Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T08:10:14.212Z Has data issue: false hasContentIssue false

10 - The Tectonic Character of Mercury

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Mercury is a tectonic world: the planet has experienced a long and complicated history of deformation, recorded by its preserved tectonic landforms. As the study of tectonics naturally intersects with volcanology, chemistry, interior structure, and thermal evolution, understanding the tectonic character of Mercury is a crucial means by which to more fully comprehend the planet’s geological history. In this chapter, we seek to tie together the various strands of observational and analytical studies of the tectonics of Mercury conducted since the first Mercury flyby of the MESSENGER mission. We describe the shortening and extensional structures on the innermost planet, as well as an enigmatic set of long-wavelength topographic warps that may have been tectonically driven, before reviewing our understanding of the structure and properties of Mercury's lithosphere. The mechanisms for tectonic deformation are next discussed, and we then explore the other major aspect of Mercury's tectonics – when deformation took place – as we work to describe at least in broad terms the tectonic history of the planet. The influence of tectonics on Mercury's volcanic activity is then addressed. Finally, we list some major questions regarding Mercury’s tectonics that remain open and suggest how they might yet be answered. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 249 - 286
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, T. J. and Rubin, A. M. (1993). Impact‐induced tensional failure in rock. J. Geophys. Res., 98, 11851203.Google Scholar
Ampferer, A. (1923). Beiträge zur Auflösung der Mechanik der Alpen. Jahrb. Geol. Bundesanst., 76, 125151.Google Scholar
Anderson, E. M. (1951). The Dynamics of Faulting and Dyke Formation with Applications to Britain, 2nd edn. Edinburgh, UK: Oliver and Boyd.Google Scholar
Andrews-Hanna, J. C., Asmar, S. W., Head, J. W., Kiefer, W. S., Konopliv, A. S., Lemoine, F. G., Matsuyama, I., Mazarico, E., McGovern, P. J., Melosh, H. J., Neumann, G. A., Nimmo, F., Phillips, R. J., Smith, D. E., Solomon, S. C., Taylor, J., Wieczorek, M. A., Williams, J. G. and Zuber, M. T. (2013). Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science, 339, 675678.Google Scholar
Asphaug, E. (2014). Impact origin of the Moon? Annu. Rev. Earth Planet. Sci., 42, 551578.Google Scholar
Balcerski, J. A., Hauck, S. A. II and Sun, P. (2012). Tilted crater floors: Recording the history of Mercury’s long-wavelength deformation. Lunar Planet. Sci., 43, abstract 1850.Google Scholar
Balcerski, J. A., Hauck, S. A. II and Sun, P. (2013). New constraints on timing and mechanisms of regional tectonism from Mercury’s tilted craters. Lunar Planet. Sci., 44, abstract 2444.Google Scholar
Banks, M. E., Xiao, Z., Watters, T. R., Strom, R. G., Braden, S. E., Chapman, C. R., Solomon, S. C., Klimczak, C. and Byrne, P. K. (2015). Duration of activity on lobate‐scarp thrust faults on Mercury. J. Geophys. Res. Planets, 120, 17511762.CrossRefGoogle Scholar
Barclay, T., Rowe, J. F., Lissauer, J. J., Huber, D., Fressin, F., Howell, S. B., Bryson, S. T., Chaplin, W. J., Désert, J. M., Lopez, E. D., Marcy, G. W., Mullally, F., Ragozzine, D., Torres, G., Adams, E. R., Agol, E., Barrado, D., Basu, S., Bedding, T. R., Buchhave, L. A., Charbonneau, D., Christiansen, J. L., Christensen-Dalsgaard, J., Ciardi, D., Cochran, W. D., Dupree, A. K., Elsworth, Y., Everett, M., Fischer, D. A., Ford, E. B., Fortney, J. J., Geary, J. C., Haas, M. R., Handberg, R., Hekker, S., Henze, C. E., Horch, E., Howard, A. W., Hunter, R. C., Isaacson, H., Jenkins, J. M., Karoff, C., Kawaler, S. D., Kjeldsen, H., Klaus, T. C., Latham, D. W., Li, J., Lillo-Box, J., Lund, M. N., Lundkvist, M., Metcalfe, T. S., Miglio, A., Morris, R. L., Quintana, E. V., Stello, D., Smith, J. C., Still, M. and Thompson, S. E. (2013). A sub-Mercury-sized exoplanet. Nature, 494, 452454.Google Scholar
Barton, N. (1976). Rock mechanics review: The shear strength of rock and rock joints. Int. J. Rock Mech. Min. Sci., 13, 255279.Google Scholar
Becker, K. J., Robinson, M. S., Becker, T. L., Weller, L. A., Edmundson, K. L., Neumann, G. A., Perry, M. E. and Solomon, S. C. (2016). First global digital elevation model of Mercury. Lunar Planet. Sci., 47, abstract 2959.Google Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R. and Ziethe, R. (2010). BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220.CrossRefGoogle Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1988). Collisional stripping of Mercury’s mantle. Icarus, 74, 516528.Google Scholar
Beuthe, M. (2010). East–west faults due to planetary contraction. Icarus, 209, 795817.CrossRefGoogle Scholar
Bieniawski, Z. T. (1989). Engineering Rock Mass Classifications. New York: Wiley.Google Scholar
Blair, D. M., Freed, A. M., Byrne, P. K., Klimczak, C., Prockter, L. M., Ernst, C. M., Solomon, S. C., Melosh, H. J. and Zuber, M. T. (2013). The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury. J. Geophys. Res. Planets, 118, 4758.CrossRefGoogle Scholar
Bois, C., Cazes, M., Damotte, B., Galdéano, A., Hirn, A., Mascle, A., Matte, P., Raoult, J. F. and Torreilles, G. (1986). Deep seismic profiling of the crust in northern France: The Ecors project. In Reflection Seismology: A Global Perspective, eds. Barazangi, M. and Brown, L., Geodynamics Series, Vol. 13. Washington, DC: American Geophysical Union, pp. 2129.Google Scholar
Brace, W. F. and Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85, 62486252.CrossRefGoogle Scholar
Bürgmann, R., Rosen, P. A. and Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci., 28, 169209.Google Scholar
