Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T08:08:52.742Z Has data issue: false hasContentIssue false

1 - The MESSENGER Mission: Science and Implementation Overview

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

MESSENGER was the first spacecraft to visit the planet Mercury in more than three decades and the first to orbit the solar system’s innermost planet, and it provided the first global observations of Mercury’s surface, interior, exosphere, magnetosphere, and heliospheric environment. This chapter begins with summaries of the objectives for the MESSENGER mission and the design of the spacecraft, payload instruments, and orbit selected to achieve those objectives. We then describe the procedures adopted to optimize the scientific return from the complex series of orbital data acquisition operations that MESSENGER followed. An overview is given next of the primary MESSENGER mission, including the three Mercury flybys prior to orbit insertion and the first year of Mercury orbital observations. We then outline the rationale for and accomplishments of MESSENGER’s first extended mission, conducted over the second year of orbital operations, and MESSENGER’s second extended mission, conducted over the final two years of orbital operations. The second extended mission included a distinctive low-altitude campaign completed at the culmination of the mission. A concluding section briefly introduces the other chapters of this book.
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 1 - 29
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., Zuber, M. T. and Solomon, S. C. (2004). Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett., 218, 261268.Google Scholar
Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H. and Slavin, J. A. (2007). The Magnetometer instrument on MESSENGER. Space Sci. Rev., 131, 417450.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr, Raines, J. M. and Zurbuchen, T. H. (2011a). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862.Google Scholar
Anderson, B. J., Perry, M. E., Choo, T. H., Steele, R. J., Nguyen, L., Lucks, M., Prockter, L. M., McNutt, R. L. Jr. and Solomon, S. C. (2011b). MESSENGER science observation planning for orbital operations at Mercury. Lunar Planet. Sci., 42, abstract 1862.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L. Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res., 117, E00L12, doi:10.1029/2012JE004159.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., McNutt, R. L. Jr. and Solomon, S. C. (2014). Steady-state field-aligned currents at Mercury. Geophys. Res. Lett., 41, 74447452.Google Scholar
Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L. and Trager, G. B. (1987). The mass, gravity field, and ephemeris of Mercury. Icarus, 71, 337349.Google Scholar
Andrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A. and Raines, J. M. (2007). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev., 131, 523556.Google Scholar
Baker, D. N., Dewey, R. M., Lawrence, D. J., Goldsten, J. O., Peplowski, P. N., Korth, H., Slavin, J. A., Krimigis, S. M., Anderson, B. J., Ho, G. C., McNutt, R. L. Jr., Raines, J. M., Schriver, D. and Solomon, S. C. (2016). Intense energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high-resolution observations from MESSENGER. J. Geophys. Res. Space Physics, 121, 21712184.Google Scholar
Balcerski, J. A., Hauck, S. A. II, Sun, P., Klimczak, C., Byrne, P. K., Phillips, R. J. and Solomon, S. C. (2013). New constraints on timing and mechanisms of regional tectonism from Mercury’s tilted craters. Lunar Planet. Sci., 44, abstract 2444.Google Scholar
Banks, M. E., Xiao, Z., Watters, T. R., Strom, R. G., Braden, S. E., Chapman, C. R., Solomon, S. C., Klimczak, C. and Byrne, P. K. (2015). Duration of activity on lobate-scarp thrust faults on Mercury. J. Geophys. Res. Planets, 120, 17511762.Google Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1988). Collisional stripping of Mercury’s mantle. Icarus, 74, 516528.Google Scholar
Berman, A. F., Domingue, D. L., Holdridge, M. E., Choo, T. H., Steele, R. J. and Shelton, R. G. (2010). Testing and validation of orbital operations plans for the MESSENGER mission. In Observatory Operations: Strategies, Processes, and Systems III, ed. Silva, D. R., Peck, A. B. and Soifer, B. T.. Proc. SPIE, 7737, doi:10.1117/12.857107.Google Scholar
