Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T07:25:43.371Z Has data issue: false hasContentIssue false

16 - Structure and Configuration of Mercury’s Magnetosphere

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Mercury is the only terrestrial planet other than Earth that possesses a global magnetic field, and the unique solar wind environment of the inner heliosphere has profound consequences for both the structure and dynamics of its magnetosphere. The first in situ observations of Mercury and its space environment made four decades ago by the Mariner 10 spacecraft revealed a magnetic field that is sufficiently strong to stand off the solar wind and form a magnetosphere. Many new insights into Mercury’s magnetosphere were enabled by data returned by the MESSENGER spacecraft. The extensive magnetic field and particle observations allowed detailed characterization of the magnetospheric structure and configuration. MESSENGER magnetic field observations definitively determined the orientation, moment, and location of the internal planetary magnetic dipole field. Furthermore, these observations established the configuration of the magnetopause, bow shock, and magnetospheric current systems. Plasma observations revealed the distribution and composition of plasma in the magnetosphere. We review the geometry and dominant physical processes of Mercury’s unique magnetosphere inferred from MESSENGER data, including the solar wind environment, the shape and location of magnetospheric boundaries, and the fundamental regions and configuration of the magnetosphere and transport and heating of plasma therein. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 430 - 460
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeev, I. I., Belenkaya, E. S., Slavin, J. A., Korth, H., Anderson, B. J., Baker, D. N., Boardsen, S. A., Johnson, C. L., Purucker, M. E., Sarantos, M. and Solomon, S. C. (2010). Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209, 2339, doi:10.1016/j.icarus.2010.01.024.CrossRefGoogle Scholar
Anderson, B. J., Fuselier, S. A. and Murr, D. (1991). Electromagnetic ion cyclotron waves observed in the plasma depletion layer. Geophys. Res. Lett., 18, 19551958, doi:10.1029/91gl02238.Google Scholar
Anderson, B. J., Phan, T. D. and Fuselier, S. A. (1997a). Relationships between plasma depletion and subsolar reconnection. J. Geophys. Res., 102, 95319542, doi:10.1029/97ja00173.Google Scholar
Anderson, B. J., Decker, R. B., Paschalidis, N. P. and Sarris, T. (1997b). Onset of nonadiabatic particle motion in the near-Earth magnetotail. J. Geophys. Res., 102, 17,553–17,569, doi:10.1029/97ja00798.CrossRefGoogle Scholar
Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H. and Slavin, J. A. (2007). The Magnetometer instrument on MESSENGER. Space Sci. Rev., 131, 417450, doi:10.1007/s11214-007-9246-7.Google Scholar
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L. and Stauning, P. (2008). Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation. Ann. Geophys., 26, 671687.Google Scholar
Anderson, B. J., Slavin, J. A., Korth, H., Boardsen, S. A., Zurbuchen, T. H., Raines, J. M., Gloeckler, G., McNutt, R. L. Jr. and Solomon, S. C. (2011a). The dayside magnetospheric boundary layer at Mercury. Planet. Space Sci., 59, 20372050, doi:10.1016/j.pss.2011.01.010.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M. and Zurbuchen, T. H. (2011b). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862, doi:10.1126/science.1211001.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L. Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res., 117, E00L12, doi:10.1029/2012JE004159.CrossRefGoogle Scholar
Anderson, B. J., Johnson, C. L. and Korth, H. (2013). A magnetic disturbance index for Mercury’s magnetic field derived from MESSENGER Magnetometer data. Geochem. Geophys. Geosyst., 14, 38753886, doi:10.1002/ggge.20242.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., Solomon, S. C. and McNutt, R. L. Jr. (2014). Steady-state field-aligned currents at Mercury. Geophys. Res. Lett., 41, 74447452, doi:10.1002/2014GL061677.Google Scholar
Anderson, B. J., Korth, H., Johnson, C. L., Phillips, R. J., Philpott, L. C. and Solomon, S. C. (2016). Closure of Birkeland currents at Mercury: Constraints on the electrical conductivity of the crust and mantle. Lunar Planet. Sci., 47, abstract 1243.Google Scholar
Andrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A. and Raines, J. M. (2007). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev., 131, 523556, doi:10.1007/s11214-007-9272-5.Google Scholar
Armstrong, T. P., Krimigis, S. M. and Lanzerotti, L. J. (1975). Reinterpretation of reported energetic particle fluxes in the vicinity of Mercury. J. Geophys. Res., 80, 40154017, doi:10.1029/Ja080i028p04015.Google Scholar
Ashour-Abdalla, M., Okuda, H. and Cheng, C. Z. (1981). Acceleration of heavy ions on auroral field lines. Geophys. Res. Lett., 8, 795798, doi:10.1029/Gl008i007p00795.Google Scholar
Baker, D. N., Poh, G., Odstrcil, D., Arge, C. N., Benna, M., Johnson, C. L., Korth, H., Gershman, D. J., Ho, G. C., McClintock, W. E., Cassidy, T. A., Merkel, A., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C., Trávníček, P. M., Winslow, R. M. and Zurbuchen, T. H. (2013). Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. Space Physics, 118, 4557, doi:10.1029/2012ja018064.Google Scholar
Baker, D. N., Dewey, R. M., Lawrence, D. J., Goldsten, J. O., Korth, H., Slavin, J. A., Krimigis, S. M., Anderson, B. J., Ho, G. C., McNutt, R. L. Jr., Raines, J. M., Schriver, D. and Solomon, S. C. (2016). Energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high-resolution observations from MESSENGER. J. Geophys. Res. Space Physics, 121, 21712184.Google Scholar
Benna, M., Anderson, B. J., Baker, D. N., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., Purucker, M. E., McNutt, R. L. Jr., Raines, J. M., McClintock, W. E., Sarantos, M., Slavin, J. A., Solomon, S. C. and Zurbuchen, T. H. (2010). Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus, 209, 310, doi:10.1016/j.icarus.2009.11.036.Google Scholar
Birmingham, T. J. (1984). Pitch angle diffusion in the Jovian magnetodisc. J. Geophys. Res., 89, 26992707, doi:10.1029/Ja089ia05p02699.Google Scholar
Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Schriver, D. and Solomon, S. C. (2012). Survey of coherent ~1 Hz waves in Mercury’s inner magnetosphere from MESSENGER observations. J. Geophys. Res., 117, A00M05, doi:10.1029/2012JA017822.CrossRefGoogle Scholar
Büchner, J. and Zelenyi, L. M. (1989). Regular and chaotic charged-particle motion in magnetotail-like field reversals, 1. Basic theory of trapped motion. J. Geophys. Res., 94, 11,821–11,842, doi:10.1029/Ja094ia09p11821.Google Scholar
Burger, M. H., Killen, R. M., McClintock, W. E., Vervack, R. J. Jr., Merkel, A. W., Sprague, A. L. and Sarantos, M. (2012). Modeling MESSENGER observations of calcium in Mercury’s exosphere. J. Geophys. Res., 117, E00L11, doi:10.1029/2012je004158.Google Scholar
Cassidy, T. A., Merkel, A. W., Burger, M. H., Sarantos, M., Killen, R. M., McClintock, W. E. and Vervack, R. J. Jr. (2015). Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547559, doi:10.1016/j.icarus.2014.10.037.CrossRefGoogle Scholar
Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E. and Germaschewski, K. (2010). Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J., 720, 503515, doi:10.1088/0004-637X/720/1/503.Google Scholar
Chapman, S. and Ferraro, V. C. A. (1930). A new theory of magnetic storms. Nature, 126, 129130, doi:10.1038/126129a0.CrossRefGoogle Scholar
Chapman, S. and Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terr. Mag., 36, 171186, doi:10.1029/TE036i003p00171.Google Scholar
Connerney, J. E. P. and Ness, N. F. (1988). Mercury’s magnetic field and interior. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 494513.Google Scholar
Cowley, S. W. H. (2000). Magnetosphere–ionosphere interactions: A tutorial review. In Magnetospheric Current Systems, ed. Ohtani, S., Fujii, R., Hesse, M. and Lysak., R. L. Geophysical Monograph 118. Washington, DC: American Geophysical Union, pp. 91106.Google Scholar
Delcourt, D. C. (2013). On the supply of heavy planetary material to the magnetotail of Mercury. Ann. Geophys., 31, 16731679, doi:10.5194/angeo-31-1673-2013.Google Scholar
Delcourt, D. C. and Martin, R. F. (1994). Application of the centrifugal impulse model to particle motion in the near-Earth magnetotail. J. Geophys. Res., 99, 23,58323,590, doi:10.1029/94ja01845.Google Scholar