Burke, K. C., Şengör, A. M. C. and Francis, P.W. (1984.) Maxwell Montes in Ishtar: A collisional plateau on Venus? Lunar Planet. Sci., 15, 104105.Google Scholar
Burns, J. A. (1975). The angular momenta of solar system bodies: Implications for asteroid strengths. Icarus, 25, 545554.Google Scholar
Burns, J. A. (1976). Consequences of the tidal slowing of Mercury. Icarus, 28, 453458.Google Scholar
Butler, R. W. H. (1982). The terminology of structures in thrust belts. J. Struct. Geol., 4, 239245.CrossRefGoogle Scholar
Byerlee, J. D. (1968). Brittle–ductile transition in rocks. J. Geophys. Res., 73, 47414750.CrossRefGoogle Scholar
Byerlee, J. D. (1978). Friction of rocks. Pure Appl. Geophys., 116, 615626.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., Blair, D. M., Ferrari, S., Solomon, S. C., Freed, A. M., Watters, T. R. and Murchie, S. L. (2013a). Tectonic complexity within volcanically infilled craters and basins on Mercury. Lunar Planet. Sci., 44, abstract 1261.Google Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013b). An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. II (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., McGovern, P. J., Mazarico, E., James, P. B., Neumann, G. A., Zuber, M. T. and Solomon, S. C. (2015). Deep-seated thrust faults bound the Mare Crisium lunar mascon. Earth Planet. Sci. Lett., 427, 183190.Google Scholar
Byrne, P. K., Klimczak, C. and LaFond, J. K. (2016a). The East Kaibab monocline: A Terran lobate scarp? Lunar Planet. Sci., 47, abstract 1022.Google Scholar
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W. and Solomon, S. C. (2016b). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett., 43, 74087416.CrossRefGoogle Scholar
Cashman, K. V. (2004). Volatile controls on magma ascent and eruption. In The State of the Planet: Frontiers and Challenges in Geophysics, ed. Sparks, R. S. J. and Hawkesworth, C. J.. Washington, DC: American Geophysical Union, pp. 109124.CrossRefGoogle Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., Ramos-Izquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., Novo-Gradac, A. M., Britt, J. L., Karsh, J., Katz, R. B., Lukemire, A. T., Szymkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451479.Google Scholar
Chabot, N. L., Denevi, B. W., Murchie, S. L., Hash, C. D., Ernst, C. M., Blewett, D. T., Nair, H., Laslo, N. R. and Solomon, S. C. (2016). Mapping Mercury: Global imaging strategy and products from the MESSENGER mission. Lunar Planet. Sci., 47, abstract 1256.Google Scholar
Clark, R. M. and Cox, S. (1996). A modern regression approach to determining fault displacement–length scaling relationships. J. Struct. Geol., 18, 147152.Google Scholar
Collins, G. S., Melosh, H. J. and Ivanov, B. A. (2004). Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci., 39, 217231.Google Scholar
Colton, G. W., Howard, K. A. and Moore, H. J. (1972). Mare ridges and arches in southern Oceanus Procellarum. In Apollo 16 Preliminary Science Report, Special Publication SP-315. Washington, DC: NASA, pp. 29-90–29-93.Google Scholar
Correia, A. C. M. and Laskar, J. (2004). Mercury’s capture into the 3/2 spin–orbit resonance as a result of its chaotic dynamics. Nature, 429, 848850.Google Scholar
Correia, A. C. M. and Laskar, J. (2009). Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus, 201, 111.Google Scholar
Correia, A. C. M. and Laskar, J. (2012). Impact cratering on Mercury: Consequences for the spin evolution. Astrophys. J. Lett., 751, L43, 5 pp.Google Scholar
Cowie, P. A., Scholz, C. H., Edwards, M. and Malinverno, A. (1993). Fault strain and seismic coupling on mid-ocean ridges. J. Geophys. Res., 98, 17,91117,920.Google Scholar
Cowie, P. A., Scholz, C. H., Roberts, G. P., Faure Walker, J. P. and Steer, P. (2013). Viscous roots of active seismogenic faults revealed by geologic slip rate variations. Nature Geosci., 6, 10361040.Google Scholar
Cunje, A. B. and Ghent, R. R. (2016). Caloris basin, Mercury: History of deformation from an analysis of tectonic landforms. Icarus, 268, 131144.Google Scholar
Cunningham, W. D., Windley, B. F., Dorjnamjaa, D., Badamgarov, G. and Saandar, M. (1996). Late Cenozoic transpression in southwestern Mongolia and the Gobi Altai–Tien Shan connection. Earth Planet. Sci. Lett., 140, 6782.Google Scholar
Dainty, A. M., Toksöz, M. N., Anderson, K. R., Pines, P. J., Nakamura, Y. and Latham, G. (1974). Seismic scattering and shallow structure of the Moon in Oceanus Procellarum. Moon, 9, 1129.Google Scholar
Dana, J. D. (1863). Manual of Geology: Treating of the Principles of the Science with Special Reference to American Geological History, for the Use of Colleges, Academies and Schools of Science. Philadelphia, PA: Theodore Bliss & Co., 798 pp.Google Scholar
Dana, J. D. (1873). On some results of the Earth’s contraction from cooling, including a discussion of the origin of mountains and the nature of the Earth’s interior. Amer. J. Sci., 5, 423443.CrossRefGoogle Scholar
Delamétherie, J.-C. (1795a). Théorie de la Terre, tome premier. Paris: Chez Maradan, 422 pp.Google Scholar
Delamétherie, J.-C. (1795b). Théorie de la Terre, tome second. Paris: Chez Maradan, 456 pp.Google Scholar
de Buffon, C. (1778). Histoire Naturelle Générale et Particulière. Paris: Imprimerie Royale, 615 pp.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W. III, Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907.Google Scholar
Di Achille, G., Popa, C., Massironi, M., Epifani, E. M., Zusi, M., Cremonese, G. and Palumbo, P. (2012). Mercury’s radius change estimates revisited using MESSENGER data. Icarus, 221, 456460.Google Scholar
Dombard, A. J. and Hauck, S. A. II (2008). Despinning plus global contraction and the orientation of lobate scarps on Mercury: Predictions for MESSENGER. Icarus, 198, 274276.CrossRefGoogle Scholar
Dombard, A. J., Hauck, S. A. II, Solomon, S. C. and Phillips, R. J. (2001). Potential for long-wavelength folding on Mercury. Lunar Planet. Sci., 32, abstract 2035.Google Scholar