Bida, T. A., Killen, R. M. and Morgan, T. H. (2000). Discovery of calcium in Mercury’s atmosphere. Nature, 404, 159161.CrossRefGoogle ScholarPubMed
Blewett, D. T., Chabot, N. L., Denevi, B. W., Ernst, C. M., Head, J. W., Izenberg, N. R., Murchie, S. L., Solomon, S. C., Nittler, L. R., McCoy, T. J., Xiao, Z., Baker, D. M. H., Fassett, C. I., Braden, S. E., Oberst, J., Scholten, F., Preusker, F. and Hurwitz, D. M. (2011). Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science, 333, 18561859.CrossRefGoogle ScholarPubMed
Blewett, D. T., Vaughan, W. M., Xiao, Z., Chabot, N. L., Denevi, B. W., Ernst, C. M., Helbert, J., D’Amore, M., Maturilli, A., Head, J. W. and Solomon, S. C. (2013). Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res. Planets, 118, 10131032.Google Scholar
Blewett, D. T., Stadermann, A. C., Susorney, H. C., Ernst, C. M., Xiao, Z., Chabot, N. L., Denevi, B. W., Murchie, S. L., McCubbin, F. M., Kinczyk, M. J., Gillis-Davis, J. J. and Solomon, S. C. (2016). Analysis of MESSENGER high-resolution images of Mercury’s hollows and implications for hollow formation. J. Geophys. Res. Planets, 121, 17981813.Google Scholar
Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Schriver, D. and Solomon, S. C. (2012). Survey of coherent ~1 Hz waves in Mercury’s inner magnetosphere. J. Geophys. Res., 117, A00M05, doi:10.1029/2012JA017822.Google Scholar
Braden, S. E. and Robinson, M. S. (2013). Relative rates of optical maturation of regolith on Mercury and the Moon. J. Geophys. Res. Planets, 118, 19031914.Google Scholar
Broadfoot, A. L., Shemanski, D. E. and Kumar, S. (1976). Mariner 10: Mercury atmosphere. Geophys. Res. Lett., 3, 577580.Google Scholar
Burger, M. H., Killen, R. M., McClintock, W. E., Vervack, R. J. Jr., Merkel, A. W., Sprague, A. L. and Sarantos, M. (2012). Modeling MESSENGER observations of calcium in Mercury’s exosphere. J. Geophys. Res., 117, E00L11, doi:10.1029/2012JE004158.Google Scholar
Burger, M. H., Killen, R. M., McClintock, W. E., Merkel, A. W., Vervack, R. J. Jr., Cassidy, T. A. and Sarantos, M. (2014). Seasonal variations in Mercury’s dayside calcium exosphere. Icarus, 238, 5158.Google Scholar
Byrne, P. K., Watters, T. R., Murchie, S. L., Klimczak, C., Solomon, S. C., Prockter, L. M. and Freed, A. M. (2012). A tectonic survey of the Caloris basin, Mercury. Lunar Planet. Sci., 43, abstract 1722.Google Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013). An assemblage of surface lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322.Google Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. II (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307.Google Scholar
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W. and Solomon, S. C. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett., 43, 74087416.Google Scholar
Cameron, A. G. W. (1985). The partial volatilization of Mercury. Icarus, 64, 285294.Google Scholar
Cassidy, T. A., Merkel, A. W., Burger, M. H., Sarantos, M., Killen, R. M., McClintock, W. E. and Vervack, R. J. Jr. (2015). Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547559.Google Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., Ramos-Izquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., Novo-Gradac, A. M., Britt, J. L., Karsh, J., Katz, R. B., Lukemire, A., Szymkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451480.Google Scholar
Chabot, N. L., Ernst, C. M., Denevi, B. W., Harmon, J. K., Murchie, S. L., Blewett, D. T., Solomon, S. C. and Zhong, E. D. (2012). Areas of permanent shadow in Mercury’s south polar region ascertained by MESSENGER orbital imaging. Geophys. Res. Lett., 39, L09204, doi:10.1029/2012GL051526.Google Scholar
Chabot, N. L., Ernst, C. M., Harmon, J. K., Murchie, S. L., Solomon, S. C., Blewett, D. T. and Denevi, B. W. (2013). Craters hosting radar-bright deposits in Mercury’s north polar region: Areas of persistent shadow determined from MESSENGER images. J. Geophys. Res. Planets, 118, 2636.Google Scholar
Chabot, N. L., Ernst, C. M., Denevi, B. W., Nair, H., Deutsch, A. N., Blewett, D. T., Murchie, S. L., Neumann, G. A., Mazarico, E., Paige, D. A., Harmon, J. K., Head, J. W. and Solomon, S. C. (2014). Images of surface volatiles in Mercury’s polar craters acquired by the MESSENGER spacecraft. Geology, 12, 10511064.Google Scholar
Chabot, N. L., Ernst, C. M., Paige, D. A., Nair, H., Denevi, B. W., Blewett, D. T., Murchie, S. L., Deutsch, A. N., Head, J. W. and Solomon, S. C. (2016). Imaging Mercury’s polar deposits during MESSENGER’s low-altitude campaign. Geophys. Res. Lett., 43, 94619468.Google Scholar
