Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T08:10:12.170Z Has data issue: false hasContentIssue false

12 - Mercury’s Hollows

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Images from the MESSENGER spacecraft show that irregular, flat-floored depressions with high-reflectance interiors and haloes are common on the surface of planet Mercury. These landforms, called hollows, are among Mercury's youngest non-impact features and may be forming today. Hollows are unique to Mercury, with no close equivalent on other planetary bodies. Clues to understanding hollows come from consideration of morphological features associated with ice-bearing surfaces on Mars and icy satellites, and of processes leading to loss of sulfur from asteroids. Evidence suggests that hollows form when sublimation or destruction of a volatile-bearing phase weakens the host rock, causing collapse and scarp retreat. The phase susceptible to loss may be a sulfide mineral or graphite. Loss of the volatile component could be driven by solar heating, exposure to solar ultraviolet radiation, exposure to the solar wind, sputtering by magnetospheric ions, and micrometeoroid bombardment. The depth to which hollows grow may be controlled by accumulation of a protective lag deposit. The volatile-bearing phase that is lost appears to be a pervasive component of the host rock, but in some cases the hollow-forming phase may have been concentrated by volcanic processes or differentiation of impact melts. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 324 - 345
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, D. G. (1977). Lunar and planetary impact erosion. In Cosmic Dust, ed. McDonnell, J. A. M.. Hoboken, NJ: Wiley, pp. 427526.Google Scholar
Banks, M. E., Xiao, Z., Braden, S. E., Marchi, S., Chapman, C. R., Barlow, N. G. and Fassett, C. I. (2016). Revised age constraints for Mercury’s Kuiperian and Mansurian systems. Lunar Planet. Sci., 47, abstract 2943.Google Scholar
Bennett, C. J., McLain, J. L., Sarantos, M., Gann, R. D., DeSimone, A. and Orlando, T. M. (2016). Investigating potential sources of Mercury’s exospheric calcium: Photon-stimulated desorption of calcium sulfide. J. Geophys. Res. Planets, 121, 137146, doi:10.1002/2015JE004966.Google Scholar
Blewett, D. T., Hawke, B. R., Lucey, P. G. and Robinson, M. S. (2007). A Mariner 10 color study of Mercurian craters. J. Geophys. Res., 112, E02005, doi:10.1029/2006JE002713.Google Scholar
Blewett, D. T., Robinson, M. S., Denevi, B. W., Gillis-Davis, J. J., Head, J. W., Solomon, S. C., Holsclaw, G. M. and McClintock, W. E. (2009). Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth Planet. Sci. Lett., 285, 272282.Google Scholar
Blewett, D. T., Denevi, B. W., Robinson, M. S., Ernst, C. M., Purucker, M. E. and Solomon, S. C. (2010). The apparent lack of lunar-like swirls on Mercury: Implications for the formation of lunar swirls and for the agent of space weathering. Icarus, 209, 239246.CrossRefGoogle Scholar
Blewett, D. T., Chabot, N. L., Denevi, B. W., Ernst, C. M., Head, J. W., Izenberg, N. R., Murchie, S. L., Solomon, S. C., Nittler, L. R., McCoy, T. J., Xiao, Z., Baker, D. M. H., Fassett, C. I., Braden, S. E., Oberst, J., Scholten, F., Preusker, F. and Hurwitz, D. M. (2011a). Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science, 333, 18561859, doi:10.1126/science.1211681.Google Scholar
Blewett, D. T., Coman, E. I., Hawke, B. R., Gillis-Davis, J. J., Purucker, M. E. and Hughes, C. G. (2011b). Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. J. Geophys. Res., 116, E02002, doi:10.1029/2010JE004656.Google Scholar
Blewett, D. T., Vaughan, W. M., Xiao, Z., Chabot, N. L., Denevi, B. W., Ernst, C. M., Helbert, J., D’Amore, M., Maturilli, A., Head, J. W. and Solomon, S. C. (2013). Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res. Planets, 118, 10131032, doi:10.1029/2012JE004174.CrossRefGoogle Scholar