Duncan, R. A. and Richards, M. A. (1991). Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 29, 3150,Google Scholar
Dzurisin, D. (1978). The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. J. Geophys. Res., 83, 48834906.Google Scholar
Egea-González, I., Ruiz, J., Fernández, C., Williams, J.-P., Márquez, Á. and Lara, L. M. (2012). Depth of faulting and ancient heat flows in the Kuiper region of Mercury from lobate scarp topography. Planet. Space Sci., 60, 193198.CrossRefGoogle Scholar
Élie de Beaumont, L. (1829). Faits pour Servir a l’Histoire des Montagnes de l’Oisans. Mémoires de la Société d’Histoire Naturelle de Paris, 132.Google Scholar
Élie de Beaumont, L. (1852). Notice sur les Systèmes de Montagnes, III. Paris: P. Bertrand, pp. 10691543.Google Scholar
Emmermann, R. and Lauterjung, J. (1997). The German continental deep drilling program KTB: Overview and major results. J. Geophys. Res., 102, 18,17918,201.Google Scholar
Engelder, T. (1992). Stress Regimes in the Lithosphere. Princeton, NJ: Princeton University Press.Google Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223.Google Scholar
Evans, A. J., Brown, S. M. and Solomon, S. C. (2015). Characteristics of early mantle convection and melting on Mercury. Lunar Planet. Sci., 46, abstract 2414.Google Scholar
Fassett, C. I. and Crowley, M. C. (2016). High-resolution stereo digital terrain models of Mercury: Crater degradation and morphometry. Lunar Planet. Sci., 47, abstract 1046.Google Scholar
Fassett, C. I., Head, J. W., Blewett, D. T., Chapman, C. R., Dickson, J. L., Murchie, S. L., Solomon, S. C. and Watters, T. R. (2009). Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth Planet. Sci. Lett., 285, 297308.Google Scholar
Fassett, C. I., Head, J. W., Baker, D. M. H., Zuber, M. T., Smith, D. E., Neumann, G. A., Solomon, S. C., Klimczak, C., Strom, R. G., Chapman, C. R., Prockter, L. M., Phillips, R. J., Oberst, J. and Preusker, F. (2012). Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. J. Geophys. Res., 117, E00L08.Google Scholar
Fegan, E. R., Rothery, D. A., Marchi, S., Massironi, M., Conway, S. J. and Anand, M. (2017). Late movement of basin-edge lobate scarps on Mercury. Icarus, 288, 226234.Google Scholar
Ferrari, S., Massironi, M., Marchi, S., Byrne, P. K., Klimczak, C., Martellato, E. and Cremonese, G. (2015). Age relationships of the Rembrandt basin and Enterprise Rupes, Mercury. In Volcanism and Tectonism Across the Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Hiesinger, H., Special Publication 401. London: Geological Society, pp. 159172.Google Scholar
Fletcher, R. C. and Hallet, B. (1983). Unstable extension of the lithosphere: A mechanical model for basin-and-range structure. J. Geophys. Res., 88, 74577466.Google Scholar
Fodor, L., Turki, S. M., Dalub, H. and Al Gerbi, A. (2005). Fault-related folds and along-dip segmentation of breaching faults: Syn-diagenetic deformation in the south-western Sirt basin, Libya. Terra Nova, 17, 121128.Google Scholar
Freed, A. M., Solomon, S. C., Watters, T. R., Phillips, R. J. and Zuber, M. T. (2009). Could Pantheon Fossae be the result of the Apollodorus crater-forming impact within the Caloris basin, Mercury? Earth Planet. Sci. Lett., 285, 320327.Google Scholar
Freed, A. M., Blair, D. M., Watters, T. R., Klimczak, C., Byrne, P. K., Solomon, S. C., Zuber, M. T. and Melosh, H. J. (2012). On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury’s northern plains. J. Geophys. Res., 117, E00L06, doi:10.1029/2012JE004119.Google Scholar
Galluzzi, V., Di Achille, G., Ferranti, L., Popa, C. and Palumbo, P. (2015). Faulted craters as indicators for thrust motions on Mercury. In Volcanism and Tectonism Across the Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Heisinger, H., Special Publication 401. London: Geological Society, pp. 313326.Google Scholar
Gettings, M. E. (1988). Variation of depth to the brittle-ductile transition due to cooling of a midcrustal intrusion. Geophys. Res. Lett., 15, 213216.Google Scholar
Giacomini, L., Massironi, M., Marchi, S., Fassett, C. I., Di Achille, G. and Cremonese, G. (2015). Age dating of an extensive thrust system on Mercury: Implications for the planet’s thermal evolution. In Volcanism and Tectonism Across the Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Heisinger, H., Special Publication 401. London: Geological Society, pp. 291312.Google Scholar
Glazner, A. F. (1991). Plutonism, oblique subduction, and continental growth: An example from the Mesozoic of California. Geology, 19, 784786.Google Scholar
Golombek, M. P., Plescia, J. B. and Franklin, B. J. (1991). Faulting and folding in the formation of planetary wrinkle ridges. In Proceedings of Lunar and Planetary Science, 21. Houston, TX: Lunar and Planetary Institute, pp. 679693.Google Scholar
Golombek, M. P., Anderson, F. S. and Zuber, M. T. (2001). Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA. J. Geophys. Res., 106, 23,81123,821.Google Scholar
Goudge, T. A., Head, J. W., Kerber, L., Blewett, D. T., Denevi, B. W., Domingue, D. L., Gillis-Davis, J. J., Gwinner, K., Helbert, J., Holsclaw, G. M., Izenberg, N. R., Klima, R. L., McClintock, W. E., Murchie, S. L., Neumann, G. A., Smith, D. E., Strom, R. G., Xiao, Z., Zuber, M. T. and Solomon, S. C. (2014). Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. Planets, 119, 635658.Google Scholar
Grott, M., Breuer, D. and Laneuville, M. (2011). Thermo-chemical evolution and global contraction of Mercury. Earth Planet. Sci. Lett., 307, 135146.Google Scholar
Habermann, M. A. and Klimczak, C. (2015). Tectonic controls of pyroclastic volcanism on Mercury. Presented at 2018 Fall Meeting, American Geophysical Union, abstract P53A-2101, San Francisco, CA, 14–18 December.Google Scholar