Choo, T. H., Murchie, S. L., Bedini, P. D., Steele, R. J., Skura, J. P., Nguyen, L., Nair, H., Lucks, M., Berman, A. F., McGovern, J. A. and Turner, F. S. (2014). SciBox: An end-to-end automated science planning and commanding system. Acta Astronaut., 93, 490496.Google Scholar
Christensen, U. R. (2006). A deep dynamo generating Mercury’s magnetic field. Nature, 444, 10561058.Google Scholar
COMPLEX (Committee on Lunar and Planetary Exploration) (1978). Strategy for Exploration of the Inner Planets: 1977–1987. Washington, DC: National Research Council, 105 pp.Google Scholar
Connerney, J. E. P. and Ness, N. F. (1988). Mercury’s magnetic field and interior. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 479488.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K. and Peplowski, P. N. (2013). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907.Google Scholar
DiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Physics, 118, 9971008.Google Scholar
DiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr. and Solomon, S. C. (2015). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planet. Space Sci., 115, 7789.Google Scholar
Domingue, D. L., Koehn, P. L., Killen, R. M., Sprague, A. L., Sarantos, M., Cheng, A. F., Bradley, E. T. and McClintock, W. E. (2007). Mercury’s atmosphere: A surface-bounded exosphere. Space Sci. Rev., 131, 161186.CrossRefGoogle Scholar
Dunne, J. A. and Burgess, E. (1978). The Voyage of Mariner 10: Mission to Venus and Mercury. Special Publication SP-424. Washington, DC: NASA Scientific and Technical Information Office.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V. and Hamara, D. K. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.Google Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., McCoy, T. J., Nittler, L. R., Zolotov, M. Yu., Ebel, D. S., Lawrence, D. J., Starr, R. D., Weider, S. Z. and Solomon, S. C. (2015). Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.Google Scholar
Fassett, C. I., Head, J. W., Baker, D. M. H., Zuber, M. T., Smith, D. E., Neumann, G. A., Solomon, S. C., Strom, R. G., Chapman, C. R., Prockter, L. M., Phillips, R. J., Oberst, J. and Preusker, F. (2012). Large impact basins on Mercury: Global distribution, characteristics and modification history from MESSENGER orbital data. J. Geophys. Res., 117, E00L08, doi:10.1029/2012JE004154.Google Scholar
Freed, A. M., Blair, D. M., Watters, T. R., Klimczak, C., Byrne, P. K., Solomon, S. C., Zuber, M. T. and Melosh, H. J. (2012). On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury’s northern plains. J. Geophys. Res., 117, E00L06, doi:10.1029/2012JE004119.CrossRefGoogle Scholar
Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., Ho, G. C., Boardsen, S. A., Cassidy, T. A., Walsh, B. M. and Solomon, S. C. (2015). MESSENGER observations of solar energetic electrons within Mercury’s magnetosphere. J. Geophys. Res. Space Physics, 120, 85598571.Google Scholar
Giampieri, G. and Balogh, A. (2002). Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci., 50, 757762.Google Scholar
Gold, R. E., Solomon, S. C., McNutt, R. L. Jr., Santo, A. G., Abshire, J. B., Acuña, M. H., Afzal, R. S., Anderson, B. J., Andrews, G. B., Bedini, P. D., Cain, J., Cheng, A. F., Evans, L. G., Feldman, W. C., Follas, R. B., Gloeckler, G., Goldsten, J. O., Hawkins, S. E. III, Izenberg, N. R., Jaskulek, S. E., Ketchum, E. A., Lankton, M. R., Lohr, D. A., Mauk, B. H., McClintock, W. E., Murchie, S. L., Schlemm, C. E. II, Smith, D. E., Starr, R. D. and Zurbuchen, T. H. (2001). The MESSENGER mission to Mercury: Scientific payload. Planet. Space Sci., 49, 14671479.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Eckels, J. D., Miller, W. O., Burks, M. T., Hagler, L. B., Deteresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391.Google Scholar
Goudge, T. A., Head, J. W., Kerber, L., Blewett, D. T., Denevi, B. W., Domingue, D. L., Gillis-Davis, J. J., Gwinner, K., Helbert, J., Holsclaw, G. M., Izenberg, N. R., Klima, R. L., McClintock, W. E., Murchie, S. L., Neumann, G. A., Smith, D. E., Strom, R. G., Xiao, Z., Zuber, M. T. and Solomon, S. C. (2014). Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. Planets, 119, 635658.Google Scholar
Harmon, J. K. and Slade, M. A. (1992). Radar mapping of Mercury: Full-disk images and polar anomalies. Science, 258, 640643.Google Scholar