Blewett, D. T., Levy, C. L., Chabot, N. L., Denevi, B. W., Ernst, C. M. and Murchie, S. L. (2014). Phase-ratio images of the surface of Mercury: Evidence for differences in sub-resolution texture. Icarus, 242, 142148.CrossRefGoogle Scholar
Blewett, D. T., Stadermann, A. C., Susorney, H. C., Ernst, C. M., Xiao, Z., Chabot, N. L., Denevi, B. W., Murchie, S. L., McCubbin, F. M., Kinczyk, M. J., Gillis-Davis, J. J. and Solomon, S. C. (2016). Analysis of MESSENGER high-resolution images of Mercury’s hollows and implications for hollow formation. J. Geophys. Res. Planets, 121, 17981813, doi:10.1002/2016JE005070.Google Scholar
Braden, S. E. and Robinson, M. S. (2013). Relative rates of optical maturation of regolith on Mercury and the Moon. J. Geophys. Res. Planets, 118, 19031914, doi:10.1002/jgre.20143.CrossRefGoogle Scholar
Braden, S. E., Stopar, J. D., Robinson, M. S., Lawrence, S. J., van der Bogert, C. H. and Hiesinger, H. (2014). Evidence for basaltic volcanism on the Moon within the past 100 million years. Nature Geosci., 7, 787791, doi:10.1038/ngeo2252.Google Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., Benedix, G. K., Cloutis, A. and Dickinson, T. L. (2002). Spectra of extremely reduced assemblages: Implications for Mercury. Meteorit. Planet. Sci., 37, 12331244.Google Scholar
Byrne, S. and Ingersoll, A. P. (2003). A sublimation model for martian south polar ice features. Science, 299, 10511053.Google Scholar
Chen, A. Y. K., Davis, J. W. and Haasz, A. A. (1999). Chemical erosion of graphite under simultaneous O+ and H+ irradiation. J. Nucl. Mater., 266–269, 399405.Google Scholar
Chen, A. Y. K., Davis, J. W. and Haasz, A. A. (2001). Methane formation in graphite and boron-doped graphite under simultaneous O+ and H+ irradiation. J. Nucl. Mater., 290–293, 6165.Google Scholar
Colwell, J. E., Batiste, S., Horányi, M., Robertson, S. and Sture, S. (2007). Lunar surface: Dust dynamics and regolith mechanics. Rev. Geophys., 45, RG2006, doi:10.1029/2005RG000184.Google Scholar
Davies, M. E., Dwornik, S. E., Gault, D. E. and Strom, R. G. (1978). Atlas of Mercury, Special Publication SP-423. Washington, DC: National Aeronautics and Space Administration.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618, doi:10.1126/science.1172226.Google Scholar
Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., Trávníček, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillis-Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Mouawad, N., Izenberg, N. R. and McClintock, W. E. (2014). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev., 181, 121214, doi:10.1007/s11214-014–0039-5.Google Scholar
Dundas, C. M., Byrne, S. and McEwen, A. S. (2015). Modeling the development of martian sublimation thermokarst landforms. Icarus, 262, 154169.Google Scholar
Dzurisin, D. (1977). Mercurian bright patches: Evidence for physio-chemical alteration of surface material? Geophys. Res. Lett., 4, 383386, doi:10.1029/GL004i010p00383.CrossRefGoogle Scholar
El Baz, F. and Worden, A. W. (1972). Orbital-science photography, Part A: Visual observations from lunar orbit. In Apollo 15 Preliminary Science Report, Special Publication SP-289. Washington, DC: National Aeronautics and Space Administration, pp. 25-1–25-25.Google Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.CrossRefGoogle Scholar
Fassett, C. I. (2016). Ames stereo pipeline-derived digital terrain models of Mercury from MESSENGER stereo imaging. Planet. Space Sci., 134, 1928.CrossRefGoogle Scholar
Garry, W. B., Robinson, M. S., Zimbelman, J. R., Bleacher, J. E., Hawke, B. R., Crumpler, L. S., Braden, S. E. and Sato, H. (2012). The origin of Ina: Evidence for inflated lava flows on the Moon. J. Geophys. Res., 117, E00H31, doi:10.1029/2011JE003981.CrossRefGoogle Scholar
Gillis-Davis, J. J., Blewett, D. T., Gaskell, R. W., Denevi, B. W., Robinson, M. S., Strom, R. G., Solomon, S. C. and Sprague, A. L. (2009). Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth Planet. Sci. Lett., 285, 243250, doi:10.1016/j.epsl.2009.05.023.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Del Eckels, J., Miller, W. O., Burks, M. T., Hagler, L. B., DeTeresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391.Google Scholar