Hamilton, W. B. (1995). Subduction systems and magmatism. In Volcanism Associated with Extension at Consuming Plate Margins, ed. Smellie, J. L., Special Publication 81. London: Geological Society, pp. 328.Google Scholar
Hatcher, R. D. Jr. (1989). Tectonic synthesis of the U.S. Appalachians. In The Appalachian-Ouachita Orogen in the United States, ed. Hatcher, R. D., Jr., Thomas, W. A. and Viele, G. W.. Boulder, CO: Geological Society of America, pp. 511536.Google Scholar
Hauck, S. A. II, Dombard, A. J., Phillips, R. J. and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett., 222, 713728.Google Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220.CrossRefGoogle Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J. Jr, Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.CrossRefGoogle ScholarPubMed
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J., Fassett, C. I., Dickson, J. L., Hurwitz, D. M. and Ostrach, L. R. (2009). Evidence for intrusive activity on Mercury from the first MESSENGER flyby. Earth Planet. Sci. Lett., 285, 251262.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856.Google Scholar
Heap, M. J., Byrne, P. K. and Mikhail, S. (2017). Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: Implications for topography, volcanism, and hydrology. Icarus, 281, 103114.Google Scholar
Hoek, E. and Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci., 43, 203215.Google Scholar
Jacobs, J. A., Russell, R. D. and Wilson, J. T. (1959). Physics and Geology. New York: McGraw-Hill, 424 pp.Google Scholar
James, P. B., Byrne, P. K., Solomon, S. C., Zuber, M. T. and Phillips, R. J. (2014). Surface strains associated with the evolution of Mercury’s domical swells. Presented at 2014 Fall Meeting, American Geophysical Union, abstract P21C-3939, San Francisco, CA, 15–19 December.Google Scholar
James, P. B., Zuber, M. T., Phillips, R. J. and Solomon, S. C. (2015). Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. Planets, 120, 287310.Google Scholar
Jeffreys, H. (1976). The Earth: Its Origin, History and Physical Constitution, 6th edn. Cambridge: Cambridge University Press, 574 pp.Google Scholar
Jerram, D. A. and Widdowson, M. (2005). The anatomy of continental flood basalt provinces: Geological constraints on the processes and products of flood volcanism. Lithos, 79, 385405.Google Scholar
Kachanov, M. (1992). Effective elastic properties of cracked solids: Critical review of some basic concepts. Appl. Mech. Rev., 45, 304335.Google Scholar
Karimi, M. and Dombard, A. J. (2014). A study regarding the possibility of true polar wander on the asteroid Vesta. Presented at 2014 Fall Meeting, Amererican Geophysical Union, abstract P43C-4003, San Francisco, CA, 15–19 December.Google Scholar
Kaula, W. M. (1968). An Introduction to Planetary Physics: The Terrestrial Planets. New York: John Wiley.Google Scholar
Kennedy, P. J., Freed, A. M. and Solomon, S. C. (2008). Mechanisms of faulting in and around Caloris basin, Mercury. J. Geophys. Res., 113, E08004, doi:10.1029/2007JE002992.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271.Google Scholar
Kerber, L., Head, J. W., Blewett, D. T., Solomon, S. C., Wilson, L., Murchie, S. L., Robinson, M. S., Denevi, B. W. and Domingue, D. L. (2011). The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci., 59, 18951909.Google Scholar
King, S. D. (2008). Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection. Nature Geosci., 1, 229232.Google Scholar
Klimczak, C. (2014). Geomorphology of lunar grabens requires igneous dikes at depth. Geology, 42, 963966.Google Scholar
Klimczak, C. (2015). Limits on the brittle strength of planetary lithospheres undergoing global contraction. J. Geophys. Res. Planets, 120, 21352151.Google Scholar
Klimczak, C., Schultz, R. A. and Nahm, A. L. (2010). Evaluation of the origin hypotheses of Pantheon Fossae, central Caloris basin, Mercury. Icarus, 209, 262270.Google Scholar
Klimczak, C., Watters, T. R., Ernst, C. M., Freed, A. M., Byrne, P. K., Solomon, S. C., Blair, D. M. and Head, J. W. (2012). Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. J. Geophys. Res., 117, E00L03, doi:10.1029/2012JE004100.Google Scholar
Klimczak, C., Ernst, C. M., Byrne, P. K., Solomon, S. C., Watters, T. R., Murchie, S. L., Preusker, F. and Balcerski, J. A. (2013a). Insights into the subsurface structure of the Caloris basin, Mercury, from assessments of mechanical layering and changes in long-wavelength topography. J. Geophys. Res. Planets, 118, 20302044.Google Scholar
Klimczak, C., Byrne, P. K., Solomon, S. C., Nimmo, F., Watters, T. R., Denevi, B. W., Ernst, C. M. and Banks, M. E. (2013b). The role of thrust faults as conduits for volatiles on Mercury. Lunar Planet. Sci., 44, abstract 1390.Google Scholar
Klimczak, C., Byrne, P. K. and Solomon, S. C. (2015). A rock-mechanical assessment of Mercury’s global tectonic fabric. Earth Planet. Sci. Lett., 416, 8290.Google Scholar
Knibbe, J. S. and van Westrenen, W. (2016). Mercury’s past rotation and cratering distribution. Lunar Planet. Sci., 47, abstract 1445.Google Scholar
Kohlstedt, D. L. and Mackwell, S. J. (2010). Strength and deformation of planetary lithospheres. In Planetary Tectonics, ed. Watters, T. R. and Schultz, R. A.. New York: Cambridge University Press, pp 397456.Google Scholar
Kohlstedt, D. L., Evans, B. and Mackwell, S. J. (1995). Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res., 100, 17,58717,602.Google Scholar
Kuang, W., Jiang, W., Roberts, J. and Frey, H. V. (2014). Could giant basin-forming impacts have killed Martian dynamo? Geophys. Res. Lett., 41, 80068012.Google Scholar
Kulhawy, F. H. (1975). Stress deformation properties of rock and rock discontinuities. Eng. Geol., 9, 327350.Google Scholar
Last, G. V., Winsor, K. and Unwin, S. G. (2012). A Summary of Information on the Behavior of the Yakima Fold Belt as a Structural Entity. Topical Report, Richland, WA: Pacific Northwest National Laboratory, 82 pp.Google Scholar