Harmon, J. K., Slade, M. A. and Rice, M. S. (2011). Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus, 211, 3750.Google Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856.Google Scholar
Helbert, J., Maturilli, A. and D’Amore, M. (2013). Visible and near infrared reflectance spectra of thermally processed synthetic sulfide as a potential analog for the hollow forming materials on Mercury. Earth Planet. Sci. Lett., 369–370, 233238.Google Scholar
Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Slavin, J. A., Anderson, B. J., Korth, H., Starr, R. D., Lawrence, D. J., McNutt, R. L. Jr. and Solomon, S. C. (2011). MESSENGER observations of transient bursts of energetic electrons in Mercury’s magnetosphere. Science, 333, 18661868.Google Scholar
Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Anderson, B. J., Korth, H., Slavin, J. A., McNutt, R. L. Jr., Winslow, R. M. and Solomon, S. C. (2012). Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res., 117, A00M04, doi:10.1029/2012JA017983.Google Scholar
Ho, G. C., Starr, R. D., Krimigis, S. M., Vandegriff, J. D., Baker, D. N., Gold, R. E., Anderson, B. J., Korth, H., Schriver, D., McNutt, R. L. Jr. and Solomon, S. C. (2016). MESSENGER observations of suprathermal electrons in Mercury’s magnetosphere. Geophys. Res. Lett., 43, 550555.Google Scholar
Hunten, D. M. and Sprague, A. L. (2002). Diurnal variation of sodium and potassium at Mercury. Meteorit. Planet. Sci., 37, 11911195.Google Scholar
Hurwitz, D. M., Head, J. W., Byrne, P. K., Xiao, Z., Solomon, S. C., Zuber, M. T., Smith, D. E. and Neumann, G. A. (2013). Investigating the origin of candidate lava channels on Mercury with MESSENGER data: Theory and observations. J. Geophys. Res. Planets, 118, 471486.Google Scholar
Imber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2014). MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? J. Geophys. Res. Space Physics, 119, 56135623.CrossRefGoogle Scholar
Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., Slavin, J. A., Alexeev, I., Phillips, R. J., Zuber, M. T. and Solomon, S. C. (2012). MESSENGER observations of Mercury’s magnetic field structure. J. Geophys. Res., 117, E00L14, doi:10.1029/2012JE004217.Google Scholar
Johnson, C. L., Phillips, R. J., Purucker, M. E., Anderson, B. J., Byrne, P. K., Denevi, B. W., Feinberg, J. M., Hauck, S. A. II, Head, J. W. III, Korth, H., James, P. B., Mazarico, E., Neumann, G. A., Philpott, L. C., Siegler, M. A., Tsyganenko, N. A. and Solomon, S. C. (2015). Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field. Science, 348, 892895.Google Scholar
Johnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A. II, Heyner, D., Phillips, R. J., Winslow, R. M. and Solomon, S. C. (2016). MESSENGER observations of induced magnetic fields in Mercury’s core. Geophys. Res. Lett., 43, 24362444.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271.Google Scholar
Killen, R. M. and Ip, W.-H. (1999). The surface-bounded atmospheres of Mercury and the Moon. Rev. Geophys., 37, 361406.Google Scholar
Killen, R. M., Burger, M. H., Cassidy, T. A., Sarantos, M., Vervack, R. J. Jr., McClintock, W. E., Merkel, A. W., Sprague, A. L. and Solomon, S. C. (2012). Mercury’s Na exosphere from MESSENGER data. Bull. Amer. Astron. Soc., 44, abstract 401.01.Google Scholar
Klimczak, C. (2015). Limits on the brittle strength of planetary lithospheres undergoing global contraction. J. Geophys. Res. Planets, 120, 21352151.Google Scholar
Klimczak, C., Watters, T. R., Ernst, C. M., Freed, A. M., Byrne, P. K., Solomon, S. C., Blair, D. M. and Head, J. W. (2012). Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. J. Geophys. Res., 117, E00L03, doi:10.1029/2012JE004100.Google Scholar
Klimczak, C., Ernst, C. M., Byrne, P. K., Solomon, S. C., Watters, T. R., Murchie, S. L., Preusker, F. and Balcerski, J. A. (2013). Insights into the subsurface structure of the Caloris basin, Mercury, from assessments of mechanical layering and changes in long-wavelength topography. J. Geophys. Res. Planets, 118, 20302044.Google Scholar
Klimczak, C., Byrne, P. K. and Solomon, S. C. (2015). A rock-mechanical assessment of Mercury’s global tectonic fabric. Earth Planet. Sci. Lett., 416, 8290.Google Scholar
Koehn, P. L., Zurbuchen, T. H., Gloeckler, G., Lundgren, R. A. and Fisk, L. A. (2002). Measuring the plasma environment at Mercury: The Fast Imaging Plasma Spectrometer. Meteorit. Planet. Sci., 37, 11731189.Google Scholar