Delcourt, D. C., Grimald, S., Leblanc, F., Berthelier, J. J., Millilo, A., Mura, A., Orsini, S. and Moore, T. E. (2003). A quantitative model of the planetary Na+ contribution to Mercury’s magnetosphere. Ann. Geophys., 21, 17231736.Google Scholar
Delcourt, D. C., Seki, K., Terada, N. and Moore, T. E. (2012). Centrifugally stimulated exospheric ion escape at Mercury. Geophys. Res. Lett., 39, L22105, doi:10.1029/2012gl054085.Google Scholar
Denton, R. E. and Lyon, J. G. (1996). Density depletion in an anisotropic magnetosheath. Geophys. Res. Lett., 23, 28912894, doi:10.1029/96gl01590.Google Scholar
DiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Physics, 118, 9971008, doi:10.1002/jgra.50123.CrossRefGoogle Scholar
DiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2015a). First observations of Mercury’s plasma mantle as seen by MESSENGER. Geophys. Res. Lett., 42, 96669675, doi:10.1002/2015GL065805.CrossRefGoogle Scholar
DiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr. and Solomon, S. C. (2015b). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planet. Space Sci., 115, 7789, doi:10.1016/j.pss.2014.12.016.Google Scholar
Dungey, J. W. (1963). Interactions of solar plasma with the geomagnetic field. Planet. Space Sci., 10, 233237, doi:10.1016/0032-0633(63)90020-5.Google Scholar
Fairfield, D. H., Cairns, I. H., Desch, M. D., Szabo, A., Lazarus, A. J. and Aellig, M. R. (2001). The location of low Mach number bow shocks at Earth. J. Geophys. Res., 106, 25,36125,376, doi:10.1029/2000ja000252.Google Scholar
Farrugia, C. J., Erkaev, N. V., Biernat, H. K. and Burlaga, L. F. (1995). Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud. J. Geophys. Res., 100, 19,24519,257, doi:10.1029/95ja01080.Google Scholar
Fuselier, S. A. and Lewis, W. S. (2011). Properties of near-Earth magnetic reconnection from in-situ observations. Space Sci. Rev., 160, 95121, doi:10.1007/s11214-011-9820-x.Google Scholar
Fuselier, S. A., Klumpar, D. M., Shelley, E. G., Anderson, B. J. and Coates, A. J. (1991). He2+ and H+ dynamics in the subsolar magnetosheath and plasma depletion layer. J. Geophys. Res., 96, 21,09521,104, doi:10.1029/91ja02145.CrossRefGoogle Scholar
Gershman, D. J., Zurbuchen, T. H., Fisk, L. A., Gilbert, J. A., Raines, J. M., Anderson, B. J., Smith, C. W., Korth, H. and Solomon, S. C. (2012). Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. J. Geophys. Res., 117, A00M02, doi:10.1029/2012ja017829.CrossRefGoogle Scholar
Gershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N. and Solomon, S. C. (2013). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res. Space Physics, 118, 71817199, doi:10.1002/2013ja019244.Google Scholar
Gershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N. and Solomon, S. C. (2014). Ion kinetic properties in Mercury’s pre-midnight plasma sheet. Geophys. Res. Lett., 41, 57405747, doi:10.1002/2014gl060468.Google Scholar
Glassmeier, K. H. (2000). Currents in Mercury’s magnetosphere. In Magnetospheric Current Systems, ed. Ohtani, S., Fujii, R., Hesse, M. and Lysak, R. L.. Geophysical Monograph 118. Washington, DC: American Geophysical Union, pp. 371380.Google Scholar
Gloeckler, G., Fisk, L. A., Zurbuchen, T. H. and Schwadron, N. A. (2000). Sources, injection and acceleration of heliospheric ion populations. In Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. Mewaldt, R. A., Miller, M., Jokipii, J. R., Lee, M. A., Zurbuchen, T. H. and Mobius, E.. New York: AIP Publishing, pp. 221228.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Del Eckels, J., Miller, W. O., Burks, M. T., Hagler, L. B., DeTeresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391, doi:10.1007/s11214-007-9262-7.Google Scholar
Gosling, J. T. (1997). Physical nature of the low-speed solar wind. In Robotic Exploration Close to the Sun: Scientific Basis, ed. Habbal, S. R.. New York: AIP Publishing, pp. 1724.Google Scholar
Gosling, J. T., Borrini, G., Asbridge, J. R., Bame, S. J., Feldman, W. C. and Hansen, R. T. (1981). Coronal streamers in the solar wind at 1 AU, J. Geophys. Res., 86, 54385448, doi:10.1029/Ja086ia07p05438.Google Scholar
Grosser, J., Glassmeier, K. H. and Stadelmann, A. (2004). Induced magnetic field effects at planet Mercury. Planet. Space Sci., 52, 12511260, doi:10.1016/j.pss.2004.08.005.Google Scholar