Le Corvec, N., McGovern, P. J., Grosfils, E. B. and Galanga, G. (2015). Effects of crustal‐scale mechanical layering on magma chamber failure and magma propagation within the Venusian lithosphere. J. Geophys. Res. Planets, 120, 12791297.Google Scholar
Le Feuvre, M. and Wieczorek, M. A. (2011). Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus, 214, 120.Google Scholar
Lissauer, J. J. (1985). Can cometary bombardment disrupt synchronous rotation of planetary satellites? J. Geophys. Res., 90, 11,28911,293.CrossRefGoogle Scholar
Liu, L., Li, S., Dai, L., Suo, Y., Liu, B., Zhang, G., Wang, Y. and Liu, E. (2012). Geometry and timing of Mesozoic deformation in the western part of the Xuefeng Tectonic Belt, South China: Implications for intra-continental deformation. J. Asian Earth Sci., 49, 330338.Google Scholar
Lopez, V., Ruiz, J. and Vázquez, A. (2015). Evidence for two stages of compressive deformation in a buried basin of Mercury. Icarus, 254, 1823.Google Scholar
Lucchitta, B. K. (1976). Mare ridges and related highland scarps: Results of vertical tectonism. Proc. Lunar Sci. Conf., 7, 27612782.Google Scholar
Mangold, N., Allemand, P. and Thomas, P. G. (1998). Wrinkle ridges of Mars: Structural analysis and evidence for shallow deformation controlled by ice-rich décollements. Planet. Space. Sci., 46, 345356.Google Scholar
Marchi, S., Massironi, M., Cremonese, G., Martellato, E., Giacomini, L. and Prockter, L. M. (2011). The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury. Planet. Space Sci., 59, 19681980.Google Scholar
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F. and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499, 5961.Google Scholar
Marrett, R. and Emerman, S. H. (1992). The relations between faulting and mafic magmatism in the Altiplano-Puna plateau (central Andes). Earth Planet. Sci. Lett., 112, 5359.Google Scholar
Marti, J., Ablay, G. J., Redshaw, L. T. and Sparks, R. S. J. (1994). Experimental studies of collapse calderas. J. Geol. Soc. London, 151, 919929.Google Scholar
Massironi, M., Di Achille, G., Rothery, D. A., Galluzzi, V., Giacomini, L., Ferrari, S., Zusi, M., Cremonese, G. and Palumbo, P. (2015). Lateral ramps and strike-slip kinematics on Mercury. In Volcanism and Tectonism Across the Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Heisinger, H., Special Publication 401. London: Geological Society, pp. 269290.Google Scholar
Masursky, H., Colton, G. W. and El-Baz, F. (1978). Apollo over the Moon: A View from Orbit, Special Publication SP-362. Washington, DC: NASA.Google Scholar
Matsuyama, I. and Nimmo, F. (2009). Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res., 114, E01010, doi:10.1029/2008JE003252.Google Scholar
Matsuyama, I., Nimmo, F. and Mitrovica, J. X. (2014). Planetary reorientation. Annu. Rev. Earth Planet. Sci., 42, 605634.Google Scholar
McAdoo, D. C. and Sandwell, D. T. (1985). Folding of oceanic lithosphere. J. Geophys. Res., 90, 85638569.Google Scholar
McClay, K. R. (1992). Thrust Tectonics. London: Chapman and Hall.Google Scholar
McDougall, J. W., Hussain, A. and Yeats, R. S. (1993). The Main Boundary Thrust and propagation of deformation into the foreland fold-and-thrust belt in northern Pakistan near the Indus River. In Himalayan Tectonics, ed. Treloar, P. J. and Searle, M. P., Special Publication 74. London: Geological Society, pp. 581588.Google Scholar
McGovern, P. J. and Litherland, M. M. (2011). Lithospheric stress and basaltic magma ascent on the Moon, with implications for large volcanic provinces and edifices. Lunar Planet. Sci., 42, abstract 2587.Google Scholar
Melosh, H. J. (1975). Large impact craters and the Moon’s orientation. Earth. Planet. Sci. Lett., 26, 353360.Google Scholar
Melosh, H. J. (1977). Global tectonics of a despun planet. Icarus, 31, 221243.Google Scholar
Melosh, H. J. (1980). Tectonic patterns on a tidally distorted planet. Icarus, 43, 334337.Google Scholar
Melosh, H. J. (1984). Impact ejection, spallation, and the origin of meteorites. Icarus, 59, 234260.Google Scholar
Melosh, H. J. and Dzurisin, D. (1978). Mercurian global tectonics: A consequence of tidal despinning? Icarus, 35, 227236.Google Scholar
Melosh, H. J. and McKinnon, W. B., (1988). The tectonics of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 374400.Google Scholar
Michel, N. C., Hauck, S. A. II, Solomon, S. C., Phillips, R. J., Roberts, J. H. and Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets, 118, 10331044.Google Scholar
Montési, L. G. J. and Zuber, M. T (2003). Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. J. Geophys. Res., 108, E65048, doi:10.1029/2002JE001974.Google Scholar
Moore, H. J., Boyce, J. M. and Hahn, D. A. (1980). Small impact craters in the lunar regolith: Their morphologies, relative ages, and rates of formation. Moon Planets, 23, 231252.Google Scholar
Morbidelli, A., Tsiganis, K., Batygin, K., Crida, A. and Gomes, R. (2012). Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus, 219, 737740.Google Scholar
Mueller, K. and Golombek, M. (2004). Compressional structures on Mars. Annu. Rev. Earth Planet. Sci., 32, 435464.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7376.Google Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O’Leary, B., Strom, R. G., Suomi, V. and Trask, N. (1974). Mercury’s surface: Preliminary description and interpretation from Mariner 10 pictures. Science, 185, 169179.Google Scholar
Neil, E. A. and Houseman, G. A. (1999). Rayleigh–Taylor instability of the upper mantle and its role in intraplate orogeny. Geophys. J. Int., 138, 89107.Google Scholar
Nimmo, F. and Watters, T. R. (2004). Depth of faulting on Mercury: Implications for heat flux and crustal and effective elastic thickness. Geophys. Res. Lett., 31, L02701, doi:10.1029/2003GL018847.Google Scholar