Korth, H., Anderson, B. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Johnson, C. L., Purucker, M. E., Winslow, R. M., Solomon, S. C. and McNutt, R. L. Jr. (2011). Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations. Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451.Google Scholar
Korth, H., Anderson, B. J., Johnson, C. L., Winslow, R. M., Slavin, J. A., Purucker, M. E., Solomon, S. C. and McNutt, R. L. Jr. (2012). Characteristics of the plasma distribution in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations. J. Geophys. Res., 117, A00M07, doi:10.1029/2012JA018052.Google Scholar
Korth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Solomon, S. C. and McNutt, R. L. Jr. (2014). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations. J. Geophys. Res. Space Physics, 119, 29172932.Google Scholar
Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Maurice, S., Peplowski, P. N., Anderson, B. J., Bazell, D., McNutt, R. L. Jr., Nittler, L. R., Prettyman, T. H., Rodgers, D. J., Solomon, S. C. and Weider, S. Z. (2013). Evidence for water ice near Mercury’s north pole from MESSENGER Neutron Spectrometer measurements. Science, 339, 292296.Google Scholar
Lawrence, D. J., Anderson, B. J., Baker, D. N., Feldman, W. C., Ho, G. C., Korth, H., McNutt, R. L. Jr., Peplowski, P. N., Solomon, S. C., Starr, R. D. Vandegriff, J. D. and Winslow, R. M. (2015). Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma-Ray and Neutron Spectrometer. J. Geophys. Space Physics, 120, 28512876.Google Scholar
Lawrence, D. J., Peplowski, P. N., Beck, A. W., Feldman, W. C., Frank, E. A., McCoy, T. J., Nittler, L. R. and Solomon, S. C. (2017). Compositional terranes on Mercury: Information from fast neutrons. Icarus, 281, 3245.Google Scholar
Leary, J. C., Conde, R. F., Dakermanji, G., Engelbrecht, C. S., Ercol, C. J., Fielhauer, K. B., Grant, D. G., Hartka, T. J., Hill, T. A., Jaskulek, S. E., Mirantes, M. A., Mosher, L. E., Paul, M. V., Persons, D. F., Rodberg, E. H., Srinivasan, D. K., Vaughan, R. M. and Wiley, S. R. (2007). The MESSENGER spacecraft. Space Sci. Rev., 131, 187217.Google Scholar
Leblanc, F. and Johnson, R. E. (2003). Mercury’s sodium exosphere. Icarus, 164, 261281.Google Scholar
Lewis, J. S. (1988). Origin and composition of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 651669.Google Scholar
Margot, J.-L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core. Science, 316, 710714.Google Scholar
Margot, J.-L., Peale, S. J., Solomon, S. C., Hauck, S. A. II, Ghigo, F. D., Jurgens, R. F., Yseboodt, M., Giorgini, J. D., Padovan, S. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res., 117, E00L09, doi:10.1029/2012JE004161.Google Scholar
McAdams, J. V., Dunham, D. W., Farquhar, R. W., Taylor, A. H. and Williams, B. G. (2005). Trajectory design and maneuver strategy for the MESSENGER mission to Mercury. Spaceflight Mechanics 2005, Adv. Astronaut. Sci., 120, Part II, 11851204.Google Scholar
McAdams, J. V., Farquhar, R. W., Taylor, A. H. and Williams, B. G. (2007). MESSENGER mission design and navigation. Space Sci. Rev., 131, 219246.CrossRefGoogle Scholar
McAdams, J. V., Moessner, D. P., Williams, K. E., Taylor, A. H., Page, B. R. and O’Shaughnessy, D. J. (2011). MESSENGER – Six primary maneuvers, six planetary flybys, and 6.6 years to Mercury orbit. Astrodynamics 2011: Part III, Adv. Astronaut. Sci., 142, 21912210.Google Scholar
McAdams, J. V., Solomon, S. C., Bedini, P. D., Finnegan, E. J., McNutt, R. L. Jr., Calloway, A. B., Moessner, D. P., Wilson, M. W., Gallagher, D. T., Ercol, C. J. and Flanigan, S. H. (2012). MESSENGER at Mercury: From orbit insertion to first extended mission. Presented at the 63rd International Astronautical Congress, paper IAC-12-C1.5.6, 11 pp., Naples, Italy, 1–5 October.Google Scholar
McAdams, J. V., Bryan, C. G., Moessner, D. P., Page, B. R., Stanbridge, D. R. and Williams, K. E. (2014). Orbit design and navigation through the end of MESSENGER’s extended mission at Mercury. Space Flight Mechanics 2014: Part III, Adv. Astronaut. Sci., 152, 22992318.Google Scholar
McAdams, J. V., Bryan, C. G., Bushman, S. S., Calloway, A. B., Carranza, E., Flanigan, S. H., Kirk, M. N., Korth, H., Moessner, D. P., O’Shaughnessy, D. J. and Williams, K. E. (2015). Engineering MESSENGER’s grand finale at Mercury: The low-altitude hover campaign. Astrodynamics Specialist Conference, American Astronautical Society, paper AAS 15634, 20 pp., Vail, CO., 9–13 August.Google Scholar