Ho, G. C., Starr, R. D., Gold, R. E., Krimigis, S. M., Slavin, J. A., Baker, D. N., Anderson, B. J., McNutt, R. L. Jr., Nittler, L. R. and Solomon, S. C. (2011a). Observations of suprathermal electrons in Mercury’s magnetosphere during the three MESSENGER flybys. Planet. Space Sci., 59, 20162025, doi:10.1016/j.pss.2011.01.011.Google Scholar
Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Slavin, J. A., Anderson, B. J., Korth, H., Starr, R. D., Lawrence, D. J., McNutt, R. L. Jr. and Solomon, S. C. (2011b). MESSENGER observations of transient bursts of energetic electrons in Mercury’s magnetosphere. Science, 333, 18651868, doi:10.1126/science.1211141.Google Scholar
Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Anderson, B. J., Korth, H., Slavin, J. A., McNutt, R. L. Jr., Winslow, R. M. and Solomon, S. C. (2012). Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res., 117, A00M04, doi:10.1029/2012JA017983.Google Scholar
Ho, G. C., Starr, R. D., Krimigis, S. M., Vandegriff, J. D., Baker, D. N., Gold, R. E., Anderson, B. J., Korth, H., Schriver, D., McNutt, R. L. Jr. and Solomon, S. C. (2016). MESSENGER observations of suprathermal electrons in Mercury’s magnetosphere. Geophys. Res. Lett., 43, 550555, doi:10.1002/2015GL066850.CrossRefGoogle Scholar
Huebner, W. F., Keady, J. J. and Lyon, S. P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci., 195, 1294, doi:10.1007/Bf00644558.Google Scholar
Hughes, W. J. (1996). The magnetopause, magnetotail and magnetic reconnection. In Introduction to Space Physics, ed. Kivelson, M. G. and Russell, C. T.. New York: Cambridge University Press, pp. 227287.Google Scholar
Iijima, T. and Potemra, T. A. (1976). The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res., 81, 21652174, doi:10.1029/Ja081i013p02165.Google Scholar
Ip, W. H. and Kopp, A. (2004). Mercury’s Birkeland current system. Adv. Space Res., 33, 21722175, doi:10.1016/s0273-1177(03)00444-7.Google Scholar
Jackson, D. J. and Beard, D. B. (1977). Magnetic field of Mercury. J. Geophys. Res., 82, 28282836, doi:10.1029/Ja082i019p02828.Google Scholar
Janhunen, P. and Kallio, E. (2004). Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry. Ann. Geophys., 22, 18291837.Google Scholar
Jia, X. Z., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G. and van der Holst, B. (2015). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. Space Physics, 120, 47634775, doi:10.1002/2015JA021143.Google Scholar
Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., Slavin, J. A., Alexeev, I. I., Phillips, R. J., Zuber, M. T. and Solomon, S. C. (2012). MESSENGER observations of Mercury’s magnetic field structure. J. Geophys. Res., 117, E00L14, doi:10.1029/2012JE004217.Google Scholar
Johnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A. II, Heyner, D., Phillips, R. J., Winslow, R. M. and Solomon, S. C. (2016). MESSENGER observations of induced magnetic fields in Mercury’s core. Geophys. Res. Lett., 43, 24362444, doi:10.1002/2015GL067370.Google Scholar
Kabin, K., Gombosi, T. I., DeZeeuw, D. L. and Powell, K. G. (2000). Interaction of Mercury with the solar wind. Icarus, 143, 397406, doi:10.1006/icar.1999.6252.Google Scholar
Kallio, E. and Janhunen, P. (2003a). Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model. Ann. Geophys., 21, 21332145.Google Scholar
Kallio, E. and Janhunen, P. (2003b). Solar wind and magnetospheric ion impact on Mercury’s surface. Geophys. Res. Lett., 30, 1877, doi:10.1029/2003gl017842.Google Scholar
Killen, R. M., Bida, T. A. and Morgan, T. H. (2005). The calcium exosphere of Mercury. Icarus, 173, 300311, doi:10.1016/j.icarus.2004.08.022.Google Scholar
Killen, R. M., Cremonese, G., Lammer, H., Orsini, S., Potter, A. E., Sprague, A. L., Wurz, P., Khodachenko, M. L., Lichtenegger, H. I. M., Milillo, A. and Mura, A. (2007). Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev., 132, 433509, doi:10.1007/s11214-007-9232-0.Google Scholar
Korth, H., Anderson, B. J., Acuña, M. H., Slavin, J. A., Tsyganenko, N. A., Solomon, S. C. and McNutt, R. L. Jr. (2004). Determination of the properties of Mercury’s magnetic field by the MESSENGER mission. Planet. Space Sci., 52, 733746, doi:10.1016/j.pss.2003.12.008.Google Scholar
Korth, H., Anderson, B. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Johnson, C. L., Purucker, M. E., Winslow, R. M., Solomon, S. C. and McNutt, R. L. Jr. (2011). Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations. Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451.Google Scholar