Nimmo, F. and Matsuyama, I. (2007). Reorientation of icy satellites by impact basins. Geophys. Res. Lett., 34, L19203, doi:10.1029/2007GL030798.Google Scholar
Nimmo, F. and Pappalardo, R. T. (2006). Diapir-induced reorientation of Saturn’s moon Enceladus. Nature, 441, 614616.Google Scholar
Norris, R. J. and Cooper, A. F. (1997). Erosional control on the structural evolution of a transpressional thrust complex on the Alpine fault, New Zealand. J. Struct. Geol., 19, 13231342.Google Scholar
Noyelles, B., Frouard, J., Makarov, V. V. and Efroimsky, M. (2014). Spin–orbit evolution of Mercury revisited. Icarus, 241, 2644.Google Scholar
Oberst, J., Preusker, F., Phillips, R. J., Watters, T. R., Head, J. W., Zuber, M. T. and Solomon, S. C. (2010). The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus, 209, 230238.Google Scholar
Ostrach, L. R., Robinson, M. S., Whitten, J. L., Fassett, C. I., Strom, R. G., Head, J. W. and Solomon, S. C. (2015). Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus, 250, 602622.Google Scholar
Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N. and Solomon, S. C. (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett., 42, 10291038,CrossRefGoogle Scholar
Passchier, C. W. and Trouw, R. A. J. (2006). Microtectonics. New York: Springer Verlag.Google Scholar
Peale, S. J. (1988). The rotational dynamics of Mercury and the state of its core. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 461493.Google Scholar
Pechmann, J. B. and Melosh, H. J. (1979). Global fracture patterns of a despun planet: Application to Mercury. Icarus, 38, 243250.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A. II, McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., Ebel, D. S., Golsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D. and Stockstill-Cahill, K. R. (2011). Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Petterson, M. G., Neal, C. R., Mahoney, J. J., Kroenke, L. W., Saunders, A. D., Babbs, T. L., Duncan, R. A., Tolia, D. and McGrail, B. (1997). Structure and deformation of north and central Malaita, Solomon Islands: Tectonic implications for the Ontong Java Plateau–Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics, 283, 133.Google Scholar
Plescia, J. B. (1991). Wrinkle ridges in Lunae Planum Mars: Implications for shortening and strain. Geophys. Res. Lett., 18, 913916.Google Scholar
Plescia, J. B. (1993). Wrinkle ridges of Arcadia Planitia, Mars. J. Geophys. Res., 98, 15,04915,059.Google Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Amer. Bull., 97, 12891299.Google Scholar
Poblet, J. and Lisle, R. J. (2011). Kinematic evolution and structural styles of fold-and-thrust belts. In Kinematic Evolution and Structural Styles of Fold-and-Thrust Belts, ed. Poblet, J. and Lisle, R. J., Special Publication 349. London: Geological Society, pp.124.Google Scholar
Pohn, H. A. and Offield, T. W. (1970). Lunar crater morphology and relative age determination of lunar geologic units. Part 1: Classification. Part 2: Applications. In Geological Survey Research 1970, Professional Paper 69–209. Denver, CO: U.S. Geological Survey, 35 pp.Google Scholar
Preusker, F., Oberst, J., Head, J. W., Watters, T. R., Robinson, M. S., Zuber, M. T. and Solomon, S. C. (2011). Stereo topographic models of Mercury after three MESSENGER flybys. Planet. Space Sci., 59, 19101917.Google Scholar
Prockter, L. M., Watters, T. R., Chapman, C. R., Denevi, B. W., Head, J. W., Solomon, S. C., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Blewett, D. T., Gillis-Davis, J. J. and Gaskell, R. W. (2009). The curious case of Raditladi basin. Lunar Planet. Sci., 40, abstract 1758.Google Scholar
Prockter, L. M., Ernst, C. M., Denevi, B. W., Chapman, C. R., Head, J. W., Fassett, C. I., Merline, W. J., Solomon, S. C., Watters, T. R., Strom, R. G., Cremonese, G., Marchi, S. and Massironi, M. (2010). Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science, 329, 668671.Google Scholar
Prockter, L. M., Baker, D. M. H., Head, J. W., Murchie, S. L., Ernst, C. M., Chapman, C. R., Denevi, B. W., Solomon, S. C., Watters, T. R. and Massironi, M. (2011). The geology of medium-sized impact basins on Mercury. Abstracts with Programs, 43, paper 142–11. Boulder, CO: Geological Society of America.Google Scholar
Ritzer, J. A., Hauck, S. A. II and Barnouin, O. S. (2010). Mechanical structure of Mercury’s lithosphere from MESSENGER observations of lobate scarps. Lunar Planet. Sci., 41, abstract 2122.Google Scholar
Roberts, J. H. and Barnouin, O. S. (2012). The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res., 117, E02007.Google Scholar
Roberts, J. H. and Nimmo, F. (2008). Near-surface heating on Enceladus and the south polar thermal anomaly. Geophys. Res. Lett., 35, L09201, doi:10.1029/2011JE003876.Google Scholar
Roeder, D. (1988). Andean-age structure of Eastern Cordillera (Province of La Paz, Bolivia). Tectonics, 7, 2339.Google Scholar
Roeder, D. (2009). American and Tethyan Fold-Thrust Belts. Berlin: Gebrüder Borntraeger, 168 pp.Google Scholar
Rothery, D. A. and Massironi, M. (2010). Beagle Rupes: Evidence for a basal decollement of regional extent in Mercury’s lithosphere. Icarus, 209, 256261.Google Scholar
Scholz, C. H. and Cowie, P. A. (1990). Determination of total strain from faulting using slip measurements. Nature, 346, 837839.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 429460.Google Scholar
Schultz, R. A. (1985). Assessment of global and regional tectonic models for faulting in the ancient terrains of Mars. J. Geophys. Res., 90, 78497860.Google Scholar
Schultz, R. A. (1993). Brittle strength of basaltic rock masses with applications to Venus. J. Geophys. Res., 98, 10,88310,895.Google Scholar
Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock. Mech. Rock. Eng., 28, 115.Google Scholar
Schultz, R. A. (1996). Relative scale and the strength and deformability of rock masses. J. Struct. Geol., 18, 11391149.Google Scholar