McClintock, W. E. and Lankton, M. R. (2007). The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Sci. Rev., 131, 481522.Google Scholar
McNutt, R. L. Jr., Solomon, S. C., Gold, R. E., Leary, J. C. and the MESSENGER team (2006). The MESSENGER mission to Mercury: Development history and early mission status. Adv. Space Res., 38, 564571.Google Scholar
Merkel, A. W., McClintock, W. E., Sarantos, M., Cassidy, T. A., Vervack, R. J. Jr., Burger, M. H., Killen, R. M., Sprague, A. L. and Solomon, S. C. (2012). Seasonal variability and local time dependence of Mercury’s dayside magnesium exosphere. Presented at 2012 Fall Meeting, American Geophysical Union, abstract P33B-1929, San Francisco, CA, 3–7 December.Google Scholar
Merkel, A. W., Cassidy, T. A., Vervack, R. J. Jr., McClintock, W. E., Sarantos, M., Burger, M. H. and Killen, R. M. (2017). Seasonal variations of Mercury’s magnesium dayside exosphere from MESSENGER observations. Icarus, 281, 4654.Google Scholar
Moses, J. I., Rawlins, K., Zahnle, K. and Dones, L. (1999). External sources of water for Mercury’s putative ice deposits. Icarus, 137, 197221.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holtz, F. and McCammon, C. (2016). Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett., 439, 117128.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1976). Observations of Mercury’s magnetic field. Icarus, 28, 479488.Google Scholar
Neumann, G. A., Cavanaugh, J. F., Sun, X., Mazarico, E. M., Smith, D. E., Zuber, M. T., Mao, D., Paige, D. A., Solomon, S. C., Ernst, C. M. and Barnouin, O. S. (2013). Bright and dark polar deposits on Mercury: Evidence for surface volatiles. Science, 339, 296300.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471851.Google Scholar
Paige, D. A., Wood, S. E. and Vasavada, A. R. (1992). The internal stability of water ice at the poles of Mercury. Science, 258, 643646.Google Scholar
Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., Zuber, M. T., Harju, E., Delitsky, M. L. and Solomon, S. C. (2013). Thermal stability of volatiles in the north polar region of Mercury. Science, 339, 300303.Google Scholar
Peale, S. J. (1976). Does Mercury have a molten core? Nature, 262, 765766.Google Scholar
Peale, S. J., Phillips, R. J., Solomon, S. C., Smith, D. E. and Zuber, M. T. (2002). A procedure for determining the nature of Mercury’s core. Meteorit. Planet. Sci., 37, 12691283.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A. II, McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., Ebel, D. S., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D. and Stockstill-Cahill, K. R. (2011). Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.CrossRefGoogle Scholar
Peplowski, P. N., Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Bazell, D., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2015). Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346353.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276.Google Scholar
Potter, A. and Morgan, T. (1985). Discovery of sodium in the atmosphere of Mercury. Science, 229, 651653.Google Scholar
Potter, A. E. and Morgan, T. H. (1986). Potassium in the atmosphere of Mercury. Icarus, 67, 336340.Google Scholar
Preusker, F., Oberst, J., Head, J. W., Watters, T. R., Robinson, M. S., Zuber, M. T. and Solomon, S. C. (2011). Stereo topographic models of Mercury after three MESSENGER flybys. Planet. Space Sci., 59, 19101917.Google Scholar
Prockter, L. M., Ernst, C. M., Denevi, B. W., Chapman, C. R., Head, J. W., Fassett, C. I., Merline, W. J., Solomon, S. C., Watters, T. R., Strom, R. G., Cremonese, G., Marchi, S. and Massironi, M. (2010). Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science, 329, 668671.CrossRefGoogle ScholarPubMed
Raines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Physics, 118, 16041619.Google Scholar
Raines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J. and Solomon, S. C. (2014). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. J. Geophys. Res. Space Physics, 119, 65876602.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E. III, Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M. Solomon, S. C. and T. R. Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669.Google Scholar
