., and Solymosi, L. Phase-contrast MR imaging of the cervical CSF and spinal cord: Volumetric motion analysis in patients with Chiari I malformation. Am. J. Neuroradiol., 2000, 21: 151–8.Google Scholar
Lee, M. H., Smyser, C. D., and Shimony, J. S. Resting-state fMRI: A review of methods and clinical applications. Am. J. Neuroradiol., 2013, 34: 1866–72.Google Scholar
van Everdingen, K. J., van der Grond, J., Kappelle, L. J., Ramos., L. M. P., and Mali, W. P. T. M. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke, 1998, 29: 1783–90.Google Scholar
Glenn, O. A. and Barkovich, A. J. Magnetic resonance imaging of the fetal brain and spine: An increasingly important tool in prenatal diagnosis, Part 1. Am. J. Neuroradiol., 2006, 27: 1604–11.Google Scholar
ACR Manual on Contrast Media. Version 9. American College of Radiology, 2013.Google Scholar
Strikers, G. J., Mulder, W. J., Tilborg, G. A., and Nicolay, K. MRI contrast agents: Current status and perspectives. Anticancer Agents Med. Chem., 2007, 7: 291305.Google Scholar
Cheng, W., Ping, Y., Zhang, Y., Chuang, K. H., and Liu, Y. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. J. Healthcare Eng., 2013, 4: 2345.Google Scholar
Hasebroock, K. M. and Serkova, N. J. Toxicity of MRI and CT contrast agents. Expert Opin. Drug Metab. Toxicol., 2009, 5: 403–16.Google Scholar
Bushberg, J. T., Seibert, J. A., Leidholdt, E. M. Jr., and Boone, J. M. The Essential Physics of Medical Imaging, 2nd edn. Philadelphia, PA: Lippincott Williams Wilkins, 2001, pp. 321–4.Google Scholar
Edelman, S. K. Understanding Ultrasound Physics, 4th edn. ESP Publishers, 2012.Google Scholar
Callen, P. W. Ultrasonography in Obstetrics and Gynecology, 5th edn. Philadelphia, PA: Saunders, 2007.Google Scholar
Pellerito, J. and Polak, J. F. Introduction to Vascular Ultrasound, 6th edn. Philadelphia, PA: Saunders, 2012.Google Scholar
Byrne, S. F. and Green, R. L. Ultrasound of the Eye and Orbit, 2nd edn. St Louis, MO: Mosby, 2010.Google Scholar
Wagner, H. N., Szabo, Z., and Buchanan, J. W. Principles of Nuclear Medicine, 2nd edn. Philadelphia, PA: Saunders, 1995.Google Scholar
Kelloff, G. J., Hoffman, J. M., Johnson, B., et al. Progress and promise of FDG–PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res., 2005, 11: 2785–808.Google Scholar
Hustinx, R., Pourdehnad, M., Kaschten, B., and Alavi, A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol. Clin. N. Am., 2005, 43: 3547.Google Scholar
Desikan, R. S., Rafil, M. S., Brewer, J. B., and Hess, C. P. An expanded role for neuroimaging in the evaluation of memory impairment. Am. J. Neuroradiol., 2013, 34: 2075–82.Google Scholar
Berenguer, C. M., Davis, F. E., and Howington, J. U. Brain death confirmation: Comparison of computed tomographic angiography with nuclear medicine perfusion scan. J. Trauma, 2010, 68: 553–9.Google Scholar
Taleb, D., Neumann, H., Rubello, D., et al. Modern nuclear imaging for paragangliomas: Beyond SPECT. J. Nucl. Med., 2012, 53: 264–74.Google Scholar
AJCC Cancer Staging Manual, 6th edn. New York, NY: Springer, 2002.Google Scholar
Sotoudeh, H. and Yazdi, H. R. A review on dural tail sign. World J. Radiol., 2010, 2: 188–92.Google Scholar
Pieper, D. R., Al-Mefty, O., Hanada, Y., and Buechner, D. Hyperostosis associated with meningioma of the cranial base: Secondary changes or tumor invasion. Neurosurgery, 1999, 44: 742–6.Google Scholar
Cakirer, S., Karaarslan, E., and Arslan, A. Spontaneously T1-hyperintense lesions of the brain on MRI: A pictorial review. Curr. Probl. Diagn. Radiol., 2003, 32: 194217.Google Scholar
Eldevik, O. P., Blaivas, M., Gabrielsen, T. O., Hald, J. K., and Chandler, W. F. Craniopharyngioma: Radiologic and histologic findings and recurrence. Am. J. Neuroradiol., 1996, 17: 1427–39.Google Scholar
Ho, M., Rojas, R., and Eisenberg, R. L. Cerebral edema. Am. J. Roentgenol., 2012, 199: W258–73.Google Scholar
Laine, F. J., Shedden, A. I., Dunn, M. M., and Ghatak, N. R. Acquired intracranial herniations: MR imaging findings. Am. J. Roentgenol., 1995, 165: 967–73.Google Scholar
Witwer, B. P., Moftakhar, R., Hasan, K. M., et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J. Neurosurg., 2002, 97: 568–75.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×