Schultz, R. A. (2000). Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res., 105, 12,03512,052.Google Scholar
Schultz, R. A. and Fossen, H. (2008). Terminology for structural discontinuities. Amer. Assoc. Petrol. Geol. Bull., 92, 853867.Google Scholar
Schultz, R. A. and Tanaka, K. L. (1994). Lithospheric‐scale buckling and thrust structures on Mars: The Coprates rise and south Tharsis ridge belt. J. Geophys. Res., 99, 83718385.Google Scholar
Segall, P. (1984). Formation and growth of extensional fracture sets, Geol. Soc. Amer. Bull., 95, 454462.Google Scholar
Şengör, A. M. C. and Sakınç, M. (2001). Structural rocks: Stratigraphic implications. In Paradoxes in Geology, ed. Briegel, U. and Xiao, W. J.. Amsterdam: Elsevier.Google Scholar
Şengör, A. M. C., Natal’in, B. A. and Burtman, V. S. (1993). Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364, 299307.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J. L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.Google Scholar
Solomatov, V. S. and Moresi, L. N. (2000). Scaling of time‐dependent stagnant lid convection: Application to small‐scale convection on Earth and other terrestrial planets. J. Geophys. Res., 105, 21,79521,817.Google Scholar
Solomon, S. C. (1977). The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter., 15, 135145.Google Scholar
Solomon, S. C. (1978). On volcanism and thermal tectonics on one‐plate planets. Geophys. Res. Lett., 5, 461464.Google Scholar
Solomon, S. C. and Chaiken, J. (1976). Thermal expansion and thermal stress in the Moon and terrestrial planets: Clues to early thermal history. Proc. Lunar Sci. Conf., 7, 32293243.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A. and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER’s first Mercury flyby. Science, 321, 5962.Google Scholar
Solomon, S. C., Klimczak, C., Byrne, P. K., Hauck, S. A. II, Balcerski, J. A., Dombard, A. J., Zuber, M. T., Smith, D. E., Phillips, R. J., Head, J. W. and Watters, T. R. (2012). Long-wavelength topographic change on Mercury: Evidence and mechanisms. Lunar Planet. Sci., 43, abstract 1578.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 118164.Google Scholar
Stille, H. (1920). Über Alter und Art der Phasen variszischer Gebirgsbildung. Nachr. Ges. Wiss. Göttingen, 17.Google Scholar
Stille, H. (1940). Einführung in den Bau Amerikas. In Einführung in den Bau Amerikas. Berlin: Gebrüder Borntraeger.Google Scholar
Strom, R. G., Trask, N. J. and Guest, J. E. (1975). Tectonism and volcanism on Mercury. J. Geophys. Res., 80, 24782507.Google Scholar
Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C. and Head, J. W. (2008). Mercury cratering record viewed from MESSENGER’s first flyby. Science, 321, 7981.Google Scholar
Strom, R. G., Banks, M. E., Chapman, C. R., Fassett, C. I., Forde, J. A., Head, J. W., Merline, W. J., Prockter, L. M. and Solomon, S. C. (2011). Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history. Planet. Space Sci., 59, 19601967.Google Scholar
Suess, E. (1883). In Das Antlitz der Erde, Vol. I, ed. Suess, E.. Leipzig: F. Tempsky.Google Scholar
Suess, E. (1909). In Das Antlitz der Erde, Vol. III.2, ed. Suess, E.. Leipzig: F. Tempsky.Google Scholar
Thomas, P. G., Masson, P. and Fleitout, L. (1988). Tectonic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S., Tucson, AZ: University of Arizona Press, pp. 401428.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014). Long-lived explosive volcanism on Mercury. Geophys. Res. Lett., 41, 60846092.Google Scholar
Toksöz, M. N., Dainty, A. M., Solomon, S. C. and Anderson, K. R. (1974). Structure of the Moon. Rev. Geophys. Space Phys., 12, 539567.Google Scholar
Tosi, N., Grott, M., Plesa, A. C. and Breuer, D. (2013). Thermochemical evolution of Mercury’s interior. J. Geophys. Res. Planets, 118, 24742487.Google Scholar
Tosi, N., Čadek, O., Běhounková, M., Káňová, M., Plesa, A. C., Grott, M., Breuer, D., Padovan, S. and Wieczorek, M. A. (2015). Mercury’s low-degree geoid and topography controlled by insolation-driven elastic deformation. Geophys. Res. Lett., 42, 73277335.Google Scholar
Trask, N. J. (1971). Geologic comparison of mare materials in the lunar equatorial belt, including Apollo 11 and Apollo 12 landing sites. In Geophysical Survey Research 1971, Professional Paper 750-D. Denver, CO: U.S. Geological Survey, pp. 138144.Google Scholar
Trask, N. J. (1975). Cratering history of the heavily cratered terrain on Mercury. Proc. Int. Colloq. Planet. Geol., Geol. Rom., 15, 471476.Google Scholar
Trask, N. J. and Guest, J. E. (1975). Preliminary geologic terrain map of Mercury. J. Geophys. Res., 80, 24612477.Google Scholar
Trümpy, R. (1980). Geology of Switzerland, A Guide-book: An Outline of the Geology of Switzerland, ed. Trümpy., R. Bern: Schweizerische Geologische Kommission, 334 pp.Google Scholar
Turcotte, D. L. (1983). Thermal stresses in planetary elastic lithospheres. J. Geophys. Res., 88, A585A587.Google Scholar
Tweto, O. (1975). Laramide (Late Cretaceous–Early Tertiary) Orogeny in the Southern Rocky Mountains. In Cenozoic History of the Southern Rocky Mountains, ed. Curtis, B. F.. Memoirs, Vol. 144. Boulder, CO: Geological Society of America, pp. 144.Google Scholar
Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179193.Google Scholar
Walsh, J. B. (1965). The effect of cracks on the uniaxial compression of rocks. J. Geophys. Res., 70, 399411.Google Scholar
Walter, T. R. and Troll, V. R. (2001). Formation of caldera periphery faults: An experimental study. Bull. Volcanol., 63, 191203.Google Scholar
Watanabe, T., Koyaguchi, T. and Seno, T. (1999). Tectonic stress controls on ascent and emplacement of magmas. J. Volcanol. Geotherm. Res., 91, 6578.Google Scholar
Watters, T. R. (1991). Origin of periodically spaced wrinkle ridges on the Tharsis Plateau of Mars. J. Geophys. Res., 96, 15,59915,616.Google Scholar