Santo, A. G., Gold, R. E., McNutt, R. L. Jr., Solomon, S. C., Ercol, C. J., Farquhar, R. W., Hartka, T. J., Jenkins, J. E., McAdams, J. V., Mosher, L. E., Persons, D. F., Artis, D. A., Bokulic, R. S., Conde, R. F., Dakermanji, G., Goss, M. E. Jr., Haley, D. R., Heeres, K. J., Maurer, R. H., Moore, R. C., Rodberg, E. H., Stern, T. G., Wiley, S. R., Williams, B. G., Yen, C. L. and Peterson, M. R. (2001). The MESSENGER mission to Mercury: Spacecraft and mission design. Planet. Space Sci., 49, 14811500.Google Scholar
Schlemm, C. E. II, Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., Boynton, W. V., Bradley, W., Fraeman, M. E., Gold, R. E., Goldsten, J. O., Hayes, J. R., Jaskulek, S. E., Rossano, E., Rumpf, R. A., Schaefer, E. D., Strohbehn, K., Shelton, R. G., Thompson, R. E., Trombka, J. I. and Williams, B. D. (2007). The X-Ray Spectrometer on the MESSENGER spacecraft. Space Sci. Rev., 131, 393415.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 429460.Google Scholar
Siegfried, R. W. II and Solomon, S. C. (1974). Mercury: Internal structure and thermal evolution. Icarus, 23, 192205.Google Scholar
Slade, M. A., Butler, B. J. and Muhleman, D. O. (1992). Mercury radar imaging: Evidence for polar ice. Science, 258, 635640.Google Scholar
Slavin, J. A., Acuña, M. A., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. A., McNutt, R. L. Jr., Nittler, L. R., Raines, J. M., Schriver, D., Solomon, S. C., Starr, R. D.Trávníček, P. and Zurbuchen, T. H. (2008). Mercury’s magnetosphere after MESSENGER’s first flybyScience321, 8589.Google Scholar
Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P. and Zurbuchen, T. H. (2012a). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res., 117, A01215, doi:10.1029/2011JA016900.Google Scholar
Slavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nieves-Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt, R. L. Jr. and Solomon, S. C. (2012b). MESSENGER observations of a flux-transfer-event shower at Mercury. J. Geophys. Res., 117, A00M06, doi:10.1029/2012JA017926.Google Scholar
Slavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M. Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K.-H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2014). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Physics, 119, 80878116.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A. II, Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.Google Scholar
Solomon, S. C. (2003). Mercury: The enigmatic innermost planet. Earth Planet. Sci. Lett., 216, 441455.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E., Acuña, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head, J. W. III, Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Phillips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I. and Zuber, M. T. (2001). The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci., 49, 14451465.Google Scholar
Sprague, A. L., Hunten, D. M. and Lodders, K. (1995). Sulfur at Mercury, elemental at the poles and sulfides in the regolith. Icarus, 118, 211215.Google Scholar
Sprague, A. L., Schmitt, W. J. and Hill, R. E. (1998). Mercury: Sodium atmosphere enhancements, radar-bright spots, and visible surface features. Icarus, 136, 6068.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 118164.Google Scholar
Srinivasan, D. K., Perry, M. E., Fielhauer, K. B., Smith, D. E. and Zuber, M. T. (2007). The radio frequency subsystem and radio science on MESSENGER. Space Sci. Rev., 131, 557571.Google Scholar
Srnka, L. J. (1976). Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. Phys. Earth Planet. Inter., 11, 184190.Google Scholar
Stanley, S., Bloxham, J., Hutchison, W. E. and Zuber, M. T. (2005). Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett., 234, 2738.Google Scholar
Starr, R. D., Schriver, D., Nittler, L. R., Weider, S. Z., Byrne, P. K., Ho, G. C., Rhodes, E. A., Schlemm, C. E. II, Solomon, S. C. and Trávníček, P. M. (2012). MESSENGER detection of electron-induced X-ray fluorescence from Mercury’s surface. J. Geophys. Res., 117, E00L02, doi:10.1029/2012JE004118.Google Scholar
Starukhina, L. (2001). Water detection on atmosphereless celestial bodies: Alternative explanations of the observations. J. Geophys. Res., 106, 1470114710.Google Scholar
Stephenson, A. (1976). Crustal remanence and the magnetic moment of Mercury. Earth Planet. Sci. Lett., 28, 454458.Google Scholar
Stevenson, D. J. (1987). Mercury’s magnetic field: A thermoelectric dynamo? Earth Planet. Sci. Lett., 82, 114120.Google Scholar