Korth, H., Anderson, B. J., Johnson, C. L., Winslow, R. M., Slavin, J. A., Purucker, M. E., Solomon, S. C. and McNutt, R. L. Jr. (2012). Characteristics of the plasma distribution in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations. J. Geophys. Res., 117, A00M07, doi:10.1029/2012JA018052.Google Scholar
Korth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Solomon, S. C. and McNutt, R. L. Jr. (2014). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations. J. Geophys. Res. Space Physics, 119, 29172932, doi:10.1002/2013JA019567.Google Scholar
Korth, H., Tsyganenko, N. A., Johnson, C. L., Philpott, L. C., Anderson, B. J., Al Asad, M. M., Solomon, S. C. and McNutt, R. L. Jr. (2015). Modular model for Mercury’s magnetospheric magnetic field confined within the average observed magnetopause. J. Geophys. Res. Space Physics, 120, 45034518, doi:10.1002/2015JA021022.Google Scholar
Lammer, H., Wurz, P., Patel, M. R., Killen, R., Kolb, C., Massetti, S., Orsini, S. and Milillo, A. (2003). The variability of Mercury’s exosphere by particle and radiation induced surface release processes. Icarus, 166, 238247, doi:10.1016/j.icarus.2003.08.012.Google Scholar
Lawrence, D. J., Anderson, B. J., Baker, D. N., Feldman, W. C., Ho, G. C., Korth, H., McNutt, R. L. Jr., Peplowski, P. N., Solomon, S. C., Starr, R. D., Vandegriff, J. D. and Winslow, R. M. (2015). Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma-Ray and Neutron Spectrometer. J. Geophys. Res. Space Physics, 120, 28512876, doi:10.1002/2014JA020792.Google Scholar
Leblanc, F. and Johnson, R. E. (2003). Mercury’s sodium exosphere. Icarus, 164, 261281, doi:10.1016/S0019-1035(03)00147-7.Google Scholar
Leblanc, F. and Johnson, R. E. (2010). Mercury exosphere, I. Global circulation model of its sodium component. Icarus, 209, 280300, doi:10.1016/j.icarus.2010.04.020.Google Scholar
Liljeblad, E., Sundberg, T., Karlsson, T. and Kullen, A. (2014). Statistical investigation of Kelvin–Helmholtz waves at the magnetopause of Mercury. J. Geophys. Res. Space Physics, 119, 96709683, doi:10.1002/2014JA020614.Google Scholar
Liljeblad, E., Karlsson, T., Raines, J. M., Slavin, J. A., Kullen, A., Sundberg, T. and Zurbuchen, T. H. (2015). MESSENGER observations of the dayside low-latitude boundary layer in Mercury’s magnetosphere. J. Geophys. Res. Space Physics, 120, 83878400, doi:10.1002/2015JA021662.Google Scholar
Lockwood, M., Chandler, M. O., Horwitz, J. L., Waite, J. H., Moore, T. E. and Chappell, C. R. (1985). The cleft ion fountain. J. Geophys. Res., 90, 97369748, doi:10.1029/Ja090ia10p09736.Google Scholar
Luhmann, J. G., Russell, C. T. and Tsyganenko, N. A. (1998). Disturbances in Mercury’s magnetosphere: Are the Mariner 10 “substorms” simply driven? J. Geophys. Res., 103, 91139119, doi:10.1029/97ja03667.Google Scholar
Marsch, E., Muhlhauser, K. H., Rosenbauer, H., Schwenn, R. and Neubauer, F. M. (1982). Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res., 87, 3551, doi:10.1029/Ja087ia01p00035.Google Scholar
Massetti, S., Orsini, S., Milillo, A., Mura, A., De Angelis, E., Lammer, H. and Wurz, P. (2003). Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 166, 229237, doi:10.1016/j.icarus.2003.08.005.Google Scholar
McClintock, W. E. and Lankton, M. R. (2007). The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Sci. Rev., 131, 481521, doi:10.1007/s11214-007-9264-5.Google Scholar
Milan, S. E. and Slavin, J. A. (2011). An assessment of the length and variability of Mercury’s magnetotail. Planet. Space Sci., 59, 20582065, doi:10.1016/j.pss.2011.05.007.Google Scholar
Müller, J., Simon, S., Wang, Y. C., Motschmann, U., Heyner, D., Schüle, J., Ip, W. H., Kleindienst, G. and Pringle, G. J. (2012). Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. Icarus, 218, 666687, doi:10.1016/j.icarus.2011.12.028.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C. and Schatten, K. H. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science, 185, 151160, doi:10.1126/science.185.4146.151.CrossRefGoogle ScholarPubMed
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1975). Magnetic field of Mercury confirmed. Nature, 255, 204205, doi:10.1038/255204a0.Google Scholar