Watters, T. R. (2004). Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 171, 284294.Google Scholar
Watters, T. R. and Nimmo, F. (2010). The tectonics of Mercury. In Planetary Tectonics, ed. Watters, T. R. and Schultz, R. A.. New York: Cambridge University Press, pp. 1580.Google Scholar
Watters, T. R., Robinson, M. S. and Cook, A. C. (1998). Topography of lobate scarps on Mercury: New constraints on the planet’s contraction. Geology, 26, 991994.Google Scholar
Watters, T. R., Cook, A. C. and Robinson, M. S. (2001). Large-scale lobate scarps in the southern hemisphere of Mercury. Planet. Space Sci., 49, 15231530.Google Scholar
Watters, T. R., Schultz, R. A., Robinson, M. S. and Cook, A.C. (2002). The mechanical and thermal structure of Mercury’s early lithosphere. Geophys. Res. Lett., 29, 1542, doi:10.1029/2001GL014308.Google Scholar
Watters, T. R., Robinson, M. S., Bina, C. R. and Spudis, P. D. (2004). Thrust faults and the global contraction of Mercury. Geophys. Res. Lett., 31, L04701, doi:10.1029/2003GL019171.Google Scholar
Watters, T. R., Nimmo, F. and Robinson, M. S. (2005). Extensional troughs in the Caloris basin of Mercury: Evidence of lateral crustal flow. Geology, 33, 669672.Google Scholar
Watters, T. R., Solomon, S. C., Robinson, M. S., Head, J. W., André, S. L., Hauck, S. A. II and Murchie, S. L. (2009a). The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett., 285, 283296.Google Scholar
Watters, T. R., Head, J. W., Solomon, S. C., Robinson, M. S., Chapman, C. R., Denevi, B. W., Fassett, C. I., Murchie, S. L. and Strom, R. G. (2009b). Evolution of the Rembrandt impact basin on Mercury. Science, 324, 618621.Google Scholar
Watters, T. R., Murchie, S. L., Robinson, M. S., Solomon, S. C., Denevi, B. W., André, S. L. and Head, J. W. (2009c). Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury. Earth Planet. Sci. Lett., 285, 309319.Google Scholar
Watters, T. R., Solomon, S. C., Klimczak, C., Freed, A. M., Head, J. W., Ernst, C. M., Blair, D. M., Goudge, T. A. and Byrne, P. K. (2012). Extension and contraction within volcanically buried impact craters and basins on Mercury. Geology, 40, 11231126.Google Scholar
Watters, T. R., Selvans, M. M., Banks, M. E., Hauck, S. A. II, Becker, K. J. and Robinson, M. S. (2015). Distribution of large‐scale contractional tectonic landforms on Mercury: Implications for the origin of global stresses. Geophys. Res. Lett., 42, 37553763.Google Scholar
Watters, T. R., Daud, K., Banks, M. E., Selvans, M. M., Chapman, C. R. and Ernst, C. M. (2016). Recent tectonic activity on Mercury revealed by small thrust fault scarps. Nature Geosci., 9, 743747.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Wickham, J. (1995). Fault displacement-gradient folds and the structure at Lost Hills, California (U.S.A.). J. Struct. Geol., 17, 12931302.Google Scholar
Wieczorek, M. A. and Le Feuvre, M. (2009). Did a large impact reorient the Moon? Icarus, 200, 358366.Google Scholar
Wieczorek, M. A. and Zuber, M. T. (2001). A Serenitatis origin for the Imbrium grooves and South Pole–Aitken thorium anomaly. J. Geophys. Res., 106, 27,85627,864.Google Scholar
Wieczorek, M. A., Correia, A. C. M., Le Feuvre, M., Laskar, J. and Rambaux, N. (2012). Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation. Nature Geosci., 5, 1821.Google Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., Kiefer, W. S., Taylor, G. J., Melosh, H. J., Phillips, R. J., Solomon, S. C., Andrews-Hanna, J. C., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Smith, D. E., Watkins, M. M., Williams, J. G. and Zuber, M. T. (2013). The crust of the Moon as seen by GRAIL. Science, 339, 671675.Google Scholar
Williams, J.-P., Ruiz, J., Rosenburg, M. A., Aharonson, O. and Phillips, R. J. (2011). Insolation driven variations of Mercury’s lithospheric strength. J. Geophys. Res., 116, E01008, doi:10.1029/2010JE003655.Google Scholar
Wilson, J. T. (1954). The development and structure of the crust. In The Earth as a Planet: The Solar System II, ed. Kuiper, G. P.. Chicago, IL: University of Chicago Press, pp. 138214.Google Scholar
Woodcock, N. H. and Soper, N. J. (2006). The Acadian Orogeny: The mid-Devonian phase of deformation that formed slate belts in England and Wales. In The Geology of England and Wales, ed. Brenchley, P. J. and Rawson, P. F.. London: Geological Society, pp. 131146.Google Scholar
Xia, K. and Ahrens, T. J. (2001). Impact induced damage beneath craters. Geophys. Res. Lett., 28, 35253527.Google Scholar
Zhong, S. (2009). Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nature Geosci., 2, 1923.Google Scholar
Zuber, M. T. (1995). Wrinkle ridges, reverse faulting, and the depth penetration of lithospheric strain in Lunae Planum, Mars. Icarus, 114, 8092.Google Scholar
Zuber, M. T. and Mouginis-Mark, P. J. (1992). Caldera subsidence and magma chamber depth of the Olympus Mons volcano, Mars. J. Geophys. Res., 97, 18,29518,307.Google Scholar
Zuber, M. T. and Smith, D. E. (1997). Mars without Tharsis. J. Geophys. Res., 102, 28,67328,685.Google Scholar
Zuber, M. T., Montési, L. G. J., Farmer, G. T., Hauck, S. A. II, Ritzer, J. A., Phillips, R. J., Solomon, S. C., Smith, D. E., Talpe, M. J., Head, J. W. III, Neumann, G. A., Watters, T. R. and Johnson, C. L. (2010). Accommodation of lithospheric shortening on Mercury from altimetric profiles of ridges and lobate scarps measured during MESSENGER flybys 1 and 2. Icarus, 209, 247255.Google Scholar
Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck, S. A. II, Peale, S. J., Barnouin, O. S., Head, J. W., Johnson, C. L., Lemoine, F. G., Mazarico, E., Sun, X., Torrence, M. H., Freed, A. M., Margot, J. L., Oberst, J., Perry, M. E., McNutt, R. L. Jr., Balcerski, J. A., Michel, N., Talpe, M. J. and Yang, D. (2012). Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science, 336, 217220.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×