Strom, R. G. (1979). Mercury: A post-Mariner 10 assessment. Space Sci. Rev., 24, 370.Google Scholar
Strom, R. G., Trask, N. J. and Guest, J. E. (1975). Tectonism and volcanism on Mercury, J. Geophys. Res., 80, 24782507.Google Scholar
Sundberg, T., Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M. and Solomon, S. C. (2012a). MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res., 117, A04216, doi:10.1029/2011JA017268.Google Scholar
Sundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H., Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, R. L. Jr. and Solomon, S. C. (2012b). MESSENGER observations of dipolarization events in Mercury’s magnetotail. J. Geophys. Res., 117, A00M03, doi:10.1029/2012JA017756.Google Scholar
Vilas, F. (1988). Surface composition of Mercury from reflectance spectrophotometry. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 5976.Google Scholar
Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179193.Google Scholar
Vervack, R. J. Jr., McClintock, W. E., Killen, R. M., Sprague, A. L., Burger, M. H., Merkel, A. W. and Sarantos, M. (2011). MESSENGER searches for less abundant or weakly emitting species in Mercury’s exosphere. Presented at 2011 Fall Meeting, American Geophysical Union, abstract P44A-02, San Francisco, CA, 5–9 December.Google Scholar
Watters, T. R., Head, J. W., Solomon, S. C., Robinson, M. S., Chapman, C. R., Denevi, B. W., Fassett, C. I., Murchie, S. L. and Strom, R. G. (2009a). Evolution of the Rembrandt impact basin on Mercury. Science, 324, 618621.Google Scholar
Watters, T. R., Solomon, S. C., Robinson, M. S., Head, J. W., André, S. L., Hauck, S. A. II and Murchie, S. L. (2009b). The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett., 285, 283296.Google Scholar
Watters, T. R., Solomon, S. C., Klimczak, C., Freed, A. M., Head, J. W., Ernst, C. M., Blair, D. M., Goudge, T. A. and Byrne, P. K. (2012). Extension and contraction within volcanically buried impact craters and basins on Mercury. Geology, 40, 11231126.Google Scholar
Weidenschilling, S. J. (1978). Iron/silicate fractionation and the origin of Mercury. Icarus, 35, 99111.Google Scholar
Weidenschilling, S. J. (1998), Mercury’s polar radar anomalies: Ice and/or cold rock? Lunar Planet. Sci., 29, abstract 1278.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012JE004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J. and Solomon, S. C. (2014). Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II, Ebel, D. S. and Solomon, S. C. (2015). Evidence of geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120.Google Scholar
Weider, S. Z., Nittler, L. R., Murchie, S. L., Peplowski, P. N., McCoy, T. J., Kerber, L., Klimczak, C., Ernst, C. M., Goudge, T. A., Starr, R. D., Izenberg, N. R., Klima, R. L. and Solomon, S. C. (2016). Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett., 43, 36533661.Google Scholar
Wetherill, G. W. (1988). Accumulation of Mercury from planetesimals. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 670691.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insight into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Wilhelms, D. E. (1976). Mercurian volcanism questioned. Icarus, 28, 551558.Google Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E. and Solomon, S. C. (2012). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472.Google Scholar
Zuber, M. T., Aharonson, O., Aurnou, J. M., Cheng, A. F., Hauck, S. A. II, Heimpel, M. H., Neumann, G. A., Peale, S. J., Phillips, R. J., Smith, D. E., Solomon, S. C. and Stanley, S. (2007). The geophysics of Mercury: Current status and anticipated insights from the MESSENGER mission. Space Sci. Rev., 131, 105132.Google Scholar
Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck, S. A. II, Peale, S. J., Barnouin, O. S., Head, J. W., Johnson, C. L., Lemoine, F. G., Mazarico, E., Sun, X., Torrence, M. H., Freed, A. M., Klimczak, C., Margot, J.-L., Oberst, J., Perry, M. E., McNutt, R. L. Jr., Balcerski, J. A., Michel, N., Talpe, M. J. and Yang, D. (2012). Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science, 336, 217221.Google Scholar
Zurbuchen, T. H., Raines, J. M., Slavin, J. A., Gershman, D. J., Gilbert, J. A., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M., Sarantos, M., Schriver, D., McNutt, R. L. Jr. and S. C. Solomon, S. C. (2011). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333, 18621865.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×