Goudge, T. A., Head, J. W., Kerber, L., Blewett, D. T., Denevi, B. W., Domingue, D. L., Gillis-Davis, J. J., Gwinner, K., Helbert, J., Holsclaw, G. M., Izenberg, N. R., Klima, R. L., McClintock, W. E., Murchie, S. L., Neumann, G. A., Smith, D. E., Strom, R. G., Xiao, Z., Zuber, M. T. and Solomon, S. C. (2014). Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. Planets, 119, 635658, doi:10.1002/2013JE004480.Google Scholar
Hapke, B., Danielson, G. E. Jr., Klaasen, K. and Wilson, L. (1975). Photometric observations of Mercury from Mariner 10. J. Geophys. Res., 80, 24312443.Google Scholar
Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy, 2nd edn. New York: Cambridge University Press.Google Scholar
Harmon, J. K. (2007). Radar imaging of Mercury. Space Sci. Rev., 132, 307349.CrossRefGoogle Scholar
Harmon, J. K. (2008). Radar imagery of the southern Caloris region, Mercury. Icarus, 196, 298301.Google Scholar
Harmon, J. K., Slade, M. A., Butler, B. J., Head, J. W. III, Rice, M. S. and Campbell, D. B. (2007). Mercury: Radar images of the equatorial and midlatitude zones. Icarus, 187, 374405, doi:10.1016/j.icarus.2006.09.026.Google Scholar
Hawke, B. R., Blewett, D. T., Lucey, P. G., Smith, G. A., Bell, J. F., Campbell, B. A. and Robinson, M. S. (2004). The origin of lunar crater rays. Icarus, 170, 116, doi:10.1016/j.icarus.2004.02.013.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J. Jr., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972, doi:10.1126/science.1159256.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Chapman, C. R., Strom, R. G., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J., Fassett, C. I., Dickson, J. L., Morgan, G. A. and Kerber, L. (2009). Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet. Sci. Lett., 285, 227242, doi:10.1016/j.epsl.2009.03.007.CrossRefGoogle Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856.Google Scholar
Helbert, J., Maturilli, A. and D’Amore, M. (2013). Visible and near-infrared reflectance spectra of thermally processed synthetic sulfide as a potential analog for the hollow forming materials on Mercury. Earth Planet. Sci. Lett., 369–370, 233238.Google Scholar
Howard, A. D. and Moore, J. M. (2008). Sublimation-driven erosion on Callisto: A landform simulation model test. Geophys. Res. Lett., 35, L03203, doi:10.1029/2007GL032618.Google Scholar
Izenberg, N. R., Klima, R. L., Murchie, S. L., Blewett, D. T., Holsclaw, G. M., McClintock, W. E., Malaret, E., Mauceri, C., Vilas, F., Sprague, A. L., Helbert, J., Domingue, D. L., Head, J. W., Goudge, T. A., Solomon, S. C., Hibbitts, C. A. and Dyar, M. D. (2014). The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 228, 364374.Google Scholar
Kargel, J. S. (2013). Mercury’s hollows: Chalcogenide pyro-thermokarst analog of thermokarst on Earth, Mars, and Titan. Lunar Planet. Sci., 44, abstract 2840.Google Scholar
Kaydash, V., Shkuratov, Y. and Videen, G. (2012). Phase-ratio imagery as a planetary remote-sensing tool. J. Quant. Spectrosc. Radiat. Transf., 113, 26012607.CrossRefGoogle Scholar
Keller, M. R., Ernst, C. M., Denevi, B. W., Murchie, S. L., Chabot, N. L., Becker, K. J., Hash, C. D., Domingue, D. L. and Sterner, R. E. II (2013). Time-dependent calibration of MESSENGER’s wide-angle camera following a contamination event. Lunar Planet. Sci., 44, abstract 2489.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271, doi:10.1016/j.epsl.2009.04.037.Google Scholar
Kerber, L., Head, J. W., Blewett, D. T., Solomon, S. C., Wilson, L., Murchie, S. L., Robinson, M. S., Denevi, B. W. and Domingue, D. L. (2011). The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci., 59, 1895–1909, doi:10.1016/j.pss.2011.03.020.Google Scholar