Neugebauer, M., Forsyth, R. J., Galvin, A. B., Harvey, K. L., Hoeksema, J. T., Lazarus, A. J., Lepping, R. P., Linker, J. A., Mikic, Z., Steinberg, J. T., von Steiger, R., Wang, Y. M. and Wimmer-Schweingruber, R. F. (1998). Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res., 103, 14,58714,599, doi:10.1029/98ja00798.Google Scholar
Neugebauer, M., Liewer, P. C., Smith, E. J., Skoug, R. M. and Zurbuchen, T. H. (2002). Sources of the solar wind at solar activity maximum. J. Geophys. Res., 107, 1488, doi:10.1029/Ja000306.Google Scholar
Odstrcil, D. (2003). Modeling 3-D solar wind structure, Adv. Space Res., 32, 497506, doi:10.1016/S0273-1177(03)00332-6.Google Scholar
Ogilvie, K. W., Scudder, J. D., Hartle, R. E., Siscoe, G. L., Bridge, H. S., Lazarus, A. J., Asbridge, J. R., Bame, S. J. and Yeates, C. M. (1974). Observations at Mercury encounter by the plasma science experiment on Mariner 10. Science, 185, 145151, doi:10.1126/science.185.4146.145.Google Scholar
Olson, W. P. (1984). Introduction to the topology of magnetospheric current systems. In Magnetospheric Currents, ed. Potemra, T. A.. Geophysical Monograph 28. Washington, DC: American Geophysical Union, pp. 4962.Google Scholar
Phan, T. D., Paschmann, G., Baumjohann, W., Sckopke, N. and Luhr, H. (1994). The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. J. Geophys. Res., 99, 121141, doi:10.1029/93ja02444.Google Scholar
Phan, T. D., Larson, D. E., Lin, R. P., McFadden, J. P., Anderson, K. A., Carlson, C. W., Ergun, R. E., Ashford, S. M., McCarthy, M. P., Parks, G. K., Reme, H., Bosqued, J. M., D’Uston, C., Wenzel, K. P., Sanderson, T. R. and Szabo, A. (1996). The subsolar magnetosheath and magnetopause for high solar wind ram pressure: WIND observations. Geophys. Res. Lett., 23, 12791282, doi:10.1029/96gl00845.Google Scholar
Poh, G., Slavin, J. A., Jia, X., Raines, J. M. and Gershman, D. J. (2015). MESSENGER observations of reconnection ion diffusion region structure at Mercury. Presented at 12th Annual Asia Oceania Geosciences Society Conference, abstract PS05-D5-PM2-P-015, Singapore, 2–7 August.Google Scholar
Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M. and McNutt, R. L. Jr. (2011). MESSENGER observations of the plasma environment near Mercury. Planet. Space Sci., 59, 20042015, doi:10.1016/j.pss.2011.02.004.Google Scholar
Raines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Physics, 118, 16041619, doi:10.1029/2012ja018073.Google Scholar
Raines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J. and Solomon, S. C. (2014). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. J. Geophys. Res. Space Physics, 119, 65876602, doi:10.1002/2014ja020120.Google Scholar
Richmond, A. D. and Thayer, J. P. (2000). Ionospheric electrodynamics: A tutorial. In Magnetospheric Current Systems, ed. Ohtani, S., Fujii, R., Hesse, M. and Lysak., R. L. Geophysical Monograph 118. Washington, DC: American Geophysical Union, pp. 131146.Google Scholar
Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G. and Sckopke, N. (1975). Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle. J. Geophys. Res., 80, 27232737, doi:10.1029/Ja080i019p02723.Google Scholar
Russell, C. T. (1977). On the relative locations of bow shocks of the terrestrial planets. Geophys. Res. Lett., 4, 387390, doi:10.1029/Gl004i010p00387.Google Scholar
Russell, C. T., Baker, D. N. and Slavin, J. A. (1988). The magnetosphere of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 514561.Google Scholar
Sarantos, M. and Slavin, J. A. (2009). On the possible formation of Alfvén wings at Mercury during encounters with coronal mass ejections. Geophys. Res. Lett., 36, L04107, doi:10.1029/2008gl036747.Google Scholar
Sarantos, M., Killen, R. M. and Kim, D. (2007). Predicting the long-term solar wind ion-sputtering source at Mercury. Planet. Space Sci., 55, 15841595, doi:10.1016/j.pss.2006.10.011.Google Scholar
Schield, M. A. (1969). Pressure balance between solar wind and magnetosphereJ. Geophys. Res., 74, 12751286.Google Scholar
Schlemm, C. E. II, Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., Boynton, W. V., Bradley, W., Fraeman, M. E., Gold, R. E., Goldsten, J. O., Hayes, J. R., Jaskulek, S. E., Rossano, E., Rumpf, R. A., Schaefer, E. D., Strohbehn, K., Shelton, R. G., Thompson, R. E., Trombka, J. I. and Williams, B. D. (2007). The X-Ray Spectrometer on the MESSENGER spacecraft. Space Sci. Rev., 131, 393415, doi:10.1007/s11214-007-9248-5.Google Scholar