Killen, R. M. (2003). Depletion of sulfur on the surface of the asteroid Eros and the Moon. Meteorit. Planet. Sci., 38, 383388.Google Scholar
Klima, R. L., Blewett, D. T., Denevi, B. W., Ernst, C. M., Frank, E. A., Head, J. W. III, Izenberg, N. R., Murchie, S. L., Nittler, L. R., Peplowski, P. N. and Solomon, S. C. (2016). Global distribution and spectral properties of low-reflectance material on Mercury. Lunar Planet. Sci., 47, abstract 1195.Google Scholar
Kracher, A. and Sears, D. W. G. (2005). Space weathering and the low sulfur abundance of Eros. Icarus, 174, 3645, doi:10.1016/j.icarus.2004.10.010.Google Scholar
Loeffler, M. J., Dukes, C. A., Chang, W. Y., McFadden, L. A. and Baragiola, R. A. (2008). Laboratory simulations of sulfur depletion at Eros. Icarus, 195, 622629, doi:10.1016/j.icarus.2008.02.002.Google Scholar
Lucey, P. G. and Riner, M. A. (2011). The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury. Icarus, 212, 451462, doi:10.1016/j.icarus.2011.01.022.CrossRefGoogle Scholar
Malin, M. C. (1987). Abrasion in ice-free areas of southern Victoria Land, Antarctica. Antarct. J. U.S., 22, 38.Google Scholar
Malin, M. C., Caplinger, M. A. and Davis, S. D. (2001). Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science, 294, 21462148.Google Scholar
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F. and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499, 5961.Google Scholar
McClintock, W. E. and Lankton, M. R. (2007). The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Sci. Rev., 131, 481522.Google Scholar
McClintock, W. E., Vervack, Jr., R. J., Bradley, E. T., Killen, R. M., Mouawad, N., Sprague, A. L., Burger, M. H., Solomon, S. C. and Izenberg, N. R. (2009). MESSENGER observations of Mercury’s exosphere: Detection of magnesium and distribution of constituents. Science, 324, 610613.Google Scholar
Meech, K. and Svoren, J. (2004). Using cometary activity to trace the physical and chemical evolution of cometary nuclei. In Comets II, ed. Festou, M. C., Uwe Keller, H. and Weaver, H. A.. Tucson, AZ: University of Arizona Press, pp. 317335.Google Scholar
Molaro, J. and Byrne, S. (2012). Rates of temperature change of airless landscapes and implications for thermal stress weathering. J. Geophys. Res., 117, E10011, doi:10.1029/2012JE004138.Google Scholar
Moore, J. M. and Spencer, J. R. (1990). Koyaanismuuyaw: The hypothesis of a perennially dichotomous Triton. Geophys. Res. Lett., 17, 17571760.Google Scholar
Moore, J. M., Mellon, M. T. and Zent, A. P. (1996). Mass wasting and ground collapse in terrains of volatile-rich deposits as a Solar System-wide geological process: The pre-Galileo view. Icarus, 122, 6378.Google Scholar
Moore, J. M., Asphaug, E., Morrison, D., Spencer, J. R., Chapman, C. R., Bierhaus, B., Sullivan, R. J., Chuang, F. C., Klemaszewski, J. E., Greeley, R., Bender, K. C., Geissler, P. E., Helfenstein, P. and Pilcher, C. B. (1999). Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission. Icarus, 140, 294312.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7376.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O’Leary, B., Strom, R. G., Suomi, V. and Trask, N. (1974). Mercury’s surface: Preliminary description and interpretation from Mariner 10 pictures. Science, 185, 169179.CrossRefGoogle ScholarPubMed
Nittler, L. R., Starr, R. D., Lim, L., McCoy, T. J., Burbine, T. H., Reedy, R. C., Trombka, J. I., Gorenstein, P., Squyres, S. W., Boynton, W. V., McClanahan, T. P., Bhangoo, J. S., Clark, P. E., Murphy, M. E. and Killen, R. (2001). X-ray fluorescence measurements of the surface elemental composition of Asteroid 433 Eros. Meteorit. Planet. Sci., 36, 16731695.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
Peplowski, P. N., Lawrence, D. J., Evans, L. G., Klima, R. L., Blewett, D. T., Goldsten, J. O., Murchie, S. L., McCoy, T. J., Nittler, L. R., Solomon, S. C., Starr, R. D. and Weider, S. Z. (2015). Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planet. Space Sci., 108, 99107, doi:10.1016/j.pss.2015.01.008.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276, doi:10.1038/NGEO2669.Google Scholar