Scurry, L., Russell, C. T. and Gosling, J. T. (1994). Geomagnetic activity and the beta dependence of the dayside reconnection rate. J. Geophys. Res., 99, 14,81114,814, doi:10.1029/94JA00794.Google Scholar
Shue, J. H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K. and Singer, H. J. (1997). A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res., 102, 94979511, doi:10.1029/97ja00196.Google Scholar
Simpson, J. A., Eraker, J. H., Lamport, J. E. and Walpole, P. H. (1974). Electrons and protons accelerated in Mercury’s magnetic field. Science, 185, 160166, doi:10.1126/science.185.4146.160.Google Scholar
Slavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D. and Akasofu, S. I. (1985). An ISEE-3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res., 90, 875895, doi:10.1029/Ja090ia11p10875.Google Scholar
Slavin, J. A., Krimigis, S. M., Acuña, M. H., Anderson, B. J., Baker, D. N., Koehn, P. L., Korth, H., Livi, S., Mauk, B. H., Solomon, S. C. and Zurbuchen, T. H. (2007). MESSENGER: Exploring Mercury’s magnetosphere. Space Sci. Rev., 131, 133160, doi:10.1007/s11214-007-9154-x.Google Scholar
Slavin, J. A., Acuna, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Nittler, L. R., Raines, J. M., Schriver, D., Solomon, S. C., Starr, R. D., Travnicek, P. and Zurbuchen, T. H. (2008). Mercury’s magnetosphere after MESSENGER’s first flyby. Science, 321, 8589, doi:10.1126/science.1159040.Google Scholar
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P. and Zurbuchen, T. H. (2009a). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324, 606610, doi:10.1126/science.1172011.Google Scholar
Slavin, J. A., Anderson, B. J., Zurbuchen, T. H., Baker, D. N., Krimigis, S. M., Acuña, M. H., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C. and Trávníček, P. (2009b). MESSENGER observations of Mercury’s magnetosphere during northward IMF. Geophys. Res. Lett., 36, L02101, doi:10.1029/2008GL036158.Google Scholar
Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Nittler, L. R., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Starr, R. D., Trávníček, P. M. and Zurbuchen, T. H. (2010). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329, 665668, doi:10.1126/science.1188067.Google Scholar
Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P. and Zurbuchen, T. H. (2012). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res., 117, A01215, doi:10.1029/2011JA016900.Google Scholar
Slavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X. Z., Baker, D. N., Glassmeier, K. H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2014). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Physics, 119, 80878116, doi:10.1002/2014ja020319.Google Scholar
Smith, E. J. (2001). The heliospheric current sheet. J. Geophys. Res., 106, 15,81915,831, doi:10.1029/2000ja000120.Google Scholar
Sonnerup, B. U. O. (1984). Magnetic field reconnection at the magnetopause: An overview. In Magnetic Reconnection in Space and Laboratory Plasmas, ed. Hones., E. W. Geophysical Monograph 30. Washington, DC: American Geophysical Union, pp. 92103.Google Scholar
Speiser, T. W. (1965). Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res., 70, 42194226, doi:10.1029/Jz070i017p04219.Google Scholar
Spreiter, J. R., Summers, A. L. and Alksne, A. Y. (1966a). Hydromagnetic flow around the magnetosphere. Planet. Space Sci., 14, 223253, doi:10.1016/0032-0633(66)90124-3.Google Scholar
Spreiter, J. R., Alksne, A. Y. and Abraham-Shrauner, B. (1966b). Theoretical proton velocity distributions in the flow around the magnetospherePlanet. Space Sci., 14, 12071220.Google Scholar
Sun, W. J., Slavin, J. A., Fu, S. Y., Raines, J. M., Zong, Q. G., Imber, S. M., Shi, Q. Q., Yao, Z. H., Poh, G., Gershman, D. J., Pu, Z. Y., Sundberg, T., Anderson, B. J., Korth, H. and Baker, D. N. (2015). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophys. Res. Lett., 42, 36923699, doi:10.1002/2015gl064052.Google Scholar
Sundberg, T., Boardsen, S. A., Slavin, J. A., Blomberg, L. G. and Korth, H. (2010). The Kelvin–Helmholtz instability at Mercury: An assessment. Planet. Space Sci., 58, 14341441, doi:10.1016/j.pss.2010.06.008.Google Scholar
Toth, G. and Odstrcil, D. (1996). Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys., 128, 82100, doi:10.1006/jcph.1996.0197.Google Scholar
Trávníček, P. M., Hellinger, P. and Schriver, D. (2007). Structure of Mercury’s magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations. Geophys. Res. Lett., 34, L05104, doi:10.1029/2006GL028518.Google Scholar
Trávníček, P. M., Schriver, D., Hellinger, P., Herčík, D., Anderson, B. J., Sarantos, M. and Slavin, J. A. (2010). Mercury’s magnetosphere–solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results. Icarus, 209, 1122, doi:10.1016/j.icarus.2010.01.008.Google Scholar
Tsyganenko, N. A. (2013). Data-based modelling of the Earth’s dynamic magnetosphere: A review. Ann. Geophys., 31, 17451772, doi:10.5194/angeo-31-1745-2013.Google Scholar
Tsyganenko, N. A. and Peredo, M. (1994). Analytical models of the magnetic field of disk-shaped current sheets. J. Geophys. Res., 99, 199205, doi:10.1029/93ja02768.Google Scholar
Vasyliunas, V. M. (1975). Theoretical models of magnetic field line merging, 1. Rev. Geophys., 13, 303336, doi:10.1029/RG013i001p00303.Google Scholar
Verhoeven, O., Tarits, P., Vacher, P., Rivoldini, A. and Van Hoolst, T. (2009). Composition and formation of Mercury: Constraints from future electrical conductivity measurements. Planet. Space Sci., 57, 296305, doi:10.1016/j.pss.2008.11.015.Google Scholar
von Steiger, R. and Zurbuchen, T. H. (2006). Kinetic properties of heavy solar wind ions from Ulysses-SWICS. Geophys. Res. Lett., 33, L09103, doi:10.1029/2005gl024998.Google Scholar
von Steiger, R., Geiss, J., Gloeckler, G. and Galvin, A. B. (1995). Kinetic properties of heavy ions in the solar wind from SWICS/UlyssesSpace Sci. Rev., 72, 7176.Google Scholar
von Steiger, R., Schwadron, N. A., Fisk, L. A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R. F. and Zurbuchen, T. H. (2000). Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition spectrometer. J. Geophys. Res., 105, 27,21727,238, doi:10.1029/1999ja000358.Google Scholar
Wang, Y. C., Mueller, J., Motschmann, U. and Ip, W. H. (2010). A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus, 209, 4652, doi:10.1016/j.icarus.2010.05.020.Google Scholar
Whang, Y. C. (1977). Magnetospheric magnetic field of Mercury. J. Geophys. Res., 82, 10241030, doi:10.1029/Ja082i007p01024.Google Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E. and Solomon, S. C. (2012). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472.Google Scholar
Winslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N. and Solomon, S. C. (2013). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. J. Geophys. Res. Space Physics, 118, 22132227, doi:10.1002/jgra.50237.CrossRefGoogle Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Gershman, D. J., Raines, J. M., Lillis, R. J., Korth, H., Slavin, J. A., Solomon, S. C., Zurbuchen, T. H. and Zuber, M. T. (2014). Mercury’s surface magnetic field determined from proton-reflection magnetometry. Geophys. Res. Lett., 41, 44634470, doi:10.1002/2014gl060258.Google Scholar
Wurz, P., Whitby, J. A., Rohner, U., Martin-Fernandez, J. A., Lammer, H. and Kolb, C. (2010). Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci., 58, 15991616, doi:10.1016/j.pss.2010.08.003.CrossRefGoogle Scholar
Zurbuchen, T. H. (2007). A new view of the coupling of the Sun and the heliosphere, Ann. Rev. Astron. Astrophys., 45, 297338, doi:10.1146/annurev.astro.45.010807.154030.Google Scholar
Zurbuchen, T. H., Raines, J. M., Gloeckler, G., Krimigis, S. M., Slavin, J. A., Koehn, P. L., Killen, R. M., Sprague, A. L., McNutt, R. L. Jr. and Solomon, S. C. (2008). MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science, 321, 9092, doi:10.1126/science.1159314.Google Scholar
Zurbuchen, T. H., Raines, J. M., Slavin, J. A., Gershman, D. J., Gilbert, J. A., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M., Sarantos, M., Schriver, D., McNutt, R. L. Jr. and Solomon, S. C. (2011). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333, 18621865, doi:10.1126/science.1211302.Google Scholar
Zwan, B. J. and Wolf, R. A. (1976). Depletion of solar-wind plasma near a planetary boundary. J. Geophys. Res., 81, 16361648, doi:10.1029/JA081i010p01636.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×