Qiao, L., Head, J., Wilson, L., Xiao, L., Kreslavsky, M. and Dufek, J. (2017). Ina pit crater on the Moon: Extrusion of waning-stage lava lake magmatic foam results in extremely young crater retention ages. Geology, 45, 455458.Google Scholar
Qiao, L., Head, J. W., Xiao, L., Wilson, L. and Dufek, J. D. (2018). The role of substrate characteristics in producing anomalously young crater retention ages in volcanic deposits on the Moon: Morphology, topography, subresolution roughness, and mode of emplacement of the Sosigenes lunar irregular mare patch. Meteorit. Planet. Sci, 53, 778812.Google Scholar
Rava, B. and Hapke, B. (1987). An analysis of the Mariner 10 color ratio map of Mercury. Icarus, 71, 397429, doi:10.1016/j.bbr.2011.03.031.Google Scholar
Riner, M. A., Lucey, P. G., Desch, S. J. and McCubbin, F. M. (2009). Nature of opaque components on Mercury: Insights into a mercurian magma ocean. Geophys. Res. Lett., 36, L02201, doi:10.1029/2008GL036128.Google Scholar
Robinson, M. S. and Lucey, P. G. (1997). Recalibrated Mariner 10 color mosaics: Implications for mercurian volcanism. Science, 275, 197200, doi:10.1126/science.275.5297.197.Google Scholar
Robinson, M. S. and Taylor, G. J. (2001). Ferrous oxide in Mercury’s crust and mantle. Meteorit. Planet. Sci., 36, 841847.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E. III, Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669, doi:10.1126/science.1160080.Google Scholar
Savvatimskiy, A. I. (2005). Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon, 43, 11151142.Google Scholar
Schlemm, C. E. II, Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., Boynton, W. V., Bradley, W., Fraeman, M. E., Gold, R. E., Goldsten, J. O., Hayes, J. R., Jaskulek, S. E., Rossano, E., Rumpf, R. A., Schaefer, E. D., Strohbehn, K., Shelton, R. G., Thompson, R. E., Trombka, J. I. and Williams, B. D. (2007). The X-Ray Spectrometer on the MESSENGER spacecraft. Space Sci. Rev., 131, 393415.Google Scholar
Schultz, P. H. (1977). Endogenic modification of impact craters on Mercury. Phys. Earth Planet. Inter., 15, 202219, doi:10.1016/j.bbr.2011.03.031.Google Scholar
Schultz, P. H., Staid, M. I. and Pieters, C. M. (2006). Lunar activity from recent gas release. Nature, 444, 184186.CrossRefGoogle ScholarPubMed
Sharp, R. P. (1973). Mars: South polar pits and etched terrain. J. Geophys. Res., 78, 42224230.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L. A., Banfield, D., Barnet, C., Basilevsky, A. T., Beebe, R. F., Bollinger, K., Boyce, J. M., Brahic, A., Briggs, G. A., Brown, R. H., Chyba, C., Collins, S. A., Colvin, T., Cook, A. F. II, Crisp, D., Croft, S. K., Cruikshank, D., Cuzzi, J. N., Danielson, G. E., Davies, M. E., De Jong, E., Dones, L., Godfrey, D., Goguen, J., Grenier, I., Haemmerle, V. R., Hammel, H., Hansen, C. J., Helfenstein, C. P., Howell, C., Hunt, G. E., Ingersoll, A. P., Johnson, T. V., Kargel, J., Kirk, R., Kuehn, D. I., Limaye, S., Masursky, H., McEwen, A., Morrison, D., Owen, T., Owen, W., Pollack, J. B., Porco, C. C., Rages, K., Rogers, P., Rudy, D., Sagan, C., Schwartz, J., Shoemaker, E. M., Showalter, M., Sicardy, B., Simonelli, D., Spencer, J., Sromovsky, L. A., Stoker, C., Strom, R. G., Suomi, V. E., Synott, S. P., Terrile, R. J., Thomas, P., Thompson, W. R., Verbiscer, A. and Veverka, J. (1989). Voyager 2 at Neptune: Imaging science results. Science, 246, 14221449.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A. and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER’s first Mercury flyby. Science, 321, 5962.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 118164.Google Scholar
Strain, P. and El Baz, F. (1980). The geology and morphology of Ina. Proc. Lunar Planet. Sci. Conf., 11, 24372446.Google Scholar
Strom, R. G. (1984). Mercury. In The Geology of the Terrestrial Planets, ed. Carr, M. H.., Special Publication SP-469. Washington, DC: National Aeronautics and Space Administration.Google Scholar
Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C. and Head, J. W. (2008). Mercury cratering record viewed from MESSENGER’s first flyby. Science, 321, 7981, doi:10.1126/science.1159317.Google Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., Carr, M. H., Hartmann, W. K., Ingersoll, A. P., James, P. B., Soderblom, L. A., Veverka, J. and Sullivan, R. (2000). North–south geological differences between the residual polar caps on Mars. Nature, 404, 161164.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014a). Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus, 229, 221235, doi:10.1016/j.icarus.2013.11.018.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014b). Long-lived explosive volcanism on Mercury. Geophys. Res. Lett., 44, 60846092, doi:10.1002/2014GL061224.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014c). Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. J. Geophys. Res. Planets, 119, 22392254, doi:10.1002/2014JE004692.Google Scholar
Thomas, R. J., Hynek, B. M., Rothery, D. A. and Conway, S. J. (2016), Mercury’s low-reflectance material: Constraints from hollows. Icarus, 277, 455465.CrossRefGoogle Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209, doi:10.1002/2014JE004733.Google Scholar
Vaughan, W. M., Helbert, J., Blewett, D. T., Head, J. W., Murchie, S. L., Gwinner, K., McCoy, T. J. and Solomon, S. C. (2012). Hollow-forming layers in impact craters on Mercury: Massive sulfide deposits formed by impact melt differentiation? Lunar Planet. Sci., 43, abstract 1187.Google Scholar
Vervack, R. J. Jr., McClintock, W. E., Killen, R. M., Sprague, A. L., Anderson, B. J., Burger, M. H., Bradley, E. T., Mouawad, N., Solomon, S. C. and Izenberg, N. R. (2010). Mercury’s complex exosphere: Results from MESSENGER’s third flyby. Science, 329, 672675.Google Scholar
Vilas, F., Domingue, D. L., Helbert, J., D’Amore, M., Maturilli, A., Klima, R. L., Stockstill-Cahill, K. R., Murchie, S.L., Izenberg, N. R., Blewett, D. T., Vaughan, W. M. and Head, J. W. (2016), Mineralogical indicators of Mercury’s hollows composition in MESSENGER color observations, Geophys. Res. Lett., 43, 14501456, doi:10.1002/2015GL067515.CrossRefGoogle Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012JE004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A., Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120, doi:10.1016/j.epsl.2015.01.023.Google Scholar
Weider, S. Z., Nittler, L. R., Murchie, S. L., Peplowski, P. N., McCoy, T. J., Kerber, L., Klimczak, C., Ernst, C. M., Goudge, T. M., Starr, R. D., Izenberg, N. R., Klima, R. L. and Solomon, S. C. (2016). Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett., 43, 36533661, doi:10.1002/2016GL068325.Google Scholar
Whipple, F. L. (1951). A comet model. II. Physical relations for comets and meteors. Astrophys. J., 113, 464474.Google Scholar
Whitaker, E. A. (1972). Orbital-science photography, Part N: An unusual mare feature. In Apollo 15 Preliminary Science Report, Special Publication SP-289. Washington, DC: National Aeronautics and Space Administration, pp. 25-84–25-85.Google Scholar
White, O. L., Umurhan, O. M., Moore, J. M. and Howard, A. D. (2016). Modeling of ice pinnacle formation on Callisto. J. Geophys. Res. Planets, 121, 2145.Google Scholar
Xiao, Z., Strom, R. G., Blewett, D. T., Chapman, C. R., Denevi, B. W., Head, J. W., Fassett, C. I., Braden, S. E., Gwinner, K., Solomon, S. C., Murchie, S. L., Watters, T. R. and Banks, M. E. (2012). The youngest geologic terrains on Mercury. Lunar Planet. Sci., 43, abstract 2143.Google Scholar
Xiao, Z., Strom, R. G., Blewett, D. T., Byrne, P. K., Solomon, S. C., Murchie, S. L., Sprague, A. L., Domingue, D. L. and Helbert, J. (2013). Dark spots on Mercury: A distinctive low-reflectance material and its relation to hollows. J. Geophys. Res. Planets, 118, 17521